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Abstract: An output feedback constrained MPC control scheme for uncertain LFR/Norm-
Bounded discrete-time linear systems is discussed. The design procedure consists of
an off-line step in which a state-feedback and an asymptotic observer (dynamic primal
controller) are designed via BMI optimization and used to robustly stabilize a suitably
augmented system. The on-line moving horizon procedure adds N free control moves
to the action of the primal controller and its computation consists of solving an on-
line LMI optimization problem whose numerical complexity grows up only linearly
with the control horizon N. The effectiveness is illustrated by a numerical example.
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1. INTRODUCTION

Model predictive control (MPC) is a standard con-
trol technique based on the on-line solution of a
constrained optimization problem (see (Kothare et
al., 1996) and references therein). In this paper, we
introduce an approach to design output feedback
MPC controllers for LFR/Norm Bounded uncertain
discrete-time linear systems. The main contribution
is an extension of the full-state framework intro-
duced in (Casavola et al., 2004). It is shown that
joint state estimation and minmax MPC can be cast
into an optimization problem: the off-line step (con-
troller/observer couple) can be reduced to a BMI
(solvable using local search optimization algorithms
(Kočvara and Stingl, 2003)) whereas the on-line step
(receding horizon algorithm) can proved to be an LMI
and solvable instead using standard semidefinite pro-
gramming solvers.

Contributions on output feedback MPC ensuring sta-
bility for augmented systems (observer and moving
horizon controller) were first established by (Michalska
and Mayne, 1995), (Scokaert et al., 1997). More re-
cent contributions have been dealt by (Lee and Kou-
varitakis, 2001) and (Wan and Kothare, 2002). In par-
ticular, the latter authors left unsolved how to take
intro account the state estimation error for ensuring
MPC solvability, especially in the presence of hard
state-related constraints. Such analysis has been con-
sidered in the present work which also extends the
results of (Wan and Kothare, 2002) in considering
control horizons of arbitrary length N.

2. PROBLEM FORMULATION

Consider the following discrete-time linear system
with uncertainties appearing in the feedback loop



⎧⎨
⎩

x(t +1) = Φx(t)+Gu(t)+Bp p(t)
y(t) = Hx(t)+Eu(t)
‖p(t)‖2

2 ≤ ∥∥Cq x(t)+Dq u(t)
∥∥2

2

(1)

with x ∈ R
nx denoting the state, u ∈ R

nu the control
input, y ∈ R

ny the measured output and p ∈ R
np ac-

counting for the uncertainty (‖·‖2 denotes the standard
euclidean norm). It is further assumed that the plant
input is subject to the following ellipsoidal constraint

u(t) ∈ Ωu, Ωu �
{

u ∈ R
nu : uT Quu ≤ ū

}
(2)

The aim is to find a dynamic output-feedback regula-
tion strategy u(t) = g(yt ,ut−1) which possibly asymp-
totically stabilizes (1) subject to (2). In order to recon-
struct the state, which is not directly measurable, a full
state observer based on the nominal plant realization is
proposed

x̃(t +1) = Φ x̃(t)+Gu(t)+L (y(t)− ỹ(t))) (3)

where L ∈ R
nx×ny is the observer gain matrix and ỹ(t)

is the output estimate. By defining the state estimation
error as

e(t) � x(t)− x̃(t) (4)

we assume that the uncertainty on the initial state
satisfies

eT (0)W e(0) ≤ ē2
0 (5)

Due to the presence of a state dependent signal p(t)
acting both on the state and the output, the separation
principle does not hold true and conditions for the
quadratic stability must be expressed in terms of the
augmented state [x̃T (t) eT (t)]T . Specifically, the fam-
ily of systems plant/observer (1),(3) is quadratically
stabilizable by a feedback control law based on the
state estimate

u(t) = K x̃(t) (6)

if there exists a controller/observer pair, such that, for
all the initial states belonging to (5), all closed-loop
augmented state trajectories will converge asymptoti-
cally to 0x. Using the strategy (6), standard arguments
(see (Wan and Kothare, 2002) for details) allows one
to conclude that quadratic stability conditions can be
guaranteed if the following matrix

X0 �

⎡
⎢⎢⎢⎢⎣
[

ρQ 0
0 µInp

] ⎡
⎣ ΦT

K 0
−(LH)T ΦT

L
0 BT

p

⎤
⎦Q

⎡
⎣ µCT

q,K

−µCT
q

0

⎤
⎦

(∗) Q 0
(∗) 0 Inp

⎤
⎥⎥⎥⎥⎦

(7)
is positive semidefinite. Notice that (7) is bilinear in
K ∈ R

nu×nx , L ∈ R
nx×ny , Q = QT ∈ R

2nx×2nx ≥ 0,
µ ≥ 0 and 0 ≤ ρ < 1 (the latter is a scalar affecting the
convergence rate of the augmented state). Moreover,
ΦK � Φ+GK, ΦL � Φ+LH, Cq,K � Cq +Dq K.

The control performance and the invariance properties
need to be defined with respect to the true state,
which can be regarded as a linear combination of
the augmented state components (x = x̃ + e). Then,

we need to find conditions under which the control
strategy (6) achieves a guaranteed cost

J(x(0), u(·))� max
p(t)∈St

eT (0)W e(0)≤ē2
0

∞

∑
t=0

{
‖x(t)‖2

Rx
+‖u(t)‖2

Ru

}

(8)
where Rx = RT

x ≥ 0, Ru = RT
u ≥ 0 are state and input

weighting matrices (‖·‖Rx
and ‖·‖Ru

denote matrix
weighted euclidean norms) and the sets

St �
{

p | ‖p‖2
2 ≤

∥∥(Cq,K +Dq K) x̃(t)+Cq,K e(t)
∥∥2

2

}
(9)

represent plant uncertainty domains at each time in-
stant t. A bound on (8) is given by

max
eT (0)W e(0)≤ē2

0

(x̃(0)+ e(0))T P(x̃(0)+ e(0)) (10)

for a suitably chosen matrix P = PT > 0 ∈ R
nx×nx .

Moreover, if K, and L satisfy (7), the following ellip-
soidal set

C(P,γ) �
{

x ∈ R
nx

∣∣(x̃+ e)T P(x̃+ e)≤ γ,

∀eT W e ≤ ē2
0

}
(11)

can be proved to be a robust positively invariant region
for the state evolutions of the closed-loop system, viz.
x(0) ⊆ C(P,γ) implies that

x(t)⊆
{[

Inx Inx

][ ΦK −LH
0 ΦL

]t [
x̃(0)
e(0)

]
,

∀eT (0)W e(0) ≤ ē2
0

}⊆C(P,γ) (12)

for all t. Given the cost (8) and the upper bound (10)
the following matrix

X1�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P̃ 0 Φ̃T
K,L

[
P

P

]
λ

[
CT

q,K

−CT
q

]
R̃

1
2 ,T
x

⎡
⎣ KT R

1
2 ,T
u

0

⎤
⎦

0 λ Inp BT
p P 0 0 0

(∗) (∗) P 0 0 0

(∗) (∗) 0 λ Inp 0 0

(∗) (∗) 0 0 I2nx 0

(∗) (∗) 0 0 0 Inu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)
bilinear in the triplet (K,L,P) and in the scalar λ ≥ 0,
must be positive semidefinite where

Φ̃K,L �
[

ΦK −LH
0 ΦL

]
, P̃ �

[
P P
P P

]
, R̃x �

[
Rx Rx

Rx Rx

]
,

The invariance condition x(0) ⊆ C(P,γ) can equiva-
lently be translated, via the S-procedure, into the re-
quirement that the following matrix, linear in P, ξ ≥ 0
and γ > 0

X2 �
[

ξW −P −Px̃(0)
(∗) γ− ξe2

0− x̃T (0)Px̃(0)

]
(14)

be positive semidefinite. Finally, the input constraint

uT (t)Qu u(t) ≤ ū2

with u(t) = K x̃(t) is satisfied iff

U �
[

ū2I Q
1
2
u K

KT Q
1
2 T
u P

]
(15)



is positive semidefinite as well. All previous discus-
sion can be summarized in the following Theorem 1.

Theorem 1. Let the triplet (P,K,L) be a solution of
following BMI optimization problem

min
K,L,P,Q,γ,µ,λ,ξ

γ

s.t.
P > 0, Q > 0

X0 ≥ 0, X1 ≥ 0, X2 ≥ 0, U ≥ 0
µ ≥ 0, λ ≥ 0, ξ ≥ 0

(16)

Then, provided that (5) is satisfied, the control law
(6) with the state estimate computed via (3) satisfies
the input constraints (2), ensures quadratic stability to
the system (1) and achieves a guaranteed cost upper-
bound γ to the quadratic index (8) with Φ̃K,Lx(t) ⊆
C(P,γ), ∀t.

Proof - By collecting all the above discussion and
exploiting standard results. �

In order to add predictive capability we consider the
following family of virtual commands

u(·|t) =
{

K x̃k(t)+ ck(t), k = 0,1, . . . ,N −1,
K x̃k(t) k ≥ N,

(17)

with x̃k(t) � x̃(t + k|t) and ck(t) � c(t + k|t). The
latter vectors, over which the optimization takes place,
provide N free perturbations over the action of the
stabilizing and admissible primal dynamic controller
defined by the (K,L) pair solving (16). Given the
strategy (17), it is possible to consider the convex set-
valued state predictions xk(t) = x̃k(t)+ek(t) which are
the projections of the augmented state predictions[

x̃k(t)
ek(t)

]
� Φ̃k

K,L

[
x̃(t)
e(t)

]
+

k−1

∑
i=0

Φ̃k−1−i
K,L

[
Gci(t)
Bppi(t)

]
(18)

along the plant state space, computed under the condi-
tions pi(t) � p(t + i|t) ∈ Si(t), e(t)TWe(t) ≤ ē2

t

Si(t)�
{

p:‖p‖2
2≤maxx̃i(t),ei(t)‖Cq,K x̃i(t)+Cq ei(t)+Dqci(t)‖2

2

}
,

(19)
i = 0, . . . ,k− 1 with Si(t) characterizing all admissi-
ble perturbations along the system trajectories corre-
sponding to the virtual command sequences (17).

Remark 1 - One of the main features of the command
family (17) is that it allows the setup of moving hori-
zon strategies based on the notion of “closed-loop”
state predictions. The rationale hinges upon the fact
that, under (17) and given a couple (K,L) solution
of (16), the augmented system state predictions from
time t onwards x̃k(t) � x̃(t + k|t), ek(t) � e(t + k|t) ,
k = 0, . . .N − 1 are linear in terms of the input moves
ck(t), k = 0, . . .N − 1. Moreover, the cost (20) can
be equivalently rewritten as the following minmax
quadratic index

V (x̃(t),P,ck (t)) � ∑N−1
k=0

⎛
⎜⎜⎜⎝max pk(t)∈Sk(t)

e(t)T W e(t)≤ē2
t

‖x̃k(t)+ek (t)‖2
Rx

+‖ck(t)‖2
Ru

⎞
⎟⎟⎟⎠

+max pN(t)∈SN (t)
e(t)T W e(t)≤ē2

t

‖x̃N (t)+eN (t)‖2
P , (20)

to be minimized w.r.t. ck(t), k = 0, . . .N − 1.. Then,
at each time instant t, our solution will consist of
computing

c∗k(t) � argmin
ck(t)

V (x̃(t),P,ck(t))

s.t.
Kx̃k(t)+ ck(t) ⊂ Ωu, k = 0,1, . . . ,N −1,

x̃N(t)+ eN(t) ⊂C(P,γ),
K z ∈ Ωu, ∀z ∈C(P,γ)

(21)

where C(P,γ) is a robust invariant set under K, with
(P,K,L,γ) solution of (16). It will be shown that the
above optimization problem is solvable at each time t
provided that it is solvable at time t = 0. The resulting
predictive control action, based on the state estimate
provided by the observer, satisfies the constraints and
stabilizes the plant. At the stage of the estimator
design, the speed of the error dynamics is obviously
influenced by the triplet (P,K,L), the N perturbations
ck(t), k = 0, . . . ,N − 1 and the output measurements
y(t). Starting from such a consideration and in order
to improve the control performance of the proposed
strategy, the error estimation bound

e(t)T W e(t) ≤ ē2
t , (22)

can be updated at each time instant. In the next section,
along with the moving horizon strategy, sufficient LMI
conditions will be derived in order to accomplish this
requirement.

3. MOVING HORIZON SCHEME

3.1 Upper Bound Conditions

In this section we aim at determining a suitable upper-
bound to (20) in terms of LMI feasibility conditions.
We will suppose the generic time instant t equal
to zero and denote ck = ck(0), pk = p(k|0), ek =
e(k|0), x̃k = x̃k(0), x̃ = x̃(0) and Sk = Sk(0) for k =
0,1, . . . ,N −1 for notational simplicity.

The simplest way to derive an easily computable
upper-bound to the cost (20) is that of introducing non-
negative reals J0,J1, . . . ,JN−1 such that, for arbitrary
P,K,L, and ck, k = 0,1, . . . ,N − 1, the following in-
equalities

max
pi∈Si

i=0,...,k
k=0,...,N−2

eT (0)We(0)≤ē2
0

(x̃k+1+ek+1)T Rx (x̃k+1+ek+1)+cT
k Ru ck≤Jk (23)

max
pi∈Si

i=0,...,N−1
eT (0)We(0)≤ē2

0

(x̃N +eN )T P (x̃N +eN )+cT
N−1 Ru cN−1≤JN−1 (24)

hold true. In such a case, in results that



V(x̃,P,ck(t)) ≤ (x̃+e(0))T Rx (x̃+e(0))+J0+J1+···+JN−1

∀eT (0)We(0) ≤ ē2
0 (25)

Following the same procedure shown in (Casavola et
al., 2004) which makes an extensive use of the S-
procedure, the upper bound conditions (23), (24), k =
0,1, . . . ,N −1 are satisfied if the following linear ma-
trix inequalities in the variables Jk, cT

k �
[
cT

0 cT
1 . . . cT

k

]
Σk �

[
Jk − τe

kē
2
0 −[x̃T cT

k ]LT
k

(∗) I

]
(26)

are positive definite, where Lk is the Choleski factor of

LT
k Lk =

(
Ẽk +

k

∑
i=0

τp
i,kΠi

)
+

(
−D̃k +

k

∑
i=0

τp
i,kΨi

)T (
−
[

Φ̄T
k RxΦ̄k Φ̄T

k RxB̄k
B̄T

k RxΦ̄k B̄T
k RxB̄k

]
+

k

∑
i=0

τp
i,kΞi + τe

kĨk

)−1

(
−D̃k +

k

∑
i=0

τp
i,kΨi

)

Φ̂k �
k−1

∑
i=0

(Φk−1−i
K LHΦi

L), Φ̄k � Φ̂k + Φk
L, Ḡk−1 �

[
Φk−1

K G Φk−2
K G . . . G

]

Φ̃K,L,k−1 :=
k−1

∑
i=0

Φk−1−i
K LHΦi

L

B̄k � [
Φ̄k−1 Bp Φ̄k−2 Bp . . . Φ̄1 Bp Bp

]
B̂k � [

Φ̂k−1 Bp Φ̂k−2 Bp . . . Φ̂2 Bp Φ̂1 Bp
]

Ēk �
⎡
⎣ Φk,T

K RxΦk
K Φk,T

K RxḠk−1

ḠT
k−1RxΦk

K ḠT
k−1RxḠk−1 +

[
0 0
0 Ru

] ⎤
⎦

D̃k � −
[

Φ̄T
k

B̄T
k−1

]
Rx

[
Φk

K Ḡk−1

][ x̂(0)
ck−1

]
−

Ξi := −

⎡
⎢⎢⎣

(CqΦ̄i +Dq K Φ̃K,L,i−1)T

(CqB̄i−1 +Dq [H̄i−2 0])T

0
0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

(CqΦ̄i +Dq K Φ̃K,L,i−1)T

(CqB̄i−1 +Dq [H̄i−2 0])T

0
0

⎤
⎥⎥⎦

T

−

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 −I 0
0 0 0 0

⎤
⎥⎥⎦

Ψi :=

⎡
⎢⎢⎣

(CqΦ̄i +Dq K Φ̃K,L,i−1)T

(CqB̄i−1 +Dq [H̄i−2 0])T

0
0

⎤
⎥⎥⎦[

(Cq +Dq K)Φi
K (Cq +Dq K) Ḡi−1 0

]

Πi :=

⎡
⎣ Φi,T

K (Cq +Dq K)T (Cq +Dq K)Φi
K Φi,T

K (Cq +Dq K)T (Cq +Dq K)Ḡi−1 0
ḠT

i−1 (Cq +Dq K)T (Cq +Dq K)Φi
K ḠT

i−1 (Cq +Dq K)T (Cq +Dq K)Ḡi−1 0
0 0 0

⎤
⎦

Ĩk :=
[

W 0
0 0

]

k = 0,1,2, . . . ,N−1, i = 0,1, . . . ,N−1, and τe
k, τp

i,k are
positive scalars used in the S-procedure formulation of
the upper bound condition related to Jk.

Remark 2 - The main difference with respect to the
full-state feedback case stands in the presence of the
error estimate e(0) inside the argument of (23), which
acts as an uncertainty and requires an additional con-
dition in the S-procedure derivation. The consequence
is that the coefficient τk

eē
2
0 appears now in (26) and

affects its positive semidefiniteness, whereas this is
not present in the state-feedback scheme of (Casavola
et al., 2004). Notice also that the greater the uncer-
tainty level e0, the higher the Jk which ensures positive
semidefiniteness of (26) and the higher the upper-
bound to the cost function. The same considerations
apply to forthcoming derivation of all LMI Σ k and ϒk.
�

3.2 Input Constraints

Next step is to find LMI conditions that allow one to
enforce the quadratic input constraints (2) along the
predictions for k = 0,1, . . . ,N − 1. This consists of
imposing that

(K x̃+ c0)T Qu (K x̃+ c0) ≤ ū (27)

(K x̃k +ck)T Qu (K x̃k +ck)≤ ū, ∀pi ∈ Si, ∀e(0)T W e(0) ≤ ē2
0 (28)

Condition (27) can be shown to be directly translated
into the following LMI constraint

ϒ0 �
[

ū −(K x̃+ c0)T

(∗) Q−1
u

]
≥ 0 (29)

whereas the satisfaction of (28) is ensured if the fol-
lowing matrix inequalities

ϒk �
[

ū−θe
kē

2
0 −[x̃T ck]T

T
k

(∗) I

]
, (30)

linear in the triplet (x̃,ck, ū), is are positive semidefi-
nite, where Tk is the choleski factor of

TT
k Tk �

(
Ñk +

k−2

∑
i=0

θp
i,kΠi

)
+

(
M̃k +

k−2

∑
i=0

θp
i,kΨi

)T

(
−
[

Φ̂kKT QuKΦ̂k Φ̂kKT QuKB̂k−2
(∗) B̂T

k−2KT QuKB̂k−2

]
+

k−2

∑
i=0

θp
i,kΞi + θe

k Ĩk−2

)−1

(
M̃k +

k−2

∑
i=0

θp
i,k−2Ψi

)

where

Ñk �
⎡
⎣ Φk,T

K KT Qu K Φk
K Φk,T

K KT Qu K Ḡk−1 Φk,T
K KT Qu

(∗) ḠT
k−1 KT Qu K Ḡk−1 ḠT

k−1 KT Qu
(∗) (∗) Qu

⎤
⎦

M̃k �
[

Φ̃T
K,L,k−1KT Qu

H̄T
k−2KT Qu

][
K Φk

K K Ḡk−1 I
]

k = 0, . . . ,N−1, i = 0,1, . . . ,k, and θe
k, θp

i,k are positive
scalars used in the S-procedure formulation of the
upper bound condition related to the input constraints
at the k-th step prediction.

3.3 Terminal Constraint

It remains to satisfy the terminal penalty condition

(x̃N+eN )T P(x̃N+eN)≤γ, ∀e(0)T W e(0)≤ē2
0 (31)

This, for a given pair (P,γ), consists of imposing that
all N-steps ahead state predictions x̃N + eN

ΦN
Kx̃+ḠN−1 cN−1 +Φ̄Ne(0)+B̄N−1p

N−1
, ∀pi ∈ Si, i = 0, ...,N −1

are contained in the positive invariance ellipsoidal
C(P,γ). By repeating the same arguments used in the
derivation of LMIs (Σk), it is found that (31) is satisfied
if

ΣT :=
[

γ− τe
ρē2

0 −[x̃T cN−1] L̃
T
N−1

(∗) I

]
≥ 0 (32)

where L̃N−1 is obtained by using the same procedure
for Lk, by not inserting Ru and using P in the place
of Rx. Again, details can be found in (Casavola et
al., 2004).



3.4 State estimation error updating

Let us suppose that the MPC scheme will have a solu-
tion c∗0,c

∗
1, . . . ,c

∗
N−1 for a generic instant time t. Then,

the state estimation error is constrained to belong to
the following uncertainty set

e(t)T W e(t) ≤ ē2
t (33)

and the problem that we face in this section is how
to update such a condition by taking into account the
error contraction law. Given, at each time t, a (K,L)
pair solving the off-line problem (16) and a sequence
of free input moves c∗0,c

∗
1, . . . ,c

∗
N−1, at the next time

instant t +1 the state estimation error must satisfy the
following equation

((Φ+LH)e(t)+Bpp0(t))T W

((Φ+LH)e(t)+Bpp0(t)) ≤ ē2
t+1, (34)

with the uncertainty radius ē2
t+1 to be computed,

∀e(t), p0(t), s.t.

e(t)T W e(t) ≤ ē2
t (35)

‖p0(t)‖2
2 ≤

∥∥Cq,Kx̃(t)+Dqc∗0 +Cq e(t)
∥∥2

2 (36)

This can be done by means of the S-procedure. In fact,
the following statement
(34) holds true for all e(t), p0(t) satisfying (35),(36)

holds true if there exist scalars ςe,ςp ≥ 0 such that the
following matrix

Δ�

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎣−(Φ+LH)T W (Φ+LH)+ςeW−ςpCT

q Cq −(Φ+LH)T WBp

−BT
p W (Φ+LH) −BT

p WBp+ςpI

⎤
⎥⎦

(∗)

−ςp

[
Cq,K Dq

]⎡⎢⎣ x̃(0)

c∗(0)

⎤
⎥⎦

ē2
t+1−ςeē2

t −ςp

⎡
⎢⎣ x̃(t)

c∗0

⎤
⎥⎦

T ⎡
⎢⎣ CT

q,KCq,K CT
q,KDq

DT
q Cq,K DT

q Dq

⎤
⎥⎦
⎡
⎢⎣ x̃(t)

c∗0

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎦

(37)

is positive semidefinite for each ē2
t+1, ςe ≥ 0, ςp ≥ 0.

Therefore, the uncertainty radius can be updated on-
line solving the following LMI procedure

min
ē2
t+1,ςe≥0,ςp≥0

ē2
t+1, s.t.

Δ ≥ 0
(38)

Remark 3 - The updating law (34) is contractive
because the observer gain L is chosen such that is
capable to asymptotically reconstruct the state of all
plants belonging the LFR uncertainty structure. The
consequence is that, given the family of sets

Et+1 � {e(t +1) |eT (t +1)W e(t +1)≤ ē2
t+1} (39)

where ē2
t+1 solves (38) (ē2

0 is given) the following
inclusions hold true: Et+1 ⊆ Et , t = 0,1, . . .

All above developments allows one to write down a
computable MPC scheme, hereafter denoted as NB-
Out-Frozen, which consists of the following algo-
rithm.

NB-Out-Frozen

0. (Initialization - offline) Given the initial state
estimate x̃(0) and the uncertainty interval on the
error estimate (5), solve the BMI

[Kopt, Lopt, Popt, Qopt,γopt] � arg min
K,L,P,Q,γ,λ,µ,ξ

γ

(40)
subject to the constraints (7), (13), (14), (15).
Compute the scalars τp

i,k, τe
k, i = 0, . . . ,k, k =

0, . . . ,N − 1,. Compute the scalars τi,T
p , τT

e i =
1, . . . ,N − 1. Compute the scalars θp

i,k,θ
e
k, i =

0, . . . ,k−1, k = 1, ..,N −1;
1.1 (On-line) At each time instant t ≥ 0, given x̃(t),

and for all eT (t)We(t) ≤ ē2
t solve

[J∗k (t),c∗k(t)] � argmin
Jk ,ck

N−1

∑
k=0

Jk

s.t.

Σk(t) ≥ 0, ϒk(t) ≥ 0, k = 0,1, ...,N −1,

ΣT (t) ≥ 0

1.2 feed the plant with u(t) = Kx̃(t)+ c∗0(t);
1.3 from the measure of y(t), evaluate the state esti-

mate x̃(t +1) by means of (3)
1.4 update the uncertainty interval on the error esti-

mate by solving (38)
1.5 t = t +1 and go to step 1.1

where Σk(t), ϒk(t) and ΣT (t) denote the LMI com-
puted according to (26), (29), (30) and (32) and evalu-
ated for x̃ = x̃(t).

Theorem 2. Let the NB-Out-Frozen scheme have so-
lution at time t = 0. Then, it has solution at each future
time instant t, satisfies the input constraints and yields
an asymptotically (quadratically) stable closed-loop
augmented system.

Proof : It can be obtained by following similar argu-
ments used in (Casavola et al., 2004).

4. NUMERICAL EXPERIMENT

This example is adapted from an antenna positioning
system and has been considered in (Kothare et al.,
1996). The LFR system matrices are

Φ =
[

1 0.1
0 0.495

]
, Bp =

[
0

−0.1

]
, Cq =

[
0 4.95

]

Dq = 0, G =
[

0
0.0787

]
, H =

[
1 0

]
, E = 0

Since the main result is the introduction of a new
output feedback receding horizon strategy, we want to
study the impact of the horizon length on the overall
control performance.

A saturation constraint on the input plant is equal to
ū = 0.4. The goal is to regulate the output to zero. The
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Fig. 2. Plant input (ū = 0.4) for N = 1,2

following weighting matrices have been chosen Rx =[
1 0
0 1

]
, Ru = 1. By using the BMI solver PENBMI

(available from
http://www.penopt.com, (Kočvara and Stingl, 2003))
the following controller observer pair has been de-
rived: K = [−0.6144 − 5.9035] and L = [−0.9793 −
0.3386]T . The on-line moving horizon part has been
solved via standard LMI solvers for N = 1 and N = 2
over 200 sec. of simulation time, by supposing that the
realization of the plant is equal to the nominal plant
for all t, the initial state (not directly available and
measurable) is equal to x(0) = [0.1 0.1]T , the initial
state estimate is equal to x̃ = 0x and the initial state es-
timation error belongs to the ball of radius ē0 = 0.1. As
expected, the use of increasingly larger control hori-
zons improves the control performance at expenses
of a modest increment of the on-line computational
burden (1876 flops per step for N = 1 and 4387 flops
per step for N = 2; 0.2421 sec. average CPU time per
step for N = 1 and 2.1753 sec. average CPU per step
for N = 2)

5. CONCLUSIONS

In this paper, a novel output feedback MPC strategy
has been presented for input-saturated LFR/Norm-
Bounded uncertain systems. The novelty in this scheme
relies on the simultaneous off-line design of an

observer/controller pair, capable to cope with the
model mismatch. Even if the joint selection of state-
feedback/observer pair is a non-convex problem, a
feasible couple w.r.t. a LQ performance measure can
usually be found in a finite number of steps by means
of a local algorithm. The on-line MPC strategy is
based on minimizing, at each time instant, an up-
per bound on the worst-case cost for an augmented
plant (state estimate/state estimation error), under the
constraint that all future state prediction are robustly
steered within N-steps into a feasible positively invari-
ant set whose shape is fixed and derived in the off-line
phase. The numerical experiences accomplished on a
benchmark problem have shown the effectiveness of
the approach.
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