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Abstract: This paper presents an implementation of a switching observer design strategy
to a piece-wise linear beam system comprising a flexible steel beam with a one-sided
support. The switching observer design strategy guarantees asymptotic stability of the
estimation error. Experimental and simulation results arepresented to demonstrate the
observer error stability and performance.Copyright c©2005 IFAC.

1. INTRODUCTION
This paper presents an experimental study of a switch-
ing observer design strategy for a class of piece-wise
linear systems by application to an elastic beam with
a one-sided support. The experimental beam system
consists of a flexible steel beam, which is clamped on
two sides and is supported at a location by a one-sided
linear spring. Due to the one-sided spring the beam has
two different dynamical regimes, which can be both be
well described as linear. As such the beam system can
be represented by a bi-modal piece-wise linear system.
The mechanical motivation to study such a piece-wise
linear beam system is the analysis of the dynamics of
complicated engineering constructions, such as tower
cranes, suspension bridges and solar panels on satel-
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lites which exhibit structural elements with piece-wise
linear restoring characteristics, see (Heertjes, 1999).
For this experimental beam we will design a switching
observer using the strategy from (Juloskiet al., 2002).
In (Juloskiet al., 2002) observers of Luenberger type
are considered, which result for a bi-modal piece-
wise linear system like the beam in bi-modal piece-
wise linear observers. It is a distinguishing feature of
this observer structure that the observer does not need
information about the active dynamics of the system,
in contrast to observers proposed in (Alessandri and
Colleta, 2001a) and (Alessandri and Colleta, 2001b).
The observer design strategy focuses on the state es-
timation error dynamics defined by interconnecting
a bi-modal piece-wise linear system with a bi-modal
piece-wise linear observer. Contrary to the classical
Luenberger observer for linear systems and to the case



when the mode is known, in this case the error dy-
namics is not autonomous, but depends on the state of
the observed system, and is a piece-wise linear system
with four modes. The theory of (Juloskiet al., 2002)
gives conditions under which global asymptotic sta-
bility of the estimation error is achieved. These condi-
tions imply that the bi-modal system at hand should be
continuous over the switching plane. This is the case
for the piece-wise linear model of the beam system.
By suitably selecting the output variable of the beam
system a piece-wise linear observer can be designed
for the model of the piece-wise linear set-up.
The focus of the paper is on the implementation of
this piece-wise linear observer for the experimental
beam system and on the comparison of the observer
predictions with simulations and experimental mea-
surements.
The paper is structured as follows. The switching ob-
server design strategy is introduced in section 2. In
section 3, a description of the experimental beam sys-
tem is given. The modelling of the beam system and a
model reduction method are discussed in section 4. In
sections 5 and 6, simulation and experimental results
related to the observer performance are presented.
Conclusions and future work are given in section 7.

2. SWITCHING OBSERVER DESIGN

We consider a continuous-time bi-modal piece-wise
linear system of the following type:

ẋ(t) =

{

A1x(t)+Bu(t), if HT x(t) ≤ 0

A2x(t)+Bu(t), if HT x(t) > 0
(1a)

y(t) = C x(t), (1b)

wherex(t)∈R
n, y(t)∈R

p andu(t)∈R
m are the state,

output and the input of the system, respectively, at
timet ∈ [0,∞). The matricesA1,A2 ∈R

n×n, B∈R
n×m,

C ∈ R
p×n and H ∈ R

n. The hyperplane defined by
kerHT separates the state spaceR

n into the two half-
spaces. The vector-fields of (1a) coincide on the half-
space boundary (A1 = A2 if HT x = 0). The consid-
ered class of piece-wise linear systems has an iden-
tical input matrixB and an identical output matrixC
for both modes. The problem at hand is to design a
state estimation procedure, which, on the basis of the
known system model, inputu, and measured outputy
provides a state estimate ˆx, without directly measuring
which mode of the system is active. In order to do so,
we choose an observer for the system (1), with the
following structure:

˙̂x(t) =

{

A1x̂(t)+Bu(t)+L1∆y(t), if HT x̂(t) ≤ 0

A2x̂(t)+Bu(t)+L2∆y(t), if HT x̂(t) > 0

(2a)

ŷ(t) = C x̂(t), (2b)

where ˆx(t) ∈ R
n is the estimated state at timet,

L1,L2 ∈ R
n×p and∆y(t) = y(t)− ŷ(t). Consequently,

the dynamics of the state estimation errore = x− x̂ is
described by

ė =















(A1−L1C)e, HT x ≤ 0, HT x̂ ≤ 0
(A2−L2C)e+∆Ax, HT x ≤ 0, HT x̂ > 0
(A1−L1C)e−∆Ax, HT x > 0, HT x̂ ≤ 0
(A2−L2C)e, HT x > 0, HT x̂ > 0,

(3)

where∆A = A1 − A2, x satisfies (1a) and ˆx satisfies
(2a). By substituting ˆx = x− e in (3), we see that the
right-hand side of the state estimation error dynamics
is piece-wise linear in the variable[e x]T .
In (Juloskiet al., 2002) the observer design problem
was formally stated as follows.
Problem: Determine, if possible, observer gains L1,L2

and K in (2a) such that global asymptotic stability of
the estimation error dynamics (3) is achieved, for all
functions x : R

+ −→ R
n, satisfying (1) for some given

u : R
+ −→ R

m.
Theorem 1. The state estimation error dynamics (3)
is globally asymptotically stable for allx : R

+ −→
R

n satisfy (1) for some locally integrable input func-
tion u : R

+ −→ R
m (in the sense of Lyapunov), if

there exist matricesP = PT > 0, L1,L2 and constants
λ1,λ2 ≥ 0, µ > 0 such that the following set of matrix
inequalities is satisfied:



















(A2−L2C)T P P∆A

+P(A2−L2C)+ µI +λ1
1
2

HHT

∆AT P −λ1HHT

+λ1
1
2

HHT



















≤ 0 (4a)



















(A1−L1C)T P −P∆A

+P(A1−L1C)+ µI +λ2
1
2

HHT

−∆AT P −λ2HHT

+λ2
1
2

HHT



















≤ 0 (4b)

For the proof ofTheorem 1 the reader is referred to
(Juloskiet al., 2002).

Remark 2.1 The observer does not require informa-
tion on which linear dynamics of the system is cur-
rently active, due to its switching structure.
Remark 2.2 The inequalities (4a)-(4b) are nonlinear
matrix inequalities in{P,L1,L2,λ1,λ2,µ}, but are lin-
ear in {P,LT

1 P,LT
2 P,λ1,λ2,µ}, and thus can be effi-

ciently solved using linear matrix inequalities solvers
(such as the software LMItool for Matlab).
Remark 2.3 A necessary condition for the LMIs (4)
to be feasible is

P = PT > 0 (5a)

(A1−L1C)T P+P(A1−L1C) < 0 (5b)

(A2−L2C)T P+P(A2−L2C) < 0. (5c)

Based on (Alessandri and Colleta, 2001a), (Alessandri
and Colleta, 2001b) these inequalities imply that the
pairs(A1,C) and(A2,C) are detectable as linear sys-
tems in the standard sense. Hence, a necessary con-
dition for the observer design, using (4), to work is
detectability of the two linear subsystems in the usual
sense.



3. EXPERIMENTAL BEAM SYSTEM
The experimental set-up2 (see Figures 1 and 2) con-
sists of a steel beam supported at both ends by two leaf
springs. The beam is excited by a forceu generated
from a rotating mass-unbalance, which is mounted at
the middle of the beam. A tacho-controlled motor, that
enables a constant rotation speed, drives the mass-
unbalance. A second beam, that is clamped at both
ends, is located parallel to the first one and acts as a
one-sided spring. This one-sided spring represents a
non-smooth nonlinearity in the dynamics of the steel
beam and, as a result, the beam system (beam and one-
sided spring) has nonlinear and non-smooth dynamics.
In case the spring is linear, the beam system can be
described as a piece-wise linear system, as we will
show in the next section. For further information on
the experimental set-up the reader is referred to (Van
der Vorst, 1996) and (Heertjes, 1999).

Motor Driving
Shaft

Mass
Unbalance

One-sided
Spring

Leaf
Spring

Beam

Fig. 1. Photo of the experimental set-up.

One-sided spring

Fig. 2. Schematic view of the experimental set-up.
ŷ1,y1,ym1 qmid

u qact ŷ2,y2,ym2

1 knl 2

Fig. 3. Elastic beam with one-sided support.

4. MODELLING
When the beam moves from its rest point towards the
one-sided spring, the spring is active. Therefore, the
system has different dynamics on this side than on the
opposite side. In the first case, the system dynamics is
determined by the stiffness of the beam and the spring,
in the second case, only by the beam stiffness. The
switching boundary between the two dynamic regimes

2 Available in the Dynamics and Control Technology laboratoryof
the Mechanical Engineering Department of the Eindhoven Univer-
sity of Technology

is present at zero displacement of the middle of the
beam. In order to describe the behavior of the beam
accurately, a 111DOF finite element model has been
developed, see (Bonselet al., 2004). Due to the large
number of the model DOFs , the simulation of the
nonlinear responses is computationally expensive. In
addition to that, the solution of the LMIs (4) is very
complex for such high order systems. Therefore, a
dynamic component mode synthesis reduction method
is used to express the number of DOF of the FEM
in terms of a reduced set of DOF. We use the so-
called Rubin method (Craig, 1985). The product of
this reduction is a 3DOF model. The relation between
the DOF of the FEM and the reduced model is given
with

p = T q, (6)

wherep denotes the DOFs of the FEM model andq
the DOFs of the reduced model. The transformation
matrixT ∈ R

111×3 obtained from the model reduction
procedure has the following structure:

T = [τ1 | τ2 | · · · | τ111]
T , (7)

where τi ∈ R
3. For further details of the reduction

method the reader is referred to (Fey, 1992) and
(Bonsel et al., 2004). The dynamics of the system
described by the 3DOF model is

Mq̈+Bq̇+Kq+ fnl(q) = h u(t), (8)

where h = [1 0 0]T and q = [qmid qact qξ ]T .
Herein,qmid is the displacement of the middle of the
beam andqact is the displacement of a point depicted
in Figure 3. Moreover,qξ reflects the contribution of
the first eigenmode of the beam andM, B andK are
the mass, the damping and the stiffness matrices of
the reduced model, respectively. We apply a periodic
excitation force

u(t) = Asinωt, (9)

which is generated by the mass-unbalance at the mid-
dle of the beam. Herein,ω is the excitation frequency
andA the amplitude of the excitation force. Moreover,
fnl is the restoring force of the one-sided spring:

fnl(q) = knl h min(0,hT q) = knl h min(0,qmid), (10)

whereknl is the stiffness of the spring. The forcefnl

acts when there is a contact between the middle of the
beam and the one-sided spring.
In state-space form, the model takes the form of (1),
wherex = [qT q̇T ]T , H = [hT 0T ],0= [0 0 0]T ,

A1 =

[

0 I
−M−1(K + knl h hT ) −M−1B

]

,

A2 =

[

0 I
−M−1K −M−1B

]

,

B =

[

0
M−1h

]

.

The numerical values of these matrices are given in
Appendix.

Remark 4.1 Note that the outputy of the model is
the displacement of a point along the beam. A detailed
description ofy for the examined system is

y = pi = τiq = [ τT
i 0T ]x = Cx, (11)



wherepi is the i− th DOF of the 111DOF model,τi

is thei− th row of the transformation matrixT , 0 is a
zero-column of length 3 andC = [τT

i 0] is the model
output matrix for this system as in (1b).
Remark 4.2 For the examined system the hyperplane
where the model switches dynamics is the rest position
of the middle of the beamHT x = qmid = 0.

5. OBSERVER DESIGN FOR THE BEAM
SYSTEM

In order to design the observer (2a) for the examined
system, the transversal displacement of a properly
chosen point on the beam is used as observer output
injection. This displacement is described from the
model output (11). The position of this point should
be chosen such that both pairs(A1,C) and(A2,C) are
detectable as linear systems, see Remark 2.3.

6. SIMULATION RESULTS

In order to validate the observer performance using
simulations, the procedure depicted in figure 7 is fol-
lowed. Herein, two model-based signals (y1,y2) that
describe the displacements of two points along the
beam (point 1 and 2 in figure 3, respectively) are
obtained by means of simulations.

y1 = C1x (12)

y2 = C2x, (13)

where y1 and y2 are the 35th- and 68th-DOF of
the 111DOF model, respectively. Therefore,C1 =
[ τT

35 0T ] (i = 35) andC2 = [ τT
68 0T ] (i = 68), ac-

cording to (11). Usingy1 for observer output injection,
the observer reconstructs the full state ( ˆx) and con-
sequently the displacement ( ˆy2 = C2x̂) of the second
point. The comparison ofy2 and ŷ2 can be used to
assess the performance of the observer.
Remark 5.1 By solving the LMIs (4a)-(4b) the gains
L1, L2 are calculated. The numerical values of these
gains, that guarantee global asymptotic stability of the
state estimation error of the beam system are shown in
the Appendix.
In figures 5 and 6 the displacementy2 is compared
with the ŷ2 for different excitation frequenciesω and
different amplitudesA. Furthermore, the erroreo =
ŷ2−y2 (observer error) is depicted in the same figures.
The model and observer initial conditionsx0, x̂0 are
shown in the Appendix. Both figures show that the
observer error converges to zero , as guaranteed by the
theory.
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Fig. 4. Schematic representation of the procedure fol-
lowed for the validation of the observer perfor-
mance, based on simulations.
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In Figure 7 the model and observer estimations of
the displacement of the middle of the beam are de-
picted. In Figure 7a) it is shown that the model and
the observer do not switch dynamics simultaneously.
Nevertheless, both converge to the same steady-state
solution, as can be seen in Figure 7b).



Remark 5.2 The steady-state solution of the dis-
placementsy2 and ŷ2 for an excitation frequency of
35 Hz is a 1

2 subharmonic solution (Figures 5 and
7), while for an excitation frequency of 15Hz it is a
harmonic solution (Figure 6), see (Heertjes, 1999).

7. EXPERIMENTAL RESULTS

In order to validate the observer performance using
experimental results, a comparison between the mea-
sured displacement (ym2) of a point along the beam
(point 2 in figure 3) with the corresponding model and
observer estimations (y2, ŷ2) is performed. The experi-
mental procedure followed in this case is similar to the
simulation procedure. The only difference, of course,
is that the output injection used here is the measured
displacement (ym1) of the point 1 (see figure 3). This
procedure is explained in figure 8. In figures 9 to 12
the displacement estimationsy2 andŷ2 of the point 2,
are compared with the measured displacementym2 of
the same point. Furthermore, the errorseo = ŷ2− ym2

(observer error) andem = y2 − ym2 (model error) are
depicted in the same figures. The model and observer
initial conditionsx0, x̂0 are shown in the Appendix.
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Fig. 8. Schematic representation of the procedure fol-
lowed for the validation of the observer perfor-
mance, based on experimental results.
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A difference betweenym2 and y2 exists (Figures 10
and 13) due to a model mismatch (mainly in the non-
linearity related to the one-sided spring stiffness) and
due to noise in the measured signals. Since the ob-
server is a model-based observer, the erroreo will also
be affected. Nevertheless, the observer performance
is satisfactory, sinceeo is considerably smaller than
em in both frequencies. For an excitation frequency of
15 Hz (Figures 12 and 13), the maximum value ofeo

in steady-state is around 7% of the maximum value of
ym2, while in 35Hz (Figures 9 and 10), it is less than
4%. On the other hand, the maximum values ofem at
the same frequencies are above 12% of the maximum
value ofym2. Finally, it is worth mentioning that the
error eo converges to its steady-state solution in less
than 0.4 sec, while em requires more than 1.2 sec for
the same result.

8. CONCLUSIONS AND FUTURE WORK
A switching observer strategy is applied to a periodi-
cally excited beam with a one-sided support. The per-
formance of the observer is shown based on both sim-
ulation and experimental results. According to these
results the observer performs well, since it predicts
with high accuracy the real system responses, despite
the fact that there are unavoidable modelling inaccu-
racies and noise in the measured signals. Although the
observer erroreo does not converge to zero exactly
using the experimental results, it becomes clear that
it is much smaller than the model errorem for all exci-
tation frequencies. Moreover, the observer cancels the
error in the initial conditions between the model and
the piece-wise linear system and forces the observer
response to converge to its steady-state solution faster
than the model response.
A topic of future research is the design of a controller
for non-smooth switching systems based on the imple-
mented observer and the application of this controller
to the piece-wise linear beam system.

9. APPENDIX

The matricesM, K, B, L1, L2, C1, C2, x0, x̂0 and the
value ofknl are

M =





4.494 −2.326 0.871
−2.326 7.618 2.229
0.871 2.229 2.374



 ,

K = 106





2.528 -0.345 1.026
−0.345 1.051 0.296
1.026 0.296 0.613



 ,

B = 102





1.173 -0.298 0.416
−0.298 1.041 0.314
0.416 0.314 0.365



,

L1 = 104 · [0.0134 0.0145 −0.0353 0.5402
0.9448 −2.6460],
L2 = 104 · [0.0134 0.0145 −0.0353 0.7989
1.0893 −2.8705],
C1 = [−0.9579 1.2165 −0.2642 0 0 0],
C2 = [0.0801 −1.2013 −0.8669 0 0 0],
x0 = [0 0 0 0 0 0]T , x̂0 = [10−3 0 0
0 0 0]T andknl = 198000N/m.
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