
INHERITANCE OF BEHAVIOR IN
OBJECT-ORIENTED DESIGNS FOR
INDUSTRIAL CONTROL SYSTEMS

M. Bonfè ∗ C. Fantuzzi ∗∗ C. Secchi ∗∗

∗ Dipartimento di Ingegneria - Università di Ferrara
Via Saragat 1, Ferrara, Italy

∗∗ DISMI - Università di Modena e Reggio Emilia
Via Allegri 15, Reggio Emilia, Italy

Abstract: The paper presents a feasible approach to introduce object-oriented
techniques in the industrial practice of control design. The approach is based on
the use of a domain-specific extension of the modeling language UML and on the
formalization of design models as transition systems for verification purposes. In
particular, the paper shows how to exploit model checking techniques to verify
that object classes, designed as subtypes, correctly inherit the behavior of their
base classes, according to a notion of substitutability specifically defined for the
proposed semantics of object-oriented models. Copyright c© IFAC 2005

Keywords: Manufacturing systems, Logic controllers, Discrete-event systems,
Verification.

1. INTRODUCTION

The emerging technologies for industrial con-
trol systems are putting more and more empha-
sis on concepts like modularity and reusability
of components (both hardware and software),
in order to increase efficiency of manufactur-
ing systems design and reduce time spent dur-
ing the installation of machines and the opera-
tional qualification of production lines. For ex-
ample, the well-known standard for PLC (Pro-
grammable Logic Controllers) programming IEC
61131-3 (I.E.C., 2002) and the newer standard
IEC 61499-1 (I.E.C., 2000) for distributed con-
trol systems, define frameworks for the implemen-
tation of modular software architectures, based
on program organization units called Function
Blocks (FBs). Even though the mentioned tech-
nologies incorporate many high-level concepts de-
rived from the most recent Software Engineer-
ing principles, practical applications in the manu-
facturing domain of methods like object-oriented

modeling or formal verification are quite rare.
Several examples of academic projects that have
attempted to fill this gap can be mentioned, for
example the references in the review (Frey and
Litz, 2000). Nevertheless, there are still important
reasons limiting the appeal of formal methods
from the point of view of industrial control design-
ers, first of which the difficulties in the interpreta-
tion of some theoretical concepts within the pecu-
liarities of the application domain and its day-to-
day practice. These difficulties could be overcome
adopting an “easy to use” modeling language and
customizing it in order to include domain-specific
aspects, making at the same time rigorousness
of formal approaches transparent for technicians
without a background on formal methods. With
these remarks as a basic point, the paper presents
a domain-specific adaptation and formalization
of an object-oriented modeling language, namely
UML (O.M.G., 2001), and how to formalize within
this modeling framework the concept of behavioral
inheritance between classes in a design model.

The rest of the paper describes in Section 2 the
modeling language considered, in Section 3 its se-
mantical formalization, with particular regard to
inheritance of behavior, and in Section 4 the tools
that could support designers for model verifica-
tion. The paper ends with an illustrative example
and some concluding remarks.

2. OBJECT-ORIENTED MODELING AND
INDUSTRIAL CONTROLLERS

From a software engineering point of view, the
features of IEC 61131-3 and IEC 61499-1 can
be defined Object-Based, since FBs have many
similiarities with objects as defined in modern
programming languages: they are defined as types
and used as instances, they encapsulate both pri-
vate algorithms and data and they communicate
with other software modules through well-defined
interfaces, composed of input and output sig-
nals.Even though FBs allow to develop modular
control software, neither of the IEC standards can
be considered fully Object-Oriented (O-O) in a
proper sense, because they do not include the fea-
ture of inheritance. However, this lackness should
not prevent from the use of O-O design tech-
niques, for example supported by modeling lan-
guages like UML and design tools with automatic
code generators, provided that a proper interpre-
tation and implementation-level mapping of ab-
stract design concepts is defined. In fact, UML is
defined by an extensible meta-model, which means
that domain-specific concepts can be added to the
language by means of stereotyped elements and
well-formedness rules or constraints (i.e. expressed
in Object Constraint Language (O.M.G., 2001)).
The rest of the section will describe an extension
of UML which can be adopted to design industrial
control applications, focusing on a subset of the
language that allows to completely specify struc-
ture and behavior of a system.

Structural views of an O-O system are described
with UML by means of Class Diagrams, in which
class symbols have compartments to show their
properties (i.e. attributes and operations) and
graphical links between them represent simple
association, aggregation/composition (part-whole
relationship) and generalization (a class derives
from another), which involves inheritance. An im-
portant property that can be associated to a class
is represented by its stereotype, which defines its
conceptual role in a domain-specific model. For
industrial control applications, it is important to
specify structural aspects from a mechatronic per-
spective, which means that software modules must
be considered in a tight aggregation with the phys-
ical sub-systems that they control. This aggregate,
that we call mechatronic object, should have a

signal-based interface, in order to exchange events
with other mechatronic objects of a machine, and
the description of its internal structure should
highlight relationships with hardware components
(i.e. sensors/actuators). The UML stereotypes
that we have defined permit to describe classi-
fiers for mechatronic objects as �mechatronic�
classes, which have an interface of publicly vis-
ible properties, in their turn stereotyped as
�input� or �output�. A �mechatronic�
class cannot have any public operations, while
private operations may be used to model com-
plex data-processing activities. The part of a
�mechatronic� class related to the connec-
tion with physical components is specified with
the help of classes stereotyped as �hardware�.
Classes of this kind are always related by means of
a composition link with a �mechatronic� class
and their �input� and �output� properties
represent the hardware I/O ports as a private part
of the �mechatronic� class. Figure 1 shows the
graphical representation of the proposed stereo-
types in a UML Class Diagram. It can be noted

<<hardware>> Class_Name2

<<input>>
Input1 : TYPE1
...
<<output>>
Output1 : TYPE2

Plant's behaviour

Outputs
of the
controller

Inputs
of the
controller

<<mechatronic>> Class_Name

<<input>>
+ Input_Port1: TYPE1
+ Input_Port2: TYPE2
...
<<output>>
+ Output_Port1: TYPE3
...

Controller's behaviour

Fig. 1. UML stereotypes for mechatronic models

that mechatronic objects are quite similar to ac-
tors in the ROOM language (Selic et al., 1994),
which communicate with each others through the
messages exchanged through well-defined ports,
consistently with a given protocol. However, the
concept of interface for mechatronic objects is
simpler and more similar to the one proposed by
IEC standards: each �input� or �output�
signal represent a “port” of a given type (in-
cluding EVENT). A complete structural model for
a complex machine would be defined by one or
more Class Diagrams, in which part/whole rela-
tionships between modules are modeled by com-
position links between mechatronic classes. The
physical interpretation of objects in this frame-
work suggests the definition of well-formedness
rules prescribing that there must always be a sin-
gle “top-level” class (i.e. the machine), that share-
able aggregation links cannot be used, and that
composition links must be qualified with fixed
multiplicity, since dynamic creation of objects is
not admissible.

The behavioral specification of the system must be
specified describing the internal behavior of each
class with a UML State Diagram, a kind of state
model strictly derived from Harel’s Statecharts
(Harel, 1987). In the proposed UML extension, the
Statechart of a �mechatronic� class represents

the behavior of the controller, while the Statechart
of a �hardware� class models the plant’s be-
havior. With regard to textual expressions in Sta-
techarts (i.e. transition labels and state actions),
their specification with an IEC 61131-3 compati-
ble syntax would ease automatic code generation
for industrial controllers. In particular, we propose
to label transitions with strings having the format:
trigger[guard]/actions

where events in the trigger can be inputs of
the stereotyped class or outputs of its contained
instances, explicitly typed as EVENT. The guard
must also be a valid boolean expression, and
actions will follow the same rules of the similar
string included in a state action, which is specified
by a textual expression like:
when / actions IF[guard]

Here, when is a qualifier that can be entry or
exit, guard is an optional boolean expression
that may prevent the action from being executed,
if it evaluates to false, and actions is an ordered
list of operations that can: set or reset a boolean
variable, assign the value of an expression to a
variable of a non-boolean data-type, or emit an
attribute typed as EVENT.

3. FORMALIZATION OF MECHATRONIC
MODELS

The underlying semantics of the modeling lan-
guage described in previous section must be for-
malized taking into account the peculiarities of
the application domain which make inadequate
some parts of the UML semantics. In particular,
the semantics of Statecharts is defined in UML by
a Run-To-Completion execution algorithm, based
on an event-queue for each object, in which events
are processed one at a time. This interpreta-
tion is counter-intuitive for the implementation
on synchronous devices like PLCs, for which the
“original” Statecharts semantics of (Harel and
Naamad, 1996) is more suitable. Moreover, the
common O-O definitions of inheritance in terms
of structural conformity (e.g. name consistency
of public operations) are not appropriate for the
domain of industrial control and for a design
methodology in which components behavior is
specified with state models. The correct interpre-
tation of the inheritance concept must consider
behavioral conformity and substitutability of state-
based behaviors, with definitions similar to those
reported in (Harel and Kupferman, 2002). There-
fore, we define the instantiation of the top-level
class in a UML mechatronic model as a mecha-
tronic system

MS = (M, t,Γ) (1)

where M is a set of instances of mechatronic
classes, t ∈ M is the top-level one and Γ : M →

2M is a function that retrieves for each instance
the ordered set of its components. The composi-
tion of MS is univocally determined by multipli-
city of aggregation links in the UML model and
each Mi ∈ M is an univocally referrable instance
of a mechatronic class Cj . A mechatronic class
is defined as

C = (S, T, P, r, γ) (2)

where S is a set of states, T is a set of transitions,
P = P I ∪ PO is a set of “port” variables, each
one of a given data type (including event), r ∈ S is
the root state and γ is an ordered set of contained
instances of other mechatronic classes. The hier-
archical aspects of the Statechart of a class C are
defined by typing each s ∈ S as an AND-state,
OR-state or basic, and by the functions def(s),
which retrieves the default state of each OR-
state, chldn(s), which retrieves the set of imme-
diate substates of s, and chldn�(s), the reflexive-
transitive closure of chldn(s). A configuration is
a subset of S which is maximally consistent (i.e.
all of its elements can be simultanously active)
and compl(X) retrieves a configuration which is
the default completion of a consistent set X. We
also define as B the set of boolean expressions
over variables in P I ∪ ⋃

Mi∈γ PO
i , as A the set

of assignments over variables in PO ∪ ⋃
Mi∈γ P I

i

and as E the set of event expressions over vari-
ables P I ∪ ⋃

Mi∈γ PO
i , which consists of boolean

expressions that contain only variables typed as
events. These definitions permit to associate with
each transition tr ∈ T the following attributes:
src(tr) ∈ S, the source state, trig(tr) ∈ E , the
trigger expression, grd(tr) ∈ B, the guard expres-
sion, act(tr) ∈ 2A, a set of assignment actions,
and targ(tr) ∈ S, the target state. The scope of a
transition tr is the smallest OR-state containing
both src(tr) and targ(tr), while maxsrc(tr) is
the unique child of the scope of tr such that
src(tr) ∈ chldn�(maxsrc(tr)). According to these
definitions, when tr is fired the state maxsrc(tr)
and all of its descendents (chldn�(maxsrc(tr)))
are de-activated, while targ(tr) and the states in
its default completion are activated. A transition
is enabled if the predicate

en(tr) = in(src(tr)) ∧ trig(tr) ∧ grd(tr) (3)

is true (in(src(tr)) means that the source state is
active), but is firable only if an additional pred-
icate conflict(tr) is false, which happens if no
other transition with a priority higher than that of
tr is enabled. The priority rules we have adopted
enforce an explicit order, fixed at design time, be-
tween transitions with the same source state and
give higher priority to transitions exiting states
at a higher level in the hierarchy. To conclude, we
assume that states s ∈ S have an associated list
of actions, each defined as a tuple (w, a, g), where

w ∈ {entry, exit}, a ∈ 2A is a set of assignments
and g ∈ B is a guard expression.

The reaction of a mechatronic class instance to
external stimuli is defined as a step, in which
the next state configuration and the next value
of each variable are computed. Each instance in a
mechatronic system MS performs its step when it
is marked as active, instead of idle by a scheduling
function, whose formal detail are not specified
here. The most simple scheduling function would
cyclically mark active each Mi ∈ M according
to a fixed sequential order (i.e. the typical PLC
scan cycle). Whatever is the scheduling func-
tion, we assume that input ports of an instance
Mi ∈ M typed as events retain their truth value
until Mi becomes active and are immediately
set false when Mi has terminated to compute
its step, which means that no event can remain
undetected. Each instance of a generic mecha-
tronic class C is initialized in the configuration
Sc0 = compl(r), with given initial assignments to
variables in P ∪ ⋃

Mj∈γ Pj , and each one of its
steps is performed as follows:

(1) compute the set of firable transitions
Fi = (tr ∈ Ti|en(tr) ∧ ¬conflict(tr));

(2) compute the next configuration
Sc′i = compl((Sci−

⋃
tr∈Fi

chldn�(maxsrc(tr)))
∪⋃

tr∈Fi
targ(tr));

(3) execute exit actions related to exited states,
actions associated with each tr ∈ Fi and
entry actions related to entered states.

The execution of a step tranforms the status of an
instance Mi from σi = (Sci,Vi) to σ′

i = (Sc′i,V ′
i),

in which Vi and V ′
i are current and next values of

each variable in Pi ∪
⋃

Mj∈γi
Pj . The observable

status of an instance is defined as obsVi and
is the value of the variables in Pi. The global
status of a mechatronic system MS is given by
σG = (σ1, .., σn), where n is the cardinality of M ,
and its behavior, given a scheduling function, is
determined by the set LMS

of all the possible finite
and infinite sequences σ0

G, σ1
G, σ2

G, ..., in which the
change between σk

G and σk+1
G is determined by the

step of one instance.

In order to formalize the concept of behavioral
conformity between mechatronic classes, we fol-
low the so-called Liskov Substitution Principle
(Liskov, 1988), which states that a class can be
considered a subtype of another one if the behav-
ior of an object-oriented system, defined in terms
of the base class, is not affected by the substitution
of all the instances of the base class with instances
of the derived class. In our interpretation, since
the instances of a class can influence the global
behavior of a mechatronic system only by means
of their input/output ports, we analyze the com-
putational sequences of the system focusing on

the value of that kind of variables. Therefore, we
define as the observable behavior of a mecha-
tronic class C in a mechatronic system MS , which
contains r instances of C with indexes between
l and l + r, the set LC

MS
of all the sequences

σ0
C , σ1

C , σ2
C , ... that can be extrapolated from LMS

,
in which σi

C is composed by the observable status
of all the instances of C, that is (obsVi

l , ...,
obsVi

l+r).
Consistently with the previous definitions, we can
define that a class C1 is substitutable with
another class C2 having the same interface (i.e.
P1 = P2), if for any mechatronic system MS , with
the same scheduling function,

LC1
MS

⊆ LC2
MS

(4)

that is the observable behavior of C2 can extend
the observable behavior of C1, without deleting
any observable sequence.

4. CHECKING SUBSTITUTABILITY

The substitutability of mechatronic classes as de-
fined in previous section can be checked with
the help of specific tools supporting formal ver-
ification techniques for finite state systems. In
particular, the Cadence version of the tool SMV
(McMillan, 1999), originally developed at Carnegie
Mellon University, adopts Symbolic Model Check-
ing (McMillan, 1993) to verify refinement of com-
ponents in modular transition systems. Here, we
will briefly describe how to translate in the SMV
language the behavioral specification of mecha-
tronic classes and how to exploit the tool’s fea-
ture for refinement verification as a way to prove
their substitutability. The SMV language allows
to describe a finite state system with constructs
to declare modules and data-types, supports both
boolean and integer arithmetic and has specific
constructs to initialize state variables and to as-
sign them the next value in a computational path.
A mechatronic class can be translated as an SMV
module as follows:

module Mech_Class(Active, I1, I2, O1, O2){

input Active, I1,I2 : boolean;

output O1, O2 : boolean;

Instance1 : Mech_Class1(..);

...

}

where Active is a boolean input set true ac-
cording to the scheduling function, the other pa-
rameters represent the observable interface and
Instance1 is one of the contained instances of
other modules. The Statechart specification will
be tranlated encoding the hierarchy of states into
variables with enumerated values:

Root : {State1, State2, ..., StateN};

SUBState1 : {State11, ..., State1N};

and evaluating the configuration and the set of
enabled and actually firable transitions with pred-
icates defined as follows:

INState1 := (Root = State1);

INState11 := INState1 & (SUBState1 = State11);

ENTrans1 := INStateXX & Trigger & Guard;

CONFLTrans1 := ENTrans2 | ENTrans3 | ..;

FIRABLETrans1 := ENTrans1 & !CONFLTrans1;

Finally, initialization and execution of a step can
be translated as follows:

init(Root) := State1; -- default state

init(SUBState1) := State11; -- default state

default{ next(Root) := Root; -- no state change

next(SUBState1) := SUBState1;

next(O1) := O1;

...}

in case{ Active & FIRABLETrans1 : {

next(Root):= State2;

...

next(O1) := true;} -- set action

Active & FIRABLETrans2 : {...}

...}

which states that if no transition is firable the
status of the module remains unchanged (default
statements), otherwise it is opportunely changed.
An SMV program is completed by the declaration
of a main module (i.e. the top-level) and by the
specification of desired properties of the system,
to be proved by model checking, expressed with
CTL and LTL (Allen Emerson, 1996) temporal
logics or in terms of refinement maps. In the latter
case, SMV will explore the computational paths
of the system to prove that the assignments to a
given set of variables are compatible with those
specified in a so-called abstract layer. In practice,
SMV can prove that every possible behavior of a
system implementation is also a possible behavior
of the system specification. In our case, in order to
check that two classes are substitutable, we have
to define the base class as the implementation
layer and the derived class as the abstract layer.
This is translated in SMV as follows:

module main(){

I1, I2, .. : boolean;

O1, O2, .. : boolean;

C1 : BaseClass(1, I1, I2, .., O1, O2, ..);

layer derived : {

C2 : DerivedClass(1, I1, I2, .., O1, O2, ..);}

}

Notice that the instances C1 and C2 are always
active. When SMV opens a similar program, it
automatically defines as properties to check for-
mulas written as Oi//derived, where Oi is an
output signal in both C1 and C2. Each one of
these properties is verified if the values taken by
Oi along any computational path of the instance
C1 are compatible with those taken along the
paths of the instance C2, declared in the layer
derived. The inputs of both instances are as-
sumed free variables, which means that are al-
lowed to range over any possible value of their

types. If these properties are all proved, then the
observable behavior of any instance of the base
class is contained in the observable behavior of
any instance of the derived class, for any possi-
ble stimulus that they can receive, which proves
substitutability of the base class with the derived
class in any mechatronic system.

5. EXAMPLE

An example of a manufacturing machine quite
common in the packaging industry is schematized
in Fig. 2. This kind of machine is called horizontal
packer and has the following processing principle:
products are inserted in an horizontal “tube”,
which is made wrapping around the film and
sealing it along the longitudinal direction, then
the film is sealed transversally and cut, in order
to release the packed product.

Film

Feed roller

Long. sealer

Cross sealer +
Knife

Fig. 2. Packaging machine with horizontal flow

A structural model of this machine, from the per-
spective of control design, can be described with
UML as shown in Fig. 3. The diagram shows that
the class Longitudinal sealer has a derived
version named Enhanced Longitudinal Sealer,
which has implicitly (because of structural in-
heritance) the same interface and contained in-
stances (i.e. Heater and Temperature Sensor)
of the base class, plus an additional instance of
Heater, referred as ExtraHeater (name of the
composition link).

<<mechatronic>>
HorizontalPacker

<<mechatronic>>
FilmFeeder

........

<<mechatronic>>
ProductFeeder

...........

<<mechatronic>>
LongitudinalSealer

<<input>> Start
<<input>> Stop
<<output>> SealingOK

<<mechatronic>>
CuttingUnit

..........

<<mechatronic>>
EnhancedLongitudinal

Sealer

1 1 1 1

1
1

1

1

<<hardware>>
Heater

<<input>> On

<<hardware>>
TemperatureSensor

<<output>> Value

1
1

1

11

1

ExtraHeater

Fig. 3. Class Diagram of the horizontal packer

The behavior of Enhanced Longitudinal Sealer
must be designed starting from the one inherited
by the base class and modifying without breaking

substitutability, following the heuristics suggested
by some object-oriented methodologists, like those
in (Douglass, 1999). In particular, Fig. 4 shows
a possible (simplified) Statechart for the base
behavior and Fig. 5 an extended Statechart in
which the state Increase Temp. has been refined
in order to include a substate in which the extra
heater is powered, to speed up the rise of the
measured temperature, and another in which it
is switched off, with a transition between them
that may be triggered, for example, by a timer.

- Heating -
__

exit / RESET(Heater.On)

- Off -

- Increase Temperature -

entry / SET(Heater.ON)

- Temperature reached -

entry / SET(SealingOK)
exit / RESET(SealingOK)

[TemperatureSensor.Value
>= 400° C]

Start Stop

[TemperatureSensor.Value
< 400° C]

Fig. 4. Basic Statechart for a longitudinal sealer

- Heating -
__

exit / RESET(Heater.On)

- Off -

- Increase temperature -
__

entry / SET(Heater.On)

- Temperature reached -

entry / SET(SealingOK)
exit / RESET(SealingOK)

[TemperatureSensor.Value
>= 400° C]

Start Stop

[TemperatureSensor.Value
< 400° C]

- PreHeat -

entry / SET(ExtraHeater.On)
exit / RESET(ExtraHeater.On)

- Wait reach
temperature -

Fig. 5. Refined Statechart for a longitudinal sealer

This refinement do not change the behavior
observed from the top-level class Horizontal
Packer, which sends to the longitudinal sealer
Start and Stop events and reads a high value on
the boolean signal SealingOK when the measured
temperature is above 400o C. The behavioral con-
formity of the two classes can be verified writing
an SMV program as described in previous section
and, in case of positive answer from the model
checking tool, the two Statecharts can be trans-
lated into the internal behavior of two software
components (i.e. FBs) for PLC applications. Of
course, both operations can be done automatically
with the help of a CASE tool supporting UML and
customizable code generation.

6. CONCLUSION AND FUTURE WORK

The paper has described a domain-specific exten-
sion of the modeling language UML which can
be easily adopted by industrial control engineers
to design programs for PLC-based systems. The

concept of inheritance, characterizing the object-
oriented approach to software and systems design,
has been formalized in a definition specifically
studied for the application domain. In the future,
the definitions contained in the present paper will
be extended to consider more complex cases of
refinement (i.e. extension of the interface). More-
over, the authors aim to integrate the proposed
concepts into a CASE tools that can support in-
dustrial control engineers in their design practice.

REFERENCES

Allen Emerson, E. (1996). Automated temporal
reasoning about reactive systems. In: Logics
for Concurrency: Structure versus Automata
(F. Moller and G. Birtwistle, Eds.). pp. 111–
120. Number 1043 In: LNCS. Springer–
Verlag.

Douglass, B.P. (1999). Doing Hard Time: devel-
oping Real–Time systems with UML, objects,
frameworks, and patterns. Addison Wesley
Longman.

Frey, G. and L. Litz (2000). Formal methods in
PLC programming. In: Proc. IEEE Conf. on
Systems Man and Cybernetics (SMC) 2000.
pp. 2431–2436.

Harel, D. (1987). Statecharts: a visual formalism
for complex systems. Science of Computer
Programming 8, 231–274.

Harel, D. and A. Naamad (1996). The STATEM-
ATE semantics of Statecharts. ACM Trans-
actions on Software Engineering and Method-
ologies 5:4, 293–333.

Harel, D. and O. Kupferman (2002). On object
systems and behavioral inheritance. IEEE
Trans. on Software Engineering 28(9), 889–
903.

I.E.C. (2000). IEC 61499-1. Function Blocks for
Industrial Process Measurement and Con-
trol - Part 1: Architecture. Public Available
Specification (PAS).

I.E.C. (2002). IEC 61131-3. Programmable Con-
trollers - Part 3: Programming Langua-
ges (2nd Edition). Final Draft International
Standard (FDIS).

Liskov, B. (1988). Data abstraction and hierarchy.
ACM SIGPLAN Notices.

McMillan, K.L. (1993). Symbolic Model Checking:
an Approach to the State Explosion Problem.
Kluwer Academic Publishers.

McMillan, K.L. (1999). The SMV language. Ca-
dence Berkeley Labs.. 2001 Addison St.,
Berkeley, USA.

O.M.G. (2001). UML, v.1.4, OMG specifi-
cation. Document N. formal/2001-09-67.
www.omg.org/uml.

Selic, B., G. Gullekson and P. Ward (1994). Real-
Time Object-Oriented Modeling. John Wiley
& Sons.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

