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Abstract: Either from a control theoretic viewpoint or from an analysis viewpoint
it is necessary to convert smooth systems to discrete systems, which can then
be implemented on computers for numerical simulations. Discrete models can be
obtained either by discretizing a smooth model, or by directly modeling at the
discrete level itself. One of the goals of this paper is to model port-Hamiltonian
systems at the discrete level. We also show that the dynamics of the discrete models
we obtain exactly correspond to the dynamics obtained via a usual discretization
procedure. In this sense we offer an alternative to the usual procedure of modeling
(at the smooth level) and discretization. Copyright c©2005 IFAC
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1. INTRODUCTION

In previous work, see e.g. (van der Schaft and
Maschke, 1995; Maschke et al., 1992; van der
Schaft, 2000), it has been shown how port-based
network modeling of complex lumped-parameter
physical systems naturally leads to a generalized
Hamiltonian formulation of the dynamics. In fact,
the Hamiltonian is given by the total energy of the
energy-storing elements in the system, while the
geometric structure, defining together with the
Hamiltonian the dynamics of the system, is given
by the power-conserving interconnection structure
of the system, and is called a Dirac structure.
Furthermore, energy-dissipating elements may be
added by terminating some of the system ports.
The resulting class of open dynamical systems has
been called ”port-Hamiltonian systems” ((van der
Schaft and Maschke, 1995; van der Schaft, 2000)).
The port-Hamiltonian framework offers many fun-
damental benefits. Firstly, it is instrumental in
finding the most convenient representation of the
equations of motion of the system; in the format
of purely differential equations or of mixed sets
of differential and algebraic equations (DAEs).

From an analysis point of view it allows to use
powerful methods from the theory of Hamiltonian
systems. Finally, the Hamiltonian structure may
be fruitfully used in control design, e.g. by the
explicit use of the energy function and conserved
quantities for the construction of a Lyapunov
function (possibly after the connection with an-
other port-Hamiltonian controller system), or by
directly modifying by feedback the interconnec-
tion and dissipation structure and shaping the
internal energy. We refer to (Ortega et al., April
2001; van der Schaft, 2000) for various work in
this direction.
It is well known that for the study of complex
physical systems, numerical simulation plays an
important role. One of the most important areas
of numerical analysis is in understanding the role
that the structure (conservation laws, symmetries
etc.) of the physical system plays in simulations,
c.f. (Marsden and West, 2001). It has been well
established that, for example, the exact conserva-
tion of a momentum integral is very important in
attitude control in satellite dynamic simulations,
or that energy conserving numerical algorithms
has very good stability properties, or that preser-



vation of the symplectic form is important for long
time runs in molecular dynamics simulations, and
so on. For port-Hamiltonian systems, both from
a numerical simulation and a control theoretic
viewpoint, we would like to preserve the port-
Hamiltonian structure at the discrete level also.
For simulation we have just seen (with the exam-
ples of satellite dynamics, or for stability purposes
etc.) why it is important to preserve certain struc-
ture at the discrete level. Next, for the purposes
of control (digital control) we will need to set up
a discrete model of the smooth port-Hamiltonian
system (or controller) in the computer. One in-
teresting application is in the area of haptics,
where we are required to interconnect a smooth
port-Hamiltonian system with a discrete system
which should preferably be port-Hamiltonian . For
this, we will need to understand what discrete
port-Hamiltonian systems are. Their structure,
conservation laws, symmetries etc will need to be
formally studied.
So the basic motivation of this paper is to for-
malize the geometric/mathematical structure that
port-Hamiltonian systems have at the discrete
level. Discrete systems themselves can be derived
in two ways. Either we can discretize smooth port-
Hamiltonian systems (there exist a wide variety
of techniques for doing so), or we can directly
model at the discrete level itself. In this paper
we proceed along the latter lines, and we show
that the discrete models which we obtain as a
result of our modeling process exactly coincide
with discretized models!, thus offering an alter-
native approach towards the simulation of port-
Hamiltonian systems.

The outline of the paper is as follows. We briefly
recall discrete Hamiltonian mechanics and certain
geometrical concepts in Section 2. Discrete Dirac
structures, their representations and interconnec-
tion properties are introduced in Section 3. The
interconnection properties of discrete Dirac struc-
ture are derived in Section 4, and discrete port-
Hamiltonian systems are defined in Section 5.

2. GEOMETRY AND HAMILTONIAN
MECHANICS ON DISCRETE SPACES

In this section we briefly recall certain concepts of
discrete Hamiltonian mechanics, for more details
c.f. (Talasila et al., 2004a; Talasila et al., July
5-9, 2004b). The first requirement is to choose
an appropriate discrete analogue for the reals R.
We can use discrete lattices (which have a ring
structure), or the space of floating point num-
bers F which have a quasi-ring (c.f. (Talasila et
al., 2004a; Talasila et al., July 5-9, 2004b)) struc-
ture. Since computers use floating-point numbers,
and since our main focus is numerical simulation,
F will be our choice. A discrete vector at the
point p ∈ Fn is a pair (p, q) where q ∈ Fn.
We will denote by TpFn the set defined as the
union of all possible vectors defined at the point
p, i.e. TpFn = {(p, q) ∈ Fn × Fn} ∼ Fn. Unlike

in the smooth setting, there are several repre-
sentations of discrete vectors. Each representa-
tion corresponds to a certain numerical integra-
tion technique. We recall two representations here,
the Euler discrete vector and the Runge-Kutta
2 vector. These correspond to the Euler forward
difference and the second order Runge-Kutta inte-
gration techniques. In (Talasila et al., 2004a; Ta-
lasila et al., July 5-9, 2004b) we have defined oth-
ers like Runge-Kutta vectors of any order, Leap-
Frog vectors, central difference vectors etc. Euler
vectors or Runge-Kutta 2 vectors are defined as:

v(f(p)) = f(p+ε)−f(p)
h

. Where ε is the smallest
possible distance from the point p to the next
floating point number. The difference between Eu-
ler vectors and Runge-Kutta 2 vectors is of course
in the actual value of f(p + ε). The point we are
trying to make is that discrete vectors have the
same finite-difference structure, they only differ
in the values! A discrete vector 1 does not satisfy
the usual Leibniz (or product) rule for derivations,
rather it is a linear map vi : Ap(F

n) → F which
satisfies the modified Leibniz rule: v(f · g) =
v(f) · g(p) + Autv(f(p)) · v(g), ∀f, g ∈ Ap(F

n),
where Autv is an automorphism which is a linear
map Autv : Ap(F

n) → F, corresponding to the
discrete vector v, defined as: Autv(f(p)) := f(p +
ε), p ∈ Fn such that Autv(f · g) = Autv(f) ·
Autv(g); ∀f, g ∈ Ap(F

n)
Discrete covectors are defined as mapping pairs
of points (i.e. discrete vectors) to a floating point
number, i.e. v∗ : (p, q) → F. The set of discrete
covectors forms the discrete cotangent space.

Then, we can define discrete vector fields as the
mapping X which assigns to each point p ∈ Fn a
discrete vector, i.e. ∀p ∈ Fn, X(p) = (p, q), q ∈ Fn.
The flow of the discrete vector field X is defined
as the sequence of points po, p1, p2, · · · in Fn

such that X(pi) = (pi, pi+1). Likewise we can
define discrete one-forms as assigning a discrete
covector to each point. A function f : Fn → F

is said to be discrete-differentiable at p ∈ Fn

iff there exists a mapping G : A(Fn) → Fn s.t.
f(p+ε)−f(p)−G(f(p)·ε

ε
= 0. Note that the above

definition does classify discrete functions between
those that are discrete differentiable and those
which are not. This is easy to see, since we
use floating point numbers, the computation -
f(p+ε)−f(p)−G(f(p)·ε

ε
can easily result in a floating

point overflow.
The discrete exterior differential is a mapping:

∆ :
∧k

(Fn) →
∧k+1

(Fn), defined in the following
way. Consider, for instance, a function f ∈ A(Fn).
The function corresponds to the assignment of an
element of F at each point of the discrete space.
The definition of a discrete one-form implies that
we must construct a covector at each point. We
can do that in many different ways, but if we
want to preserve at the discrete level the smooth

1 In (Talasila et al., 2004a; Talasila et al., July 5-9,
2004b) we have shown that a collection of discrete vectors
(Euler vectors, Runge-Kutta vectors etc.) form a ‘discrete’
tangent space.



property X(f) = 〈X, ∆f〉, the definition of the
exterior differential must take into account the
type of action that vector fields have on functions.
For the forward difference method, this leads us
to a definition of the exterior differential such as
to define the one-form ∆f ∈

∧1
(Fn) which for

every point p ∈ F
n assigns to the one-dimensional

hypersurface (i.e. a link) connecting each pair of
points (p, q), where the pair of points are defining
a discrete vector, the value f(q) − f(p) (note
that this definition can be easily extended for
higher-order forms). Hence, in the natural basis,
we would obtain as a representation: ∆f(p) =
∑

i(f(p + hεi)− f(p))dxi, where h is the smallest
possible distance from the point p to the next
floating point number in the i-th direction of the
point p, and εi = [0, · · ·, 1, 0, · · ·]T . The concept
of discrete manifolds has been introduced in
(Talasila et al., 2004a; Talasila et al., July 5-9,
2004b). Discrete manifolds are those that locally
look like Fn, on these we can define the discrete
analogues of charts. atlases etc. Since Fn has
a discrete-differentiable structure, this structure
can be transferred onto discrete manifolds via
chart mappings.

Let us conclude this section with discrete Hamil-
tonian mechanics. One way to do that would be by
defining a discrete Poisson bracket as follows. Let
Z be a discrete manifold and consider the algebra
of discrete differentiable functions A(Z) on Z. This
is endowed with a discrete Poisson structure if
there exists a mapping from A(Z) to the set of
discrete vector fields X(Z) which defines an intrin-
sic operation as: {f, g} := Xf (g). This definition
easily satisfies the required properties of skew-
symmetricity, bilinearity and the modified Leibniz
rule. And then we can define discrete Hamilto-
nian dynamics as follows. We have a canonical
mapping from the algebra A(Z) onto the space
of discrete vector fields X(A) of the algebra: f 7→
Xf = {f, ·}, ∀f ∈ A(Z) The discrete Poisson
dynamics are defined as follows. for any f ∈ A(Z):
∆f(t)

∆t
= {f, H} ⇒ fn+δ = fn + δXH(fn). So in

the limit as δ → 0 we recover the definition of
dynamics in the smooth case using the smooth
Poisson bracket: ḟ = {f, H} = XH(f).

3. DISCRETE DIRAC STRUCTURES

In this section we focus on the mathematical
formalization of power-conserving interconnec-
tions in a discrete setting. The interconnection
of discrete physical systems can be formalized
by discrete-Dirac structures, first we consider the
special case of constant discrete-Dirac structures.
Consider a free quasi-module. Fn and its dual Fn∗.
We call the product space Fn × Fn∗ as the space
of power variables and on this product space we
define the power as: P = 〈e|f〉, (f, e) ∈ Fn×Fn∗,
with P taking values in F. Fn is called the space
of flows, and Fn∗ the space of efforts. On Fn×Fn∗

there exists a canonically defined bilinear form
�,� given by ∀(f1, e1), (f2, e2) ∈ Fn × Fn∗:

� (f1, e1), (f2, e2) �:= 〈e1|f2〉 + 〈e2|f1〉,

Definition 1. A constant discrete Dirac structure
on a finite-dimensional q-module Fn is a n-
dimensional subspace D ⊂ Fn × Fn∗ with the
property that

〈e1|f2〉 + 〈e2|f1〉 = 0, ∀(f1, e1), (f2, e2) ∈ D

(1)
where 〈|〉 denotes the natural pairing between Fn

and Fn∗.

Proposition 1. A constant Dirac structure on Fn

is an n-dimensional subspace D ⊂ F
n × F

n∗ with
the property that: 〈e|f〉 = 0, ∀(f, e) ∈ D.

Proof. Let (f1, e1) = (f2, e2) then (1) gives
〈e1|f1〉 + 〈e1|f1〉 = 0 and hence 〈e|f〉 = 0.
Conversely, by linearity for all (f1, e1), (f2, e2) ∈
D we have:

0 =〈e1|f1〉 + 〈e2|f1〉 + 〈e1|f2〉 + 〈e2|f2〉

= 〈e2|f1〉 + 〈e1|f2〉

3.1 Representations of Dirac structures

The following representation will be used later
on to prove that interconnection of Dirac struc-
tures results again in a Dirac structure. The
setting is very similar to the smooth setting of
(van der Schaft, 1999). Consider an n-dimensional
q-module F

n and its dual n-dimensional q-module
Fn∗. Also consider linear maps F : Fn → W, E :
Fn∗ → W , with W an n-dimensional q-module.
Then define F + E : F

n × F
n∗ → W as: (f, e) ∈

Fn × Fn∗ F+E
7−→ F (f) + E(e) ∈ W . Then we have:

Proposition 2.

• Every Dirac structure D ⊂ Fn × Fn∗ can be
written as D = ker(F +E) for linear maps as
defined above. Furthermore any such E and
F satisfy: E F ∗ + F E∗ = 0.

• Every n-dimensional subspace D = ker(F +
E) defined by the above linear maps and
satisfying E F T + F ET = 0, defines a Dirac
structure.

• D can be written in an image representation
as: D = {(f, e) ∈ Fn × Fn∗|f = ET λ, e =
F T λ, λ ∈ Fn}

Proof. The proof is very similar to that in
(van der Schaft, 1999), so we only present one
technical detail important for our discrete set-
ting. In the smooth setting, to simplify the proof,
(van der Schaft, 1999) identify Fn with Rn and
also Fn∗ with Rn, and this was done using the
Euclidean inner product on the reals. In our dis-
crete setting we identity Fn with Fn and also Fn∗

with Fn and we can do this since there is a natural
isomorphism between discrete vectors and discrete
covectors, see (Talasila et al., 2004a; Talasila et



al., July 5-9, 2004b). And then the rest of the proof
is the same.

4. INTERCONNECTION OF DISCRETE
DIRAC STRUCTURES

In this subsection we discuss the interconnec-
tion properties of discrete Dirac structures. In
the smooth setting a fundamental result in the
framework of port-Hamiltonian systems is that
the interconnection of a number of Dirac struc-
tures results again in a Dirac structure. Physically
it is clear that the composition of a number of
power-conserving interconnections should result
again in a power-conserving interconnection. In
the smooth setting this has been formally proved,
c.f. (van der Schaft, 1999; van der Schaft and
Cervera, n.d.). The question now is if the same
property would hold true for discrete models. We
consider the composition of two discrete Dirac
structures with partially shared variables.

We follow the same sign conventions as in (van der
Schaft and Cervera, n.d.) for the power flow
corresponding to the power variables (f2, e2) ∈
Db. Then the interconnection Da||Db of the Dirac
structures Da and Db is defined as:

Da||Db := {(f1, e1, f3, e3) ∈ F1 × F
∗

1 × F3 × F
∗

3 |

∃(f2, e2) ∈ F2 × F
∗

2 s.t.(f1, e1, f2, e2) ∈ Da

and (−f2, e2, f3, e3) ∈ Db}

First we will need the following result:

Lemma 1. Given λ ∈ Fn:
(

∃λ s.t. Cλ = d
)

⇔
(

∀α s.t. αT C = 0 ⇒ αT d = 0
)

Proof. Let us prove first from left to right, this is
simple.

Cλ = d ⇒ α∗Cλ = α∗d, ∀α

if ∀α, α∗C = 0 ⇒ α∗d = 0

Now the other way. Suppose Cλ 6= d,

⇒ d /∈ span(Ci)

Define Ĉ := {α|α∗C = 0}.

⇒ Ĉ⊥ = span(Ci)

⇒ d /∈ Ĉ⊥

⇒ ∃α∗ ∈ Ĉ s.t. α∗d 6= 0

Hence proved.

With the above result we can now prove the
following:

Theorem 1. Let Da, Db be Dirac structures w.r.t.
F1 × F∗

1 × F2 × F∗

2 and F2 × F∗

2 × F3 × F∗

3 . Then
Da||Db is a Dirac structure with respect to the
bilinear form on F1 × F∗

1 × F3 × F∗

3 .

Proof. The proof presented here follows the same
spirit as the proof for the smooth setting, c.f.

(van der Schaft and Cervera, n.d.). Consider the
Dirac structures Da and Db defined in matrix
(more correctly - ‘module’) kernel representation
by:

Da = {(f1, e1, fa, ea) ∈ F1 × F
∗

1 × F2 × F
∗

2 |

F1f1 + E1e1 + F2afa + E2aea = 0}

Db = {(fb, eb, f3, e3) ∈ F2 × F
∗

2 × F3 × F
∗

3 |

F2bfb + E2beb + F3f3 + E3e3 = 0}

Using Proposition 2. we can easily see that Da and
Db are alternatively given in the ‘matrix’ image
representation as:

Da = [E∗

1 F ∗

1 E∗

2a F ∗

2a 0 0]∗, Db = [0 0 E∗

2b F ∗

2b E∗

3 F ∗

3 ]∗

Hence,

⇔(f1, e1, f3, e3) ∈ Da||Db ⇔ ∃λa, λb s.t. [f1 e1 0 0 f3 e3]
∗

=

[

E∗

1 F ∗

1 E∗

2a F ∗

2a 0 0
0 0 E∗

2b −F ∗

2b E∗

3 F ∗

3

]∗ [

λa

λb

]

⇔

⇔∀(β1, α1, β2, α2, β3, α3) s.t.

(β∗

1α∗

1β
∗

2α∗

2β
∗

3α∗

3)

[

E∗

1 F ∗

1 E∗

2a F ∗

2a 0 0
0 0 E∗

2b −F ∗

2b E∗

3 F ∗

3

]∗

= 0

β∗

1f1 + α∗

1e1 + β∗

3f3 + α∗

3e3 = 0 ⇔

⇔ ∀(α1, β1, α2, β2, α3, β3) s.t.

[

F1 E1 F2a E2a 0 0
0 0 −F2b E2b F3 E3

]















α1

β1

α2

β2

α3

β3















= 0

β∗

1f1 + α∗

1e1 + β∗

3f3 + α∗

3e3 = 0 ⇔

∀(α1, β1, α2, β2, α3, β3) ∈ Da||Db, β
∗

1f1+α∗

1e1+β∗

3f3+α∗

3e3 = 0

⇔ (f1, e1, f3, e3) ∈ (Da||Db)
⊥

Thus Da||Db = (Da||Db)
⊥, and hence it is a Dirac

structure.

5. DISCRETE PORT-HAMILTONIAN
SYSTEMS

From a network modeling perspective a finite-
dimensional physical system is naturally described
by a set of energy-storing elements, a set of
energy-dissipating elements and a set of exter-
nal ports (via which the interaction with the
environment can take place) - interconnected to
each other by a power-conserving interconnection.
Associated with the energy storing elements are
energy variables z1, · · ·, zn being coordinates for
some n-dimensional state discrete-manifold Z, and
a total energy H : Z → F. First we formalize
the power-conserving interconnection by a con-
stant Dirac structure D on the finite-dimensional
space F := FS × FR × FP , with FS denoting
the space of flows fS connected to the energy-
storing elements, FR denoting the space of flows
fR connected to the energy dissipating elements,
and FP denoting the space of external flows fP

which can be connected to the environment. Du-
ally we write E := ES × ER × EP with the efforts
eS ∈ ES , eR ∈ ER, eP ∈ EP being the correspond-
ing dual variables of fS ∈ FS , fR ∈ FR, fP ∈ FP ,
i.e. with ES = F∗

S , ER = F∗

R, EP = F∗

P



Definition 2. Let Z be a discrete n-dimensional
manifold of energy variables, and let H : Z →
F be a discrete Hamiltonian. Furthermore, let
FP be the space of external flows f , with EP

the dual space of external effort e. Consider a
Dirac structure on the product space Z × FP ,
only depending on z. The implicit discrete port-
Hamiltonian system corresponding to Z, D, H
and FP is defined by the specification:

(

−
∆z

∆t
, f, azH(z), e

)

∈ D(z)

Note that the minus sign in front of the flow
∆z
∆t

physically means that the ingoing power is
positive. The efforts and flows corresponding to
the energy-storing elements are given as fS =
∆z
∆t

, e(z) = azH(z), and then it follows that
the physical system is described by the set of
Difference Algebraic Equations:

Fz

∆z(t)

∆t
+ EzazH(z) + Ff(t) + Ee(t) = 0

In the smooth setting the next step would be
to define the energy balance as follows. For all
(X, f, α,−e) ∈ D we have: 〈α|X〉− 〈e|f〉 = 0, due
to which it follows that an implicit smooth port-
Hamiltonian system satisfies the energy balance,
c.f. (Dalsmo and van der Schaft, 1998; van der
Schaft, 1999; van der Schaft and Maschke, 1995),
dH
dt

= ∂H
∂x

ẋ = eT f. In the above computation one
uses the chain rule for differentiation. The chain
rule however does not work in the discrete setting.
Let us see this with a very simple example: For
instance, consider the action of a derivation on the
function f(x) = x2. From the definition of twisted
derivation we have: X(f)(x) = X(x2) = X(x) ·
x + AutX(x) ·X(x). Only if AutX(x) = x for any
vector field X , the chain rule is satisfied. So in
general we do not have a discrete version of the
chain rule. What does this imply?

First of all note that in the discrete case we do
have the following: For all (X, f, α,−e) ∈ D we
have:

〈α|X〉 − 〈e|f〉 = 0 ⇒ azH(z) ·
∆z

∆t
− eT f = 0

However ∆H
∆t

6= azH(z)∆z
∆t

, since the chain rule is
not valid in the discrete setting. And indeed, it is
well known that there exist no basic integration
techniques (like Euler integration, Runge-Kutta
etc.) that preserve the energy balance relation.
There exist many special integration techniques
that do preserve the energy balance, but these
techniques dramatically alter the geometric struc-
ture of the Dirac framework. We have discussed
these aspects in (Talasila et al., 2004a; Talasila
et al., July 5-9, 2004b) on discrete Hamiltonian
systems where we showed how the Poisson struc-
ture can get dramatically modified under struc-
ture preserving algorithms. Similar analysis also
holds for Dirac structures, this will be the subject
of future work. In any case, in general we would
have an energy relation of the following type:

∆H

∆t
= azH(z) ·

∆z

∆t
− eT f − H̃ = 0

where H̃ is the extra energy that is created in the
system as a result of the discrete process. In the
continuum limit H̃ → 0.

6. EXAMPLES

In this section we present two examples of the
modeling and simulation of port-Hamiltonian sys-
tems in the discrete setting. We will show that
the simulations from our discrete model exactly
coincide with the simulations that we get via a
corresponding discretization technique.

Example 1. Consider the electrical circuit as shown
in Figure 1.

R

L

C

V

Fig. 1. A driven RLC circuit

For notational simplicity we assume L = C = 1.
The Hamiltonian function is given by: H(q, φ) =
1
2 (q(t)2 + φ(t)2). Then the discrete dynamics are,
using the Dirac structure, given by:

∆q

∆t
= aφH −

1

R
aφH,

∆φ

∆t
= −aqH + V

Note that aqH = aq
q2

2 = (q+ε)2−q2

ε
= q + ε

2 .
However since ε is extremely small (on the order
of 10e-16) so for the examples considered here it
does not affect the simulation results, and hence
we can safely ignore the ε terms. So aqH = q
and aφH = φ. Let us use a Runge-Kutta 2
discrete vector, and let us compare the simulation
results with the usual second order Runge-Kutta
technique. The simulation results in Figure 2 show
an exact matching between the two approaches.

Example 2. Now we model the Van der Pol cir-
cuit in our discrete setting. The Hamiltonian is:
H(q, φ) = 1

2 (q(t)2 +φ(t)2). The discrete dynamics
are defined as follows:

∆q

∆t
= aφH+Ep ·q(t) ·(1−φ(t)2),

∆φ

∆t
= aqH

The simulation results are shown in Figure 3 and
we have used the Runge-Kutta 2 discrete vector,
again the comparison with a second order Runge
Kutta technique shows an exact matching.

7. CONCLUSIONS AND FUTURE WORK

In this paper we provided an alternative to the
usual two stage process of modeling and dis-
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Fig. 2. Discrete dynamics of a driven RLC circuit.
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Fig. 3. Hopf bifurcation in the discrete dynamics
of the Van der Pol circuit.

cretization of port-Hamiltonian systems - we de-
fined a framework for the discrete modeling of
such systems, so as to provide models that are
trivially implementable on computers for either
numerical simulation or digital control. Moreover
all the geometric/mathematical structure, and
the corresponding analysis, presented in this pa-
per is also perfectly valid for discretized port-
Hamiltonian systems.
This paper is the first stage of the process
of formalizing the discrete structure of port-
Hamiltonian systems which we would later like to
use for modular simulation. The port-Hamiltonian
framework is suitable for the modular approach
to modeling complex physical systems. Regarding
simulation, it is well known that basic integration
algorithms do not preserve important structure.

It is much harder to design structure preserving
algorithms for an entire discretized system, than
designing structure preserving algorithms for each
individual discretized submodel and then inter-
connecting all these discrete submodels. Of course,
to do so we need a formal interconnection theory
at the discrete level, which we have provided in
this paper. Our future work will concern develop-
ing the concept of modular simulations.
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