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Abstract: Obtaining the parameters for PID controllers based on limit cycle information 
from the process in a relay controlled feedback loop is, in many cases,  an acceptable 
practical procedure. If the form of the plant transfer function is known, exact expressions 
for the limit cycle frequency and amplitude can be derived in terms of the plant 
parameters, so that their measurements, assumed error free, can be used to calculate two 
unknown plant parameter values. In the literature to date the solutions have been 
considered for stable or unstable first order plus dead time (FOPDT) or second order plus 
dead time (SOPDT) plant transfer functions. This paper reports on exact parameter 
estimation for an SOPDT plant transfer function with the further addition of a , stable or 
unstable, zero by a single relay feedback test. Copyright © 2005 IFAC 
 
Keywords: Identification, Relay control, Transfer functions, Time delay 
 
 

 
 
 

1. INTRODUCTION 
 
Current commercial controllers, such as PID 
controllers, have used microprocessors for several 
years and this provides an opportunity to do more 
than perform simple control algorithms. Auto-tuning 
may be defined as an experiment performed by a 
controller in order to find suitable parameters for it to 
control the system. One of the most well known of 
these procedures is relay auto-tuning where the 
controller acts as a relay and measures the amplitude 
and frequency of the resulting loop limit cycle to set 
its parameters. The most common procedure is to use 
the expressions from describing function, DF, 

analysis of the closed loop to estimate the frequency, 
�

c, at which the plant has 180o phase shift and also the 
corresponding plant gain, 1/Kc. These estimates for �

c 
and Kc because of the approximations of the DF 
analysis will have some error. Another approach is to 
assume a simple plant transfer function, such as an 

FOPDT, )1/( TsKe sTd +− , and estimate two of its 
unknown parameters, usually ‘Td’ and ‘T’ with ‘K’ 
assumed known, again using the DF approximation. 
Results can be improved by doing two experiments, the 
second with a filter in the loop to make the limit cycle 
sinusoidal. Also, if the form of the plant transfer 
function is known it is possible to determine exactly 



     

the limit cycle waveform and this can in theory be 
used to obtain accurate values of the plant 
parameters. In practice, of course, due to system 
noise and measurement errors the exact frequency 
and amplitude of the limit cycle will not be found 
from any measurements. 
    
Luyben (1987) was one of the first to consider 
estimating the plant transfer function from limit 
cycle measurements and used the approximate DF 
method. Several authors (Li et al., 1991; Shen et al., 
1996) have presented further approaches, which 
make use of the approximate DF method.  
 
The fact that exact expressions can be found for a 
limit cycle in a relay feedback system has been 
known for many years (Bohn, 1961; Chung and 
Atherton, 1966; Atherton, 1966). Atherton (1997) 
showed how knowledge of the exact solution for 
limit cycles in relay controlled FOPDT plants could 
be used to give more accurate results using the DF 
method. Recently, several papers (Chang et al., 
1992; Wang et al., 1997; Kaya and Atherton, 1999) 
have been written on using exact analysis for 
parameter estimation in a relay feedback system, 
assuming a specific plant transfer function and an 
odd symmetrical limit cycle. There are also some 
publications (Kaya and Atherton, 1998; Kaya and 
Atherton, 2001) which use asymmetrical limit cycle 
data. All these papers consider the identification 
problem for a stable or an unstable FOPDT and/or 
SOPDT process. Atherton and Majhi (1998) used 
relay feedback control for parameter estimation of 
processes with a zero using a state space approach. 
 
In this paper exact expressions have been derived, 
using the Tsypkin approach, for the simple features 
of asymmetrical limit cycles in relay controlled loops 
with both stable and unstable FOPDT and SOPDT 
plant transfer functions with a left-hand side (l.h.s) or 
right-hand side (r.h.s) s-plane zero. This generalizes 
the identification problem for a process. That is, with 
the expressions provided one can estimate the 
parameters for stable and/or unstable FOPDT process 
with and/or without a zero. Similarly, the expressions 
provided can also be used for parameter 
identification of a stable or unstable SOPDT process 
with or without a zero. 
 

2. GENERAL SOPDT PROCESS MODEL 
 
In process control problems, it is generally assumed 
that the process transfer function is a stable or an 
unstable FOPDT or SOPDT.  Some complex 
chemical processes, however, have a non-minimum 
phase characteristic and the identification problem 
for this type of process is considered here. 
 
Consider the following general SOPDT plant transfer 
function 
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When T0=0 and T2=0, G(s) becomes a stable or an 
unstable FOPDT plant transfer function model. If only 
T0=0, then G(s) is a stable or an unstable SOPDT plant 
transfer function. G(s), given by eqn. (1), therefore, 
represents a general SOPDT process model.  
 

 
3. Α−FUNCTION METHOD 

 
When the nonlinearity in Fig. 1 is a relay, then exact 
solutions for the limit cycle frequency and amplitude 
are possible and Tyspkin’s approach is one procedure 
for doing this. The method was developed many years 
ago by Tyspkin and further developed by Atherton 
(1966) who introduced the A-Function.  
 

 
 
Fig. 1: Relay Feedback System 
 
 

 
 
Fig. 2: Relay input and output 
 
The A-Function of a linear transfer function is a 
complex function of both time and frequency and for a 
transfer function, G(s), for a specific time, t, or phase, �
= � t, and frequency, � , is given by  
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Here “Re” and “Im” stand for the real and imaginary 
parts of the A-locus and UG and VG are the real and 
imaginary parts of the transfer function G(jnω). 
                                                                                                                                                                          
The summation can be found analytically from known 
summations for simple transfer functions or computed 
from a suitable number of terms in the series, when the 
plant parameters are known. 
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The plant output and its derivative in a relay 
feedback system, assuming either a constant input or 
a biased relay, can easily be found (Atherton, 1981) 
as 
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where G(0) is the steady state gain, � t1 and � t2 are 
the negative and positive pulse durations of the relay 
output, h1 and h2 are the relay heights and P is the 
period so that P = � t1+� t2 as shown in Fig. 2. 
 
When the relay has hysteresis, � , the limit cycle 
conditions can easily be obtained, by imposing the 
switching requirements at time t=0 and t=� t1, and 
using eqns. (5) and (6) to give  
 

}
))(0(

{
)(

),(Im),0(Im

2211

21

1

P

ththG
R

hh

tAA GG

∆+∆−∆−
−

=∆−
π

ωωω
   (7) 

 
0),(Re),0(Re 1 <∆− ωωω tAA GG          (8) 

 
and 

}
))(0(

{
)(

),(Im),0(Im

2211

21

1

P

ththG
R

hh

tAA GG

∆+∆−∆+
−

−
=∆−−

π
ωωω

    (9) 

0),(Re),0(Re 1 <∆−− ωωω tAA GG         (10) 

provided that 0)(lim =∞→ ssGs , otherwise some 
corrections should be made to the right hand side of 
eqns. (7)-(10). The reader may refer to reference 
(Atherton, 1981) for the corrections when this 
condition does not hold. Eqns. (7) and (9) give the 
value of the limit cycle frequency �  and pulse 
duration � t1 and satisfaction can be checked by eqns. 
(8) and (10). 
 
4. PARAMETER ESTIMATION FOR THE SOPDT 
 
Two cases are considered to obtain expressions for 
estimating unknown parameters of the SOPDT plant 
transfer function given by eqn. (1): parameter 
estimation for the stable SOPDT with zero, either 
stable or unstable, and parameter estimation for the 
unstable SOPDT with zero, either stable or unstable. 
The expressions obtained will be valid when the 
SOPDT does not possess a zero or for a stable or an 
unstable FOPDT process as well.   
 
4.1 Parameter estimation for stable SOPDT with or 

without zero 
 
It can be shown using eqn. (4) that the imaginary part 
of the A-Function for the stable SOPDT transfer 
function with zero is given by 
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where, � 1=

� T1 and � 2=
� T2. The ‘A’ and ‘B’ 

coefficients are 
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for the stable SOPDT process with l.h.s and r.h.s s-
plane zero, respectively.   
 
Using eqn. (11) in eqns. (7) and (9), respectively, the 
following two equations for obtaining the limit cycle 
frequency, � , and pulse duration, � t1, are found: 
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where,  
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Two more equations can be obtained from eqn. (5) for 
the maximum and minimum amplitudes of the limit 
cycle at the plant output which are found to be given by 
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and 
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where, 
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One further equation is needed to obtain the five 
unknowns of the SOPDT plant transfer function. 
Fourier analysis can be used to find the steady state 
gain, K; 
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Therefore, eqns. (14)-(18) can be solved 
simultaneously to find five unknowns of the stable 
SOPDT process with a l.h.s or r.h.s s-plane zero. 
 
4.2 Parameter estimation for unstable SOPDT with 

or without zero 
 

Eqn. (4) can be used to find the imaginary part of the 
A-Function for the unstable SOPDT transfer function 
with zero, which  is found to be given by 
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where, � 1=

� T1 and � 2=
� T2. The ‘A’ and ‘B’ 

coefficients, in this case, are  
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for the unstable SOPDT process with l.h.s zero, and 
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for the unstable SOPDT process with r.h.s zero. 
 

Using eqn. (19) in eqns. (7) and (9), respectively, the 
following two equations for the limit cycle frequency, 

� , and pulse duration, � t1, are found: 
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The maximum and minimum amplitudes of the limit 
cycle at the plant output can be obtained from eqn. (5) 
as follows 
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Again, one more equation is needed in order to 
obtain the five unknowns of the unstable SOPDT 
plant transfer function. Similar to the stable SOPDT 
case, Fourier analysis can be used to find the steady 
state gain, K, from eqn. (18). 
  
Therefore, eqns. (22)-(25) together with eqn. (18) 
can be solved simultaneously to find five unknowns 
of the stable SOPDT process with a stable or an 
unstable zero. 
 
However, it should be noted that, although, a limit 
cycle always exists for a stable plant transfer 
function, this is not the case for an unstable one. For 
example, for an unstable FOPDT plant transfer 
function, an odd symmetrical limit cycle can only 
exist when Td/T<0.693 (Kaya and Atherton, 2001). 
This ratio decreases as the asymmetry in the limit 
cycle increases and/or the hysteresis in the relay is 
chosen larger (Kaya and Atherton, 2001). For an 
unstable SOPDT T1<T2, where T1 and T2 are the time 
constants for the unstable and stable poles, 
respectively, must be satisfied for a limit cycle to 
exist (Kaya and Atherton, 2001). Also, the smaller 
the value of T1/T2 the smaller the value of Td/T1 for a 
limit cycle to exist. Therefore, the relay feedback 
may not yield a limit cycle if the unstable transfer 
function parameters do not lie in certain ranges. 
 

5. SIMULATION EXAMPLES 
 

In this section several examples are given to illustrate 
the use of the proposed identification method. The 
relay controlled plants were simulated using 
SIMULINK and measurements of the zero crossing 
frequency, � , and the maximum and minimum 
amplitude values, amax and amin, taken from the limit 
cycle waveform, x(t). The pulse duration, � t1 was 
obtained from the relay output, y(t). 

 
Example 1 
 
Consider a stable FOPDT 
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A relay test with h1=1 and h2=-0.7 was performed to 
obtain an asymmetrical limit cycle. From simulation, 
limit cycle frequency � =0.902, pulse duration 

� t1=3.038, maximum and minimum of the limit 
cycle amplitudes amax=0.330 and amin=-0.231 were 
measured. From eqn. (18), the steady state gain was 
found to be K=0.999. Using eqn. (16) or (17), the 
time constant was calculated to be T=4.999 and time 
delay Td=1.999, using eqn. (14) or (15). Note that in 
this case not all the equations are needed for 
estimation of the three unknowns. 
 
Example 2 
 
A non-minimum phase plus time delay process 
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is considered. A limit cycle was obtained with h1=1 
and h2=-0.8. From the simulation, the quantities 

measured were � =0.793, � t1=3.734, amax=0.740 and 
amin=-0.642. K=0.999 was found from eqn. (18). Eqns. 
(14), (15), (16) and (17) were simultaneously used to 
identify T0=-1.002, T1=1.999, T2=1.000 and Td=0.999. 
 
Example 3 
 
Consider an unstable FOPDT 
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A relay test with h1=1 and h2=-0.7 was performed to 
obtain an asymmetrical limit cycle, which has a limit 
cycle frequency � =1.148, pulse duration � t1=1.973, 
maximum and minimum of the limit cycle amplitudes 
amax=0.791 and amin=-0.554. Eqn. (18), was used to 
find K=2.001. Eqn. (24) (or (25)) was used to find the 
time constant T=3.003. The time delay was calculated 
from eqn. (22) (or (23)) as Td=1.000. As in example 1, 
not all the equations are needed for estimation of the 
three unknowns. 
 
Example 4 
 
An unstable SOPDT 
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is considered. The relay had heights h1=1 and h2=-0.6 
and hysteresis � =0.1. Measured quantities were 

� =0.972, � t1=2.211, amax=0.172 and amin=-0.0931. 
Eqn. (18) gave K=1.000. From eqns. (24) and (25) time 
constants were calculated to be T1=4.996 and 
T2=1.002. The time delay was identified from eqn. (26) 
as Td=0.499. 
 

6. CONCLUSIONS 
 

The relay feedback method has become an accepted 
practical procedure for obtaining the parameters of PID 
controllers based on limit cycle information. However, 
this method may lead to inaccurate results if the 
approximate DF method is used. Hence, exact 
expressions have been evaluated for the frequencies 
and amplitudes of asymmetrical limit cycles for both 
the stable and unstable SOPDT plant transfer function 
with or without a zero. The method gives exact results 
for no measurement errors of the required parameters 
of the limit cycle waveform. Several examples are 
given showing the application of the proposed method.   
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