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Abstract: This paper presents an implementation of a simigcbbserver design strategy
to a piece-wise linear beam system comprising a flexibld &ieem with a one-sided
support. The switching observer design strategy guarargsgmptotic stability of the
estimation error. Experimental and simulation results@esented to demonstrate the
observer error stability and performan@apyright© 2005 IFAC.

1. INTRODUCTION lites which exhibit structural elements with piece-wise
This paper presents an experimental study of a switch-linear restoring characteristics, see (Heertjes, 1999).
ing observer design strategy for a class of piece-wiseFor this experimental beam we will design a switching
linear systems by application to an elastic beam with observer using the strategy from (Juloskal., 2002).
a one-sided support. The experimental beam systerrin (Juloskiet al., 2002) observers of Luenberger type
consists of a flexible steel beam, which is clamped on are considered, which result for a bi-modal piece-
two sides and is supported at a location by a one-sidedwise linear system like the beam in bi-modal piece-
linear spring. Due to the one-sided spring the beam hagwise linear observers. It is a distinguishing feature of
two different dynamical regimes, which can be both be this observer structure that the observer does not need
well described as linear. As such the beam system carinformation about the active dynamics of the system,
be represented by a bi-modal piece-wise linear systemin contrast to observers proposed in (Alessandri and
The mechanical motivation to study such a piece-wise Colleta, 2004) and (Alessandri and Colleta, 20f)1
linear beam system is the analysis of the dynamics of The observer design strategy focuses on the state es-
complicated engineering constructions, such as towertimation error dynamics defined by interconnecting
cranes, suspension bridges and solar panels on sateR bi-modal piece-wise linear system with a bi-modal
piece-wise linear observer. Contrary to the classical
Luenberger observer for linear systems and to the case

1 Supported by European project SICONQST(— 2001— 37172)



when the mode is known, in this case the error dy- (A1 —LiC)e, HTx<0, HTx<0
namics is not autonomous, but depends on the state of (A2 — LoC)e+AAX, HTx< 0, HTX >0
the observed system, and is a piece-wise linear system €= (A1—LiC)e—AAX, HTx>0, HTR <0 ®3)
with four modes. The theory of (Juloséi al., 2002) (A2 —LoC)e, HTx>0, HT®> 0,

gives conditions under which global asymptotic sta-

bility of the estimation error is achieved. These condi- WhereAA = Ay — Ay, x satisfies (1a) anat Satisfies
tions imply that the bi-modal system at hand should be (28). By substitutingc= x—ein (3), we see that the
continuous over the switching plane. This is the case right-hand side of the state estimation error dynamics
for the piece-wise linear model of the beam system. iS Piece-wise linear in the variable X'

By suitably selecting the output variable of the beam N (Juloskiet al., 2002) the observer design problem

system a piece-wise linear observer can be designedvas formally stated as follows.

for the model of the piece-wise linear set-up. Problem: Determine, if possible, observer gainsLy, Lo
The focus of the paper is on the implementation of @d K in (2a) such that global asymptotic stability of
this piece-wise linear observer for the experimental the estimation error dynamics (3) is achieved, for all
beam system and on the comparison of the observefunctionsx: R — R", satisfying (1) for some given
predictions with simulations and experimental mea- Y- R* — RM. L .
surements. Theorem 1. The state estimation error dynamics (3)

The paper is structured as follows. The switching ob- |snglob_ally asymptotically stablle for ak .R+ .
server design strategy is introduced in section 2. In R sat|.sfy+(1) for ?,?”?e locally integrable input fun_c—
section 3, a description of the experimental beam sys—tlon u- R _>.R (in t?e sense of Lyapunov), if
tem is given. The modelling of the beam system and g lhere exist matriceB = P' >0, L1, L, and constants
model reduction method are discussed in section 4. In.)‘l’/\2 2 0, 4 > 0 such that the following set of matrix

sections 5 and 6, simulation and experimental resultsMegualities is satisfied:

J— T T
related to the observer performance are presented. (A2 —LC)'P PAA
Conclusions and future work are given in section 7. +P(A2 —LoC) + ul Jr/\léHHT
<0 (48)
AATP —~AHHT
2. SWITCHING OBSERVER DESIGN A 1HHT
We consider a continuous-time bi-modal piece-wise + 12 i
linear system of the following type: [ (A LlC)TP _PAA
(1) = Agx(t) +Bu(t), if HTx(t) <0 1a) +P(AL— LiC) + i +A2%HHT
Aox(t) 4+ Bu(t), if HTx(t) >0 <0 (4b)
y(t) =Cx(t), (1b) fAf\TP —AHHT
wherex(t) € R", y(t) € RP andu(t) € R™ are the state, +A25H HT

output and the input of the system, respectively, at For_the proof ofTheorem 1 the reader_is referred to
timet € [0,). The matriced\;, A, € R™", Be R™™, (Juloskiet al., 2002).

C € RP*" andH € R". The hyperplane defined by o
kerHT separates the state spa®into the two half- ~ Remark 2.1 The observer does not require informa-
spaces. The vector-fields of (1a) coincide on the half- ion on which linear dynamics of the system is cur-
space boundary’q = A, if HTx = 0). The consid- rently active, due to its switching structure.

ered class of piece-wise linear systems has an idenRemark 2.2 The inequalities (4a)-(4b) are nonlinear
tical input matrixB and an identical output matrig ~~ Matrix mqualmTes IN(P,L1,L2,A1,A2, p}, but are lin-
for both modes. The problem at hand is to design a®a" iN{P.LiP.L;P A1, A2, i}, and thus can be effi-
state estimation procedure, which, on the basis of theciently solved using linear matrix inequalities solvers
known system model, input, and measured outpyt  (Such as the software LMitool for Matlab).

provides a state estimatevithout directly measuring ~ Reémark 2.3 A necessary condition for the LMIs (4)
which mode of the system is active. In order to do so, t0 be feasible is

_ pT
we choose an observer for the system (1), with the P=P >0 (5a)
following structure: (A1 —L1C)TP+P(A; —L1C) < 0 (5b)
ARt +Bu(t) + Lady(t), if HTR(t) <0 (Ao —LoC)TP+P(A; — L.C) < 0. (5¢)

K= Ak(t) + Bult) + Lady(t). if HTR(0) >0

(2a) Based on (Alessandri and Colleta, 26D Alessandri
§(t) = CR(t) (2b) and Colleta, 2004) these inequalities imply that the
’ pairs (A1,C) and (A2,C) are detectable as linear sys-
where X(t) € R" is the estimated state at tinte tems in the standard sense. Hence, a necessary con-
L1,Lp € R™P andAy(t) = y(t) — y(t). Consequently, dition for the observer design, using (4), to work is
the dynamics of the state estimation ereet X — X is detectability of the two linear subsystems in the usual
described by sense.



3. EXPERIMENTAL BEAM SYSTEM is present at zero displacement of the middle of the
The experimental set-up(see Figures 1 and 2) con- beam. In order to describe the behavior of the beam
sists of a steel beam supported at both ends by two leataccurately, a 111DOF finite element model has been
springs. The beam is excited by a foregenerated  developed, see (Bonset al., 2004). Due to the large
from a rotating mass-unbalance, which is mounted atnumber of the model DOFs , the simulation of the
the middle of the beam. A tacho-controlled motor, that nonlinear responses is computationally expensive. In
enables a constant rotation speed, drives the massaddition to that, the solution of the LMIs (4) is very
unbalance. A second beam, that is clamped at bothcomplex for such high order systems. Therefore, a
ends, is located parallel to the first one and acts as adynamic component mode synthesis reduction method
one-sided spring. This one-sided spring represents ds used to express the number of DOF of the FEM
non-smooth nonlinearity in the dynamics of the steel in terms of a reduced set of DOF. We use the so-
beam and, as a result, the beam system (beam and onealled Rubin method (Craig, 1985). The product of
sided spring) has nonlinear and non-smooth dynamics.this reduction is a 3DOF model. The relation between
In case the spring is linear, the beam system can bethe DOF of the FEM and the reduced model is given
described as a piece-wise linear system, as we willwith
show in the next section. For further information on p=Taq, ©)
the experimental set-up the reader is referred to (Vanwhere p denotes the DOFs of the FEM model and
der Vorst, 1996) and (Heertjes, 1999). the DOFs of the reduced model. The transformation
matrix T € R113 obtained from the model reduction
Motor  Driving s procedure has the following structure:

v T=[n|t2] | m0d", (7)

where 1; € R3. For further details of the reduction
method the reader is referred to (Fey, 1992) and
(Bonsel et al., 2004). The dynamics of the system
described by the 3DOF model is

M@+ Bq+Ka+ fu(q) = hu(t), (8)

whereh=1[1 0 (7 andq= [Gmd Gacx Qg
Herein,gnig is the displacement of the middle of the

One-sided Leaf

Spring Spring beam andyy is the displacement of a point depicted
in Figure 3. Moreoverg; reflects the contribution of
Fig. 1. Photo of the experimental set-up. the first eigenmode of the beam aklj B andK are
motor the mass, the damping and the stiffness matrices of
) driving shaft mass unbalance the reduced model, respectively. We apply a periodic
beam excitation force

L al

Nltiafspring z E ««L U(t) = Asin(ﬂt, (9)

One-sided spring

XH which is generated by the mass-unbalance at the mid-
30m] dle of the beam. Hereiny is the excitation frequency
andA the amplitude of the excitation force. Moreover,
Fig. 2. Schematic view of the experimental set-up.  fn is the restoring force of the one-sided spring:

1.V, Yt Gmid & Qact ¥2,Y2,Ym2 fr (@) = kn hmin(0, th) = kn hmin(0,0mig), (10)
I T T T whereky is the stiffness of the spring. The fordg
acts when there is a contact between the middle of the
1 Kni 2 . .
beam and the one-sided spring.

In state-space form, the model takes the form of (1),

—1qT aT1T H—ThT 071 0— T
Fig. 3. Elastic beam with one-sided support. wherex=[q" g ]",H=[n" 07].0=[0 0 0,

0 I
4. MODELLING AL= | MK 4k hBT) —M1B |
When the beam moves from its rest point towards the 0 I
one-sided spring, the spring is active. Therefore, the 2 :{_MlK _MlB]’
system has different dynamics on this side than on the 0

opposite side. In the first case, the system dynamics isB= M-1h!|"

determined by the stiffness of the beam and the spring,The numerical values of these matrices are given in

in the second case, only by the beam stiffness. Theappendix.

switching boundary between the two dynamic regimes .
Remark 4.1 Note that the outpuy of the model is
the displacement of a point along the beam. A detailed

2 Available in the Dynamics and Control Technology laboraiafry description ofy for the examined system is
the Mechanical Engineering Department of the Eindhoven &iniv
T 0']x=cCx, (12)

sity of Technology y=p=T0q=[T




wherep; is thei —th DOF of the 111DOF model;

is thei —th row of the transformation matriX, 0 is a
zero-column of length 3ar@= [r7 0] is the model
output matrix for this system as in (1b).

Remark 4.2 For the examined system the hyperplane
where the model switches dynamics is the rest position
of the middle of the beardl "X = g = O.

5. OBSERVER DESIGN FOR THE BEAM

SYSTEM
In order to design the observer (2a) for the examined

system, the transversal displacement of a properly
chosen point on the beam is used as observer output
injection. This displacement is described from the
model output (11). The position of this point should
be chosen such that both pai#s,C) and(A,,C) are
detectable as linear systems, see Remark 2.3.

6. SIMULATION RESULTS

In order to validate the observer performance using
simulations, the procedure depicted in figure 7 is fol-
lowed. Herein, two model-based signajs, ) that

describe the displacements of two points along the

a)

beam (point 1 and 2 in figure 3, respectively) are
obtained by means of simulations. <
y1 = Cix (12)
y2 = CoX, (13) ”

wherey; and y, are the 38h- and 68h-DOF of
the 111DOF model, respectively. Therefog, =
[1ds O'](i=35)andC, =[1d; O] (i =68), ac-
cording to (11). Using1 for observer output injection,
the observer reconstructs the full stat¢ &hd con-
sequently the displacementk (= C,X) of the second
point. The comparison of, andy, can be used to
assess the performance of the observer.

Remark 5.1 By solving the LMIs (4a)-(4b) the gains
L1, Lo are calculated. The numerical values of these
gains, that guarantee global asymptotic stability of the
state estimation error of the beam system are shown in
the Appendix.

In figures 5 and 6 the displacemeyt is compared
with theys for different excitation frequencie® and
different amplitudesA. Furthermore, the errog, =

V> — Y2 (Observer error) is depicted in the same figures.
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Fig. 5. a) Model prediction, and observer prediction

¥, b) observer errog, for £ = 35HzandA =
50N.
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Fig. 6. a) Model predictior, and observer prediction

¥, b) observer erroe, for £ = 15HzandA =
12N.
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The model and observer initial conditioms, X, are "
shown in the Appendix. Both figures show that the g
observer error converges to zero , as guaranteed by the _20'
theory. vo (o
. 05
u 0 0’1 0‘2 0.‘3 0‘9 0’ ‘,6 0‘7 0?3 0.’9 ;
— odd 1> ﬁcl Y1 tlmefsecT
X = Q! . . .
Fig. 7. Displacement]iq of the middle of the beam

for 52 = 35Hz and A = 50N. The plot a) is a
zoomed version of b).

In Figure 7 the model and observer estimations of
the displacement of the middle of the beam are de-
picted. In Figure 7a) it is shown that the model and
the observer do not switch dynamics simultaneously.
Nevertheless, both converge to the same steady-state
solution, as can be seen in Figure 7b).

Fig. 4. Schematic representation of the procedure fol-
lowed for the validation of the observer perfor-
mance, based on simulations.



Remark 5.2 The steady-state solution of the dis-
placements/, andy> for an excitation frequency of
35Hzis a% subharmonic solution (Figures 5 and
7), while for an excitation frequency of 1zitis a
harmonic solution (Figure 6), see (Heertjes, 1999).

7. EXPERIMENTAL RESULTS

In order to validate the observer performance using
experimental results, a comparison between the mea- , = r -
sured displacementyfp) of a point along the beam
(point 2 in figure 3) with the corresponding model and 8
observer estimationg, ¥») is performed. The experi- & -t
mental procedure followed in this case is similar to the
simulation procedure. The only difference, of course,
is that the output injection used here is the measuredFig. 10. Zoomed version of figure 9 in steady-state.
displacementy1) of the point 1 (see figure 3). This

procedure is explained in figure 8. In figures 9 to 12

the displacement estimatiogs andy> of the point 2,

are compared with the measured displacenggpiof

the same point. Furthermore, the erress= Y2 — Yo = ot

(observer error) anéy, = y> — Y2 (model error) are 0 ; ,
depicted in the same figures. The model and observer ;g, EW

Excitation frequency 35Hz

initial conditionsxg, Xp are shown in the Appendix.
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Fig. 8. Schematic representation of the procedure fol-
lowed for the validation of the observer perfor-
mance, based on experimental results.

Fig. 11. Zoomed version of figure 9 in the transition-
state.
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time [sec] Fig. 12. Comparison of a) the measured displacement
Fig. 9. Comparison of a) the measured displacement  Ymz With the model predictiog, b) the measured
yme With the model predictiogs, b) the measured displacemenyp, with the observer predictioyp ”
disp]acemenymz with the observer predictioylz" and C) the observer erres with the model error
and c) the observer erreg with the model error émfor 22 = 15HzandA = 12N.

em for 52 = 35HzandA = 50N.



b)

[m] Y2, Yme [

Y2, Ym2

ém, € [

Fig. 13. Zoomed version of figure 11.

A difference betweely, andy, exists (Figures 10
and 13) due to a model mismatch (mainly in the non-
linearity related to the one-sided spring stiffness) and

4.494 —2.326 0871
—2.326 7618 2229
0.871 2229 2374
2.528 -0.345 1026
—0.345 1.051 ®®96
1.026 0.296 613
1.173-0.298 416
—0.298 1.041 B14
0.416 0.314 @365
L; =10*-[0.0134 00145 —0.0353 05402

M=

9

K =10

)

B=1C

0.9448 —2.6460,

L, =10%[0.0134 00145 —0.0353 07989
1.0893 —2.8705,

C1=[-09579 12165 —02642 0 0 0,
C,=[0.0801 —1.2013 —0.8669 0 0 0,

X=[0 0 0 0 0 Q",%=[10% 0 O
0 0 Q' andky = 198000N/m.
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