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Abstract A method for sensor fault estimation in multiple-input multiple-output
linear time varying systems is proposed in this paper. It is based on a new adaptive
observer for joint estimation of states and sensor faults in a state-space formulation
of the monitored system. The exponential convergence of the algorithm is proved
under some persistent excitation condition. Copyright c©2005 IFAC
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1. INTRODUCTION

In order to improve the safety and the reliabil-
ity of more and more complex engineering sys-
tems, the problems of fault detection and isola-
tion (FDI) have received considerable attention
of researchers. The faults affecting a dynamic sys-
tem can be typically classified as process faults,
actuator faults and sensor faults. In a state-space
formulation, sensor faults are usually modeled as
some changes in the output equation.
There are two typical methods for dealing with
sensor faults. One is to transform them into the
state equation and to treat them as actuator
faults (Massoumnia et al., 1989). This method
leads to a system model of higher order. The other
method is to reject sensor faults by projecting the
output measurements into some sub-space (Chen
and Patton, 1999). It relies on sensor redundancy
and does not consider fault estimation. In this
paper, a new method is proposed to directly
estimate sensor faults.
In this paper, linear time varying systems of the
following form are considered

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t) (1a)
y(t) = C(t)x(t) + v(t) + f(t) (1b)

where x(t) ∈ R
n, u(t) ∈ R

l, y(t) ∈ R
m are

respectively the state, input, output of the system;

A(t), B(t), C(t) are known time varying matrices
of appropriate sizes; w(t) ∈ R

n, v(t) ∈ R
m

are bounded noises; the additional term f(t) ∈
R

m represents the possible sensor faults. The
matricesA(t), B(t), C(t) are all assumed piecewise
continuous and bounded. Notice that no whiteness
of the noises is assumed in this paper.
It is often assumed that only a subset of the
sensors is possibly affected by faults. If the consid-
ered system remains observable when the possibly
faulty subset of sensors is omitted (implying some
sensor redundancy), then the estimation of the
sensor faults f(t) is trivial. Alternatively, if the
system dynamics matrix A(t) is asymptotically
stable, the state x(t) can be easily estimated by
simulation, then the estimation of f(t) is also
trivial. Neither of these conditions is required in
this paper. Instead, the observability of the system
with its full set of sensors is assumed. It is also
assumed that f(t) can be expressed by some linear
regression

f(t) = θ1ψ1(t) + · · · θpψp(t) (2)

with given regressors ψi(t) ∈ R
m and unknown

regression coefficients θi ∈ R. This model may
come from some physical knowledge about the
possible faults. For example, some disturbances
with known frequencies may affect the output
measurement. It can also be considered as a



generic approximator of the fault signals. It is then
assumed that the complexity of the regressors
ψ1(t), . . . , ψp(t) allows to reasonably approximate
f(t). In this case, the term v(t) in (1b) includes
also the approximation error of the regression esti-
mator. Such a numerical example (approximating
a chirp signal with a finite number of sinusoid
functions) will be presented in Section 5.
For more compact notations, let

Ψ(t) = [ψ1(t), . . . , ψp(t)]

θ =



θ1
...
θp




then system (1) is rewritten as

ẋ(t) = A(t)x(t) +B(t)u(t) + w(t) (3a)
y(t) = C(t)x(t) + v(t) + Ψ(t)θ (3b)

The considered sensor fault estimation problem
then amounts to the estimation of the parameter
vector θ. The method proposed in this paper is
based on a new adaptive observer that can jointly
estimate the state vector x(t) and the parameter
vector θ.
A natural idea for joint estimation of states and
parameters is to apply the Kalman filter to the ex-
tended system obtained by appending the param-
eter vector into the state vector. Compared with
such an (extended) Kalman filter, one important
advantage of the adaptive observer proposed in
this paper is the possibility to be generalized to
nonlinear systems by applying some techniques of
high gain observer (Zhang and Besançon, 2005).
Some other advantages, from both theoretic and
practical points of view, will be discussed in Sec-
tion 4.
Quite a few methods for the design of adap-
tive observers have been published in the liter-
ature (Kreisselmeier, 1977; Bastin and Gevers,
1988; Marino and Tomei, 1995; Besançon, 2000),
and some of them have been used for FDI (Ding
and Frank, 1993; Yang and Saif, 1995; Wang et
al., 1997; Zhang, 2000). These methods are re-
stricted to time invariant systems. Recently, an
adaptive observer for linear time varying sys-
tems has been proposed (Zhang, 2002). A related
method has been developed for fault diagnosis (Xu
and Zhang, 2004), dealing with actuator faults
only, not sensor faults.
The result presented in this paper is to some
extent similar to that of (Vemuri, 2001) which
considers sensor bias fault only, whereas general
sensor faults are considered in this paper. Another
particularity of this paper is that linear time
varying systems are considered, whereas most
existing methods for sensor fault FDI consider
time invariant systems. The result of this paper

is also extended to nonlinear systems (Zhang and
Besançon, 2005).
This paper is organized as follows. The proposed
algorithm is described in Section 2 and its conver-
gence is analyzed in Section 3. It is then compared
with the Kalman filter in Section 4. A numerical
example is presented in Section 5. Some conclud-
ing remarks are given in Section 6.

2. THE ADAPTIVE OBSERVER FOR
SENSOR FAULT ESTIMATION

Let us first state some assumptions ensuring the
convergence of the proposed algorithm.

Assumption 1. The matrix pair (A(t), C(t)) is
such that a bounded (time-varying) matrixK(t) ∈
R

n×m can be designed so that the system

η̇(t) = [A(t) −K(t)C(t)]η(t) (4)

is exponentially stable. 2

This assumption implies that the fault free system
has an exponential observer. It is known that,
if the matrix pair (A(t), C(t)) is uniformly com-
pletely observable, then the Kalman gainK(t) can
fulfill Assumption 1 (Jazwinski, 1970).

Assumption 2. Let the matrix of signals Ψ(t) ∈
R

m×p be filtered through the linear time varying
filter

Υ̇(t) = [A(t) −K(t)C(t)]Υ(t) −K(t)Ψ(t) (5a)
Ω(t) = C(t)Υ(t) + Ψ(t) (5b)

where Υ(t) ∈ R
n×p and Ω(t) ∈ R

m×p are re-
spectively the state and the output of the filter.
Assume that Ψ(t) is persistently exciting, so that
the filtered signals Ω(t) satisfies, for some positive
constants α, T and for all t ≥ t0, the following
inequality ∫ t+T

t

ΩT (τ)Ω(τ)dτ ≥ αIp (6)

where Ip is the p× p identity matrix. 2

Remark 1. Typically, the matrix Ω(τ) has more
columns than rows (p > m), then the matrix
product ΩT (τ)Ω(τ) is rank deficient for each time
instant τ . However, the integral in (6) can be made
positive definite if the excitation Ψ(t) generating
Ω(t) is sufficiently rich. If p ≤ m (as assumed
in many methods for complete fault isolation),
then the integral in (6) is trivially positive definite
(except degenerate case). �

Now the proposed adaptive observer, in the form
of a set of ordinary differential equations (ODE),
can be formulated:



Υ̇(t) = [A(t) −K(t)C(t)]Υ(t) −K(t)Ψ(t) (7a)
˙̂x(t) = A(t)x̂(t)+B(t)u(t)

+K(t)
[
y(t) − C(t)x̂(t) − Ψ(t)θ̂(t)

]

+Υ(t)Γ [C(t)Υ(t) + Ψ(t)]T

·
[
y(t) − C(t)x̂(t) − Ψ(t)θ̂(t)

]
(7b)

˙̂
θ(t) = Γ [C(t)Υ(t) + Ψ(t)]T

·
[
y(t) − C(t)x̂(t) − Ψ(t)θ̂(t)

]
(7c)

where Γ ∈ R
p×p is a positive definite gain matrix.

Notice that the last term of (7b) is equal to

Υ(t) ˙̂
θ(t).

It may not be obvious to understand the equations
of this algorithm at a first view. Some heuristic
explanation has been given in (Zhang, 2002) for
a similar algorithm dealing with the case with
the term Ψ(t)θ located in the state equation. The
case of this paper with the term Ψ(t)θ located
in the output equation may seem easier, since
the unknown parameters are more close to the
output measurements y(t). However, the presence
of Ψ(t)θ in the output equation makes the appli-
cation of observer-like techniques more difficult,
since any output feedback will involve the faults
possibly affecting the output measurements.

3. CONVERGENCE ANALYSIS

The convergence property of algorithm (7) is first
analyzed in the noise-free case, then in the noise-
corrupted case.

3.1 The noise-free case

Theorem 1. In the noise-free case, that is, w(t) =
0 and v(t) = 0, under Assumptions 1 and 2, the
algorithm (7) is a global exponential adaptive ob-
server of system (3), i.e., for any initial conditions
x(t0), x̂(t0), θ̂(t0),Υ(t0) and for any value of θ,
when t → ∞, the estimation errors x̂(t) − x(t)
and θ̂(t) − θ tend to zero exponentially fast.

Proof of Theorem 1
Combining (7b) and (7c) yields

˙̂x(t) = A(t)x̂(t)+B(t)u(t)

+K(t)
[
y(t) − C(t)x̂(t) − Ψ(t)θ̂(t)

]

+ Υ(t) ˙̂
θ(t) (8)

Define the error variables

x̃(t) = x̂(t) − x(t)

θ̃(t) = θ̂(t) − θ

Following (3a), (8), and the assumptions w(t) = 0,
θ̇ = 0, it is easy to get the error equation

˙̃x(t) = A(t)x̃(t) +K(t)
[
y(t) − C(t)x̂(t) − Ψ(t)θ̂(t)

]

+ Υ(t) ˙̃
θ(t)

Substitute (3b) into the last equation with v(t) =
0, then

˙̃x(t) = [A(t) −K(t)C(t)]x̃(t) −K(t)Ψ(t)θ̃(t)

+ Υ(t) ˙̃
θ(t) (9)

The key step of the proof is to define

η(t) = x̃(t) − Υ(t)θ̃(t) (10)

then it is straightforward to obtain

η̇(t) = [A(t) −K(t)C(t)]η(t)

+
(
[A(t) −K(t)C(t)]Υ(t) −K(t)Ψ(t)

− Υ̇(t)
)
θ̃(t)

Because Υ(t) is generated by (7a), the last equa-
tion simply becomes

η̇(t) = [A(t) −K(t)C(t)]η(t)

Then according to Assumption 1, η(t) → 0 with
exponential convergence.
Now from (7c), (3b) and θ̇ = 0, the equation of
θ̃(t) is derived:

˙̃
θ(t) = −Γ [C(t)Υ(t) + Ψ(t)]T

·
[
C(t)x̃(t) + Ψ(t)θ̃(t)

]
(11)

Following (10), replace x̃(t) = η(t) + Υ(t)θ̃(t) in
the last equation, then

˙̃
θ(t) = −Γ [C(t)Υ(t) + Ψ(t)]T

· [C(t)Υ(t) + Ψ(t)] θ̃(t)

− Γ [C(t)Υ(t) + Ψ(t)]T C(t)η(t) (12)

Now let us study the homogeneous part of the last
equation, that is

ξ̇(t) = −Γ [C(t)Υ(t) + Ψ(t)]T

· [C(t)Υ(t) + Ψ(t)] ξ(t) (13)

According to Assumption 2 and Lemma 1 stated
in the Appendix, the homogeneous system (13) is
exponentially stable.
The matrices C(t),Ψ(t) are assumed bounded.
The matrix Υ(t) generated through (5a) is also
bounded following Assumption 1. Because the
homogeneous part of the ODE (12) is expo-
nentially stable and its non homogeneous term
−Γ [C(t)Υ(t) + Ψ(t)]T C(t)η(t) is exponentially
vanishing, the error θ̃(t) governed by (12) is then
exponentially vanishing.
Finally, x̃(t) = η(t)+Υ(t)θ̃(t) is also exponentially
vanishing. �



3.2 The noise-corrupted case

Theorem 2. Under Assumptions 1 and 2, when al-
gorithm (7) is applied to system (3) with bounded
noises w(t) and v(t), the estimation errors x̂(t) −
x(t) and θ̂(t) − θ remain bounded. Moreover, if
the noises w(t), v(t) have zero means, then the
estimation errors converge exponentially to zero
in the mean.

Proof of Theorem 2 The proof of this the-
orem essentially relies on the result already es-
tablished in the noise-free case. Like in the proof
of Theorem1, the equations of the errors x̃(t) =
x̂(t) − x(t) and θ̃(t) = θ̂(t) − θ, similar to (9)
and (11), are first derived, but now the noises are
involved:

˙̃x(t) = [A(t) −K(t)C(t)]x̃(t) −K(t)Ψ(t)θ̃(t)

+Υ(t) ˙̃θ(t) − w(t) +K(t)v(t) (14a)
˙̃
θ(t) = −Γ [C(t)Υ(t) + Ψ(t)]T

·
[
C(t)x̃(t) + Ψ(t)θ̃(t)

]

+Γ [C(t)Υ(t) + Ψ(t)]T v(t) (14b)

In order to put this error system in the standard
ODE form, replace ˙̃θ(t) in (14a) with the right
hand side of (14b):

˙̃x(t)=[A(t) −K(t)C(t)]x̃(t) −K(t)Ψ(t)θ̃(t)

−Υ(t)Γ [C(t)Υ(t) + Ψ(t)]T

·
[
C(t)x̃(t) + Ψ(t)θ̃(t)

]

+Υ(t)Γ [C(t)Υ(t) + Ψ(t)]T v(t)
−w(t) +K(t)v(t) (15a)

˙̃
θ(t)=−Γ [C(t)Υ(t) + Ψ(t)]T

·
[
C(t)x̃(t) + Ψ(t)θ̃(t)

]

+Γ [C(t)Υ(t) + Ψ(t)]T v(t) (15b)

According to Theorem 1, when the noises w(t) = 0
and v(t) = 0, the errors x̃(t), θ̃(t) are exponen-
tially vanishing. It means that the homogeneous
part of the error system (15) (without the terms
involving the noises) is exponentially stable.
For the same reasons as in the proof of Theo-
rem 1, the matrices K(t), C(t),Υ(t),Ψ(t) are all
bounded. Therefore, under the assumption that
the noisesw(t), v(t) are bounded, the terms in (15)
involving the noises are bounded. It then follows
that the errors x̃(t) and θ̃(t) driven by the noises
through (15) remain bounded.
Let Ew(t) denote the mean value of w(t). Assume
that Ew(t) = 0 and Ev(t) = 0. Take the mean at
both sides of (14):

dEx̃(t)
dt

= [A(t) −K(t)C(t)]Ex̃(t)

−K(t)Ψ(t)Eθ̃(t) + Υ(t)
dEθ̃(t)
dt

dEθ̃(t)
dt

= −Γ [C(t)Υ(t) + Ψ(t)]T

·
[
C(t)Ex̃(t) + Ψ(t)Eθ̃(t)

]

These two equations are identical to (9) and (11),
except that x̃(t) and θ̃(t) are now replaced by
their means Ex̃(t) and Eθ̃(t). Following the same
arguments as in the proof of Theorem 1, Ex̃(t)
and Eθ̃(t) tend to zero exponentially fast when
t→ ∞. �

4. COMPARISON WITH THE KALMAN
FILTER

Now let us compare the proposed adaptive ob-
server with the Kalman filter applied to the ex-
tended system[
ẋ(t)
θ̇(t)

]
=

[
A(t) 0

0 0

] [
x(t)
θ(t)

]
+

[
B(t)

0

]
u(t) +

[
w(t)

0

]

y(t) =
[
C(t) Ψ(t)

] [
x(t)
θ(t)

]
+ v(t)

From theoretic point of view, it is important
to know the condition guaranteeing the conver-
gence of the Kalman filter. It is known that,
for linear time varying systems, such a condi-
tion is given by the uniform complete observ-
ability (Jazwinski, 1970). In order to formulate
the Gramian observability matrix of the extended
system, its transition matrix must be first derived.
Let Φ(t0, t) ∈ R

n×n be the transition matrix of the
non extended system, associated with the matrix
A(t). Then it is easy to check that the transition
matrix of the extended system is[

Φ(t0, t) 0
0 Ip

]

with Ip the p×p identity matrix. For time varying
systems, in general it is difficult to analytically
compute the transition matrix. It can be numeri-
cally computed by solving

d

dt
Φ(t0, t) = A(t)Φ(t0, t), Φ(t0, t0) = In

Note that this numerical solution is possible only
if the matrix A(t) has a good stability property to
avoid numerical divergence.
Denote

G(τ, s) =[
ΦT (τ, s)CT (τ)C(τ)ΦT (τ, s) ΦT (τ, s)CT (τ)Ψ(τ)

ΨT (τ)C(τ)Φ(τ, s) ΨT (τ)Ψ(τ)

]

If there exist positive constants α, β, T such that,
for all t ≥ t0, the Gramian observability matrix of
the extended system is bounded:



αIn+p ≤
∫ t+T

t

G(τ, t+ T )dτ ≤ βIn+p (16)

then the Kalman filter applied to the extended
system converges (Jazwinski, 1970).
The matrixG(τ, t+T ) has the size (n+p)×(n+p).
It is thus obvious that condition (16) is more
difficult to be satisfied than the inequality (6)
in Assumption 2 involving matrices of smaller
sizes. Note that in order to ensure the existence of
K(t) used in the proposed adaptive observer, the
uniform complete observability of the matrix pair
(A(t), C(t)) should be checked, with the related
n× n Gramian matrix.
From practical point of view, the application of
the Kalman filter to the extended system requires
the numerical solution of a (n+p)-th order Ric-
cati equation, with a numerical complexity clearly
higher than that of the proposed adaptive ob-
server.

5. NUMERICAL EXAMPLE

In order to illustrate the proposed algorithm, let
us consider a simulated flight control system. The
linearized lateral dynamics of a remotely piloted
aircraft (Chen and Patton, 1999, page 188) is
modeled as

ẋ(t) =




−0.277 0 −32.9 9.81 0
−0.1033 −8.525 3.75 0 0
0.3649 0 −0.639 0 0

0 1 0 0 0
0 0 1 0 0


x(t)

+




−5.432 0
0 −28.64

−9.49 0
0 0
0 0


u(t)

y(t) =


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1


x(t)

with

x(t) =




side slip
roll rate
yaw rate

bank angle
yaw angle


 u(t) =

[
rudder
aileron

]

In the simulation, a saturated Gaussian noise (sat-
urated for boundedness) with standard deviation
equal to 0.2 is added to each output. A fault of
the third sensor occurring at the 50-th second is
simulated with the chirp signal sin(0.014t2−0.6t).
The fault estimator takes the form of a Fourier
expansion θ1 cos 0.1t + θ2 cos 0.2t + θ3 cos 0.4t +
θ4 cos 0.8t + θ5 sin 0.1t + θ6 sin 0.2t + θ7 sin 0.4t +
θ8 sin 0.8t. The adaptive observer is applied with
the parameters Γ = 20I8,
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Figure 1. Input signals u(t).
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Figure 2. Output Signals y(t)

K =




0.0588 0.9135 0.0466
1.4054 0.3383 0.0031
−0.7169 −9.8948 0.5708
0.5638 4.5531 0.0603
0.0017 0.0201 2.9998




The initial values used in the simulation are
x(0) = [1, 1, 1, 1, 1]T , x̂(0) = 0.9x(0), θ̂(0) =
[0, 0, 0, 0, 0, 0, 0, 0]T , Υ(0) = 03×4.
The input signals u(t) generated by a simple
proportional controller are shown in figure 1.
The simulated output signals are illustrated in
figure 2. The simulated fault (occurring at the
50-th second) is not easily noticeable by visual
inspection of these signals.
The simulated fault, its estimate and their dif-
ference are plotted in figure 3. With as few as
4 frequencies in the Fourier expansion estimator,
the fault signal is well estimated. Remark that the
simulated fault is a chirp signal with continuously
changing frequency. A filtering or smoothing al-
gorithm can be used to reduce the noise of the
estimation, but it would imply some delay for on-
line processing.

6. CONCLUSION

A method has been proposed in this paper for
sensor fault estimation based on a new adaptive
observer. It is applicable to linear time varying
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Figure 3. Simulated fault (top), its estimation
(middle) and their difference (bottom)

systems subject to quite general sensor faults. An
extension of this method to nonlinear systems is
presented in (Zhang and Besançon, 2005).
The approach presented in this paper is to directly
estimate sensor faults with the proposed adaptive
observer. For the purpose of fault isolation, it
is also possible to develop a residual generation
approach, following the techniques used in (Xu
and Zhang, 2004).

APPENDIX

Lemma 1. Let Ω(t) ∈ R
m×p be a bounded and

piecewise continuous matrix and Γ ∈ R
p×p be any

symmetric positive definite matrix. If there exist
positive constants T, α such that, for all t ≥ t0,∫ t+T

t

ΩT (τ)Ω(τ)dτ ≥ αIp

then the system

ξ̇(t) = −ΓΩT (t)Ω(t)ξ(t)

is exponentially stable.

A proof of this classical result can be found in
(Narendra and Annaswamy, 1989, page 72).
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