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Abstract: This paper addresses the problem of designing fin control for the
ship roll stabilization. A novel adaptive robust fuzzy control (ARFC) algorithm
is presented for ship roll nonlinear system with unstructured uncertainties. In
the algorithm, the Takagi-Sugeno type fuzzy logic systems are employed to
approximate uncertain functions in the systems, and a systematic procedure
is developed for the synthesis of adaptive robust fuzzy control whose adaptive
mechanism has minimal learning parameterizations by use of Lyapunov theorem.
Application example illustrating the method described is included for ship roll
stabilization, which is shown that the derived closed-loop system can be made
uniformly ultimately bounded.Copyright c©2005 IFAC
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1. INTRODUCTION

Ship excessive roll motion induced by wave distur-
bances would make the crew feel uncomfortable
and may also cause damage to the cargoes and
equipment on board, such that the stabilization
of ship roll motion has been a goal that people
always strive to achieve. The fin stabilizer, which
is a hull stability equipment for reduction of ship
rolling by using the generating lift of the fins
extended to the both sides of a ship, was invented
60 years ago and began to be equipped on the ship
and showed good performance (Ohgushi, 1971).
As we all know, a fin stabilizer is a kind of active
stabilization system, the performance of which is
effected greatly by its control methodology. To
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achieve better performance, its advanced control
scheme has received considerable attention. From
1970s, some advanced control schemes are put into
practices, such as optimal control (Whyte, 1978),
fuzzy logic control (Sutton et al., 1989), self-
organizing fuzzy control (Fowler, 1989), adaptive
LQ control (Fortuna and Muscato, 1996), H∞
control (Hickey et al., 1995), internal model con-
trol (Tzeng and Wu, 2000) and etc. However,
there exist nonlinearities, parametric uncertain-
ties and environmental disturbances in the ship
roll nonlinear system from the changing sea con-
ditions. To handle those problems, the author
has ever proposed a robust adaptive fuzzy control
scheme (Yang et al., 2000), (Yang et al., 2002).
Therefore, developing the control scheme with
large robustness is of much interest in the research
field of fin roll stabilization systems.

In order to design an advanced fin stabilizer for
ship roll nonlinear stabilization, a method of con-
trol design for uncertain nonlinear system is inves-



tigated first in this paper. There exists a power-
ful methodology for designing feedback controller.
Different control algorithms have been developed
for nonlinear systems under various uncertainties.
In the uncertain nonlinear systems, they may be
subjected to following two types of uncertainties:
structured uncertainties, which are referred to as
parametric uncertainties, and unstructured uncer-
tainties, which are coming from modeling errors
and external disturbances. In this paper, a novel
systematic procedure is developed for the synthe-
sis of stable adaptive robust fuzzy controller for
a class of nonlinear systems with unstructured
uncertainties, and Takagi-Sugeno type fuzzy logic
systems (Takagi and Sugeno, 1985) are used to
approximate unknown functions in the systems
and the adaptive mechanism with minimal learn-
ing parameterizations can be achieved . The main
feature of the algorithm proposed in the paper is
that no matter how many states in the system
are investigated and how many rules in the fuzzy
system are used, only one parameter needs to
be adapted on-line, so the computation load of
the algorithm can be reduced and it is a conve-
nience to realize this algorithm for engineering.
We conduct a simulation to verify it using ship
roll stabilization.

This paper is organized as follows. Section 2 con-
tains problem formulation. In section 3, a system-
atic procedure for the synthesis of adaptive robust
fuzzy controller (ARFC) is developed. In section
4, we demonstrate how the adaptive robust fuzzy
control scheme can be applied to the controller
design for ship roll stabilization and a container
ship is used as an example for simulation. The
simulation results are described and compared.
The final section contains conclusions.

2. PROBLEM FORMULATION

The mathematical model for ship roll system (Cox
and Lloyd, 1977) can be given by

(Ixx + Jxx)φ̈ + Nφ̇ + Wφ̇
∣∣∣φ̇

∣∣∣
+ Dhφ

(
1− (φ/φv)2

)
= FC + FW (1)

where φ denotes the roll angle of ship, (Ixx + Jxx)
is the moment of inertia and added moment of
inertia, N and W denote damping parameters,
D is displacement of ship, h is the transverse
metacentric height, φv is a angle specified by ship
type, FW is the moment acted on ship by wave
and wind, FC is the control moment for anti-roll
supplied by fin. FC can be described by

FC = −ρV 2AfCα
L

(
αf +

φ̇lf
V

)
lf (2)

where ρ is the density of water, V denotes ship
speed, Af is the area of the fin, Cα

L is the slope of

lift parameter, lf is the arm of force supplied by
fin, αf is the angle of the fin.

Without loss of generality, the mathematical
model for ship roll nonlinear system (1) by fin
control can be written in general model of typical
2nd order dynamic system as follows

φ̈ = f
(
φ, φ̇

)
+ g

(
φ, φ̇

)
αc + w (3)

where f
(
φ, φ̇

)
and g

(
φ, φ̇

)
are bound continuous

system function and input gain function respec-
tively. w is external disturbance by wind and
wave. Let the state variable be x1 = φ, x2 = φ̇
and control variable be u = αc, we can get the
model for ship roll nonlinear system (3) in state
space form as follows

{
ẋ1 = x2

ẋ2 = f(x1, x2) + g(x1, x2)u + w
(4)

In the following design, without loss of general-
ity, suppose that the structure of f(x1, x2) and
g(x1, x2) is unknown, then the control input u
is designed such that x1, x2 → 0, which is the
adaptive control.

Next, we will discuss the more general problem.
Choose the system’s model as n-order differential
equation, i.e.
{

ẋi = xi+1 1 ≤ i ≤ n− 1
ẋn = f0(x) + ∆f(x) + [g0(x) + ∆g(x)]u + w

(5)
where x ∈ Rn is the system state, u ∈ R is
the control input. w is the external disturbance
which is unknown but bounded, e.g. | w |≤ D,
where D is an unknown constant. f0(x) and g0(x)
are known functions and belong to smooth vector
fields in a neighborhood of the origin x = 0 with
f0(0) = 0 and g0(x) 6= 0. ∆f(x) is the system
uncertain function and ∆g(x) is the input control
uncertain function, both of which are continuous
functions depending on the state x.

We have the following transformation for the
control input

u = −g−1
0 (x)(f0(x) + v) (6)

where v is a new control input. The design ap-
proach for v is discussed as follows.

Substituting the equation (6) into (5), we obtain

ẋ = Ax + B{(1 + E) v + F + w} (7)

where A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
0 0 0 · · · 0




, B =




0
0
...
...
1




, F (x) =

∆f (x)−g−1
0 (x)∆g (x) f0 (x) and E(x) = g−1

0 ∆g.



Assumption 2.1 The uncertain control gain
function E (x) is confined within a certain range
such that

0 < bmin ≤| 1 + E(x) |≤ bmax (8)

where bmin and bmax are the low and upper
bounded parameters respectively, which true val-
ues are assumed to be unknown in this paper.

The problem of adaptive robust fuzzy control
design for v(t) has recently received attention
with renewed interest (Wang, 1997), (Yang et
al., 2000). If using fuzzy systems to approximate
F (x) and E(x), then an ”integral” control law is
necessary, i.e., a dynamic feedback controller

χ̇ = $(χ, ξ(x), x), $(0, 0, 0) = 0
v(t) = αr(χ, ξ(x), x), αr(0, 0, 0) = 0

where ξ(e) is a known fuzzy base function vector.
And χ ∈ Rnχ , $(·), αr(·) are smooth functions
on Rnχ × RK × Rn. An important quality of the
control law is of course the property that the
dimension nχ of χ should be as small as possible,
and in particular not dependent on the dimen-
sion of the state. However, most of the previous
adaptive fuzzy-based control laws available in the
literature have the property that the dimension
nχ of χ is equal to the number of parameters
to describe the fuzzy systems which are used to
approximate the unknown uncertain functions in
the designed systems. In such a way, the learning
times of them will tend to become unacceptable
large for systems of higher order. For the con-
ventional adaptive fuzzy-based control laws, there
is another of main difficulties which comes from
uncertainty E(x), which is usually approximated
by fuzzy system Ê(x, θ). Consequently, the es-
timate 1 + Ê(x, θ) must be away from zero for
avoiding a possible singularity problem. In this pa-
per, we will develop a new stable adaptive robust
fuzzy controller which does not require to estimate
the unknown function E(x), and therefore avoids
the possible controller singularity problem usually
met in the traditional adaptive fuzzy control laws.

3. DESIGN OF ADAPTIVE ROBUST FUZZY
CONTROLLER

3.1 T-S fuzzy system

Consider a T-S fuzzy system to uniformly ap-
proximate a continuous multi-dimensional func-
tion y = f(x) that has a complicated formulation,
and x is an input vector with n independent x =
[x1, x2, · · · , xn]T . The domain of xi is θi = [ai, bi].
It follows that the domain of x is

Θ = θ1×θ2×· · ·×θr = [a1, b1]×[a2, b2]×· · ·×[an, bn]

In order to construct a fuzzy system, the interval
[ai, bi] is divided into Ni subintervals

ai = Ci
0 < Ci

1 < · · · < Ci
Nn

= bi, 1 ≤ i ≤ n

On each interval θi (1 ≤ i ≤ n), Ni + 1(Ni > 0)
continuous input fuzzy sets, denoted by Ai

j , are
defined to fuzzify xi. The membership function
of Ai

j is denoted by µi
j (xi), and µi

j (xi) can be
represented by triangular, trapezoid, generalized
bell or Gaussion type and so on.

Generally, the fuzzy system can be constructed by
the following K(K > 1) fuzzy rules

Ri : IF x1 is Ai
h1

AND x2 is Ai
h2

AND

. . . . . .AND xn is Ai
hn

THEN y is
ai0 + ai1x1 + · · ·+ ainxn, i = 1, 2, · · · ,K

where aij , i = 1, 2, · · · ,K, j = 0, 1, 2, · · · , n is the
constant. The product fuzzy inference is employed
to evaluate the ANDs in the fuzzy rules. After
being defuzzyfied by a typical center average de-
fuzzifier, the output of the fuzzy system is

y = F (x) =
K∑

i=1

yiξi (x) = ξ (x) Axx̄ (9)

where yi = ai0 + ai1x1 + · · ·+ ainxn and ξi (x) =
n∏

j=1

µi
hj

(xj)

/
K∑

i=1

[
n∏

j=1

µi
hj

(xj)

]
. ξi (x) is called a

fuzzy base function. When the membership func-
tion µi

j (xi) in the ξi (x) is denoted by some types
of membership function, ξi (x) is a known contin-

uous function. And Ax =




a10 a11 · · · a1n

a20 a21 · · · a2n

...
...

...
...

aK0 aK1 · · · aKn


,

ξ (x) = [ξ1 (x) , ξ2 (x) , · · · , ξK (x)], x̄ = [1, x]T .

When the fuzzy system is used to approximate
the continuous function, two questions of interest
may be asked: whether there exists a fuzzy system
to approximate any nonlinear function to an arbi-
trary accuracy? how to determine the parameters
in the fuzzy system if such a fuzzy system does
exist. The following lemma (Wang, 1997) gives a
positive answer to the first question.

Lemma 3.1 Suppose that the input universe of
discourse U is a compact set in Rr. For any given
real continuous function f (x) on U and arbitrary
∀ε > 0, then there exists a fuzzy system in the
form of equation (9) such that

sup
x∈U

|f (x)− ξ (x) Axx̄| ≤ ε (10)

We close this section by giving a useful technical
lemma whose proof is straightforward.

Lemma 3.2 For any x and y in Rn, and for any
positive real number ε, we have

xT y ≤ 1
4ε2

xT x + ε2yT y (11)



3.2 Control Design

In order to make the stabilization of uncertain
nonlinear system (7), owing to (A,B) is control-
lable, it ensures the existence of the solution of
the algebraic Riccati equation in the following

AT P + PA− ρPBBT P + Q = 0 (12)

where ρ > 0 and Q > 0 are specified by the
designer, such that the solution is P = PT > 0.

For the system (7), the uncertainties F (x) and
E(x) are the bounded functions in the control en-
gineering. Hence there exists low bound for E(x)
as Assumption 2.1. If ∆f(x) and ∆g(x) are the
complicated formulation system functions that
can be considered to be continuous, the uncer-
tain function F (x) is also a continuous function,
according to Lemma 3.1 T-S fuzzy system can be
used to approximate F (x) as follows

F (x) = ξ (x)Axx + ε(x) (13)

where ε(x) is a bounded function approximation
error, i.e. |ε(x)| < δ, where δ is an unknown
constant.

Assume that cθ = ‖Ax‖ = λ
1/2
max(AT

x Ax) exists
such that Ax = cθA

m
x and ‖Am

x ‖ ≤ 1. Substituting
the equations (13) into (7), it follows that Eq. (7)
reduces to

ẋ =(A− ρ

2
BBT P )x + B[(1 + E)v +

ρ

2
BT Px

+ ε(x) + w] + cθBξ (x) Am
x x

(14)

We propose an adaptive robust fuzzy controller
(ARFC) shown in the following

v = −λ̂ϑ(x)BT Px (15)

where ϑ(x) = {ρ
2 + 1

4ξ(x)ξT (x) + 1
4%2 }. Let λ̂ be

the estimate of λ = κ−1 max(c2
θ, (D + δ)2, 1) and

κ = (1 + bmin). The adaptive law for λ̂ is now
chosen as

˙̂
λ = Γ

[
1
4
ϑ(x)xT PBBT Px− σ(λ̂− λ0)

]
(16)

where Γ > 0 can be considered as the updating
rate, σ and λ0 are design constants, which are
chosen by designer respectively.

Theorem 3.1 Consider the system (14), sup-
pose that F (x) can be approximated by T-S
fuzzy system as shown in equation (13). If pick-
ing λmin(Q) > 2, then control scheme (15) with
adaptive law (16) is one of the adaptive robust
fuzzy controller (ARFC) which can make all the
solutions (x(t), λ̂) of the derived closed loop sys-
tem uniformly ultimately bounded. Furthermore,
given any µ > 0, we can tune our controller
parameters such that closed-loop system satisfies
limt→∞ | x1(t) |≤ µ.

Proof: Choose the Lyapunov function as

V =
1
2
xT Px +

1
2
κΓ−1λ̃2 (17)

where λ̃ = (λ− λ̂).

The time derivative of V along the system trajec-
tory (14) is

V̇ =
1
2
xT

(
AT P + PA

)
x− κΓ−1λ̃

˙̂
λ

+ xT PB
[
(1 + E(x))v +

ρ

2
BT Px + ε(x) + w

]

+ xT PBcθξ (x) Am
x x (18)

We deal with relative items in Eq. (18), substitute
Eq. (15) into the relative items above, and obtain

xT PB(1 + E)v =− λ̂(1 + E)ϑ(x)xT PBBT Px

≤− κλ̂ϑ(x)xT PBBT Px
(19)

and by use of Lemma 3.2, we can get

xT PBcθξ (x) Am
x x

≤ c2
θ

4
xT PBξξT BT Px + xT AmT

x Am
x x

≤ c2
θ

4
xT PBξξT BT Px + xT x (20)

and by means of Lemma 3.2, there exists a non-
negative constant %, it yields

xT PB(ε(x) + w)

≤‖ xT PB ‖ (D + δ)

≤ (D + δ)2

4%2
xT PBBT P + %2 (21)

We can get

xT PBcθξ (x) Am
x x + xT PB(ε(x) + w)

+
ρ

2
xT PBBT Px

≤c2
θ

4
xT PBξξT BT Px + xT x +

ρ

2
xT PBBT Px

+
(D + δ)2

4%2
xT PBBT Px + %2

≤κλϑ(x)xT PBBT Px + xT x + %2

≤κλ̂ϑ(x)xT PBBT Px

+ κλ̃ϑ(x)xT PBBT Px + xT x + %2 (22)

Substituting Eq. (22) into (18) such that

V̇ ≤− 1
2
xT (Q− 2In×n)x + κΓ−1λ̃

×
(
Γϑ(x)xT PBBT Px− ˙̂

λ
)

+ %2 (23)

Substituting Eq. (15) into (23), we get

V̇ ≤− 1
2
xT (Q− 2In×n)x + σκλ̃(λ̂− λ0) + %2

≤− 1
2
xT (Q− 2In×n)x− 1

2
σκλ̃2 + d1

≤− c1V + d1

(24)



where d1 = 1
2κσ(λ − λ0)2 + %2 and c1 =

min{(λmin(Q)− 2)/λmax(P ), σΓ}. From Eq. (24),
we get

V (t) ≤ d1

c1
+ (V (t0)− d1

c1
)e−c1(t−t0)

It results that the solutions of composite closed-
loop system are uniformly ultimately bounded,
and implies that, for any µ1 > (d1/c1)1/2, there
exists a constant T > 0 such that | x1(t) |≤ µ
for all t ≥ t0 + T . The last statement follows
readily since (d1/c1)1/2 can be made arbitrarily
small if the design parameters λ0, σ, % are chosen
appropriately.

4. ADAPTIVE ROBUST FUZZY
STABILIZATION FOR SHIP ROLL

NONLINEAR SYSTEM

To illustrate the applicability of the ARFC scheme
proposed in this paper, we conduct a simulation
on the ship roll stabilization.

We use the system (5) for design the ARFC
scheme. And setting




f0(x) = 0
g0(x) = 1
∆f(x,w) = f(x1, x2)
∆g(x,w) = g(x1, x2)− 1

(25)

Owing to the system function f (x1, x2) is un-
known with a continuous complicated formulation
system function, T-S fuzzy system can be con-
structed to approximate the function f (x1, x2) by
he following four fuzzy IF-THEN rules

IF x1 is positive AND x2 is positive THEN y1 is
a11x1 + a12x2

IF x1 is positive AND x2 is negative THEN y2 is
a21x1 + a22x2

IF x1 is negative AND x2 is positive THEN y3 is
a31x1 + a32x2

IF x1 is negative AND x2 is negative THEN y4

is a41x1 + a42x2

where the fuzzy sets ”positive” and ”negative”
are characterized by the following membership
functions

µpositive (x) =
1

1 + exp (−ax)

µnegative (x) =
1

1 + exp (ax)
where a is the parameter correlated to the ship
type and the state.

Using the center average defuzzifier and the prod-
uct inference engine, the output of the above fuzzy
system can be written as

F (x) = ξ (x) Axx + ε

where

ξ1 (x) =
1

1 + exp (−ax1)
1

1 + exp (−ax2)

/
β,

ξ2 (x) =
1

1 + exp (−ax1)
1

1 + exp (ax2)

/
β,

ξ3 (x) =
1

1 + exp (ax1)
1

1 + exp (−ax2)

/
β,

ξ4 (x) =
1

1 + exp (ax1)
1

1 + exp (ax2)

/
β

β =
1

1 + exp (−ax1)
1

1 + exp (−ax2)

+
1

1 + exp (−ax1)
1

1 + exp (ax2)

+
1

1 + exp (ax1)
1

1 + exp (−ax2)

+
1

1 + exp (ax1)
1

1 + exp (ax2)

In this simulation, we are intended to relax As-
sumption 2.1 to check the robustness of the
proposed controller. And moreover we get ρ =
1, Q = diag{3, 3}, then the solution of the alge-
braic Riccati equation (12) is obtained by P =[

4.4037 1.7321
1.7321 2.5425

]
. If the gain is % = 0.5, the fol-

lowing fuzzy adaptive robust control scheme can
be derived for ship roll stabilization.

u =− λ̂

[
1.5 + 0.25

4∑

i=1

ξ2
i (x)

]

× (1.7321x1 + 2.5425x2) (26)

λ̇ = 100

[(
1.5 + 0.25

4∑

i=1

ξ2
i (x)

)

× (1.7321x1 + 2.5425x2)
2 − 0.5(λ̂− 0.1)

]
(27)

where λ(0) = 0 and the parameter a in member-
ship functions is 30.

To demonstrate the feasibility of the proposed
scheme, consider a container ship with the length
175 m and displacement 25,000 tons as an example
for simulation.

In the simulation the external disturbance is as-
sumed as a sinusoidal wave with wave height 7 m
and wave direction 50o. Simulation results based
on the Matlab Simulink package are given as fol-
lows.

Fig. 1 illiterates the time response of the ship roll
angle without the fin control. Fig. 2 shows the
time response of the ship roll angle with ARFC
scheme (26) and Fig. 3 shows the time response
of fin control angle by ARFC scheme when ship
speed is 7.71 m/sec. Fig. 4 shows the history of
parameter λ. As comparing Fig. 1 with Fig. 2, the
excellent performance and robustness of ARFC
are exhibited.



Fig. 1. Time response of roll angle without fin control.

Fig. 2. Time response of roll angle with fin control.

Fig. 3. Time response of fin control angle.

Fig. 4. Adaptation of the parameter λ.

5. CONCLUSIONS

In this paper, we propose a novel adaptive robust
fuzzy control (ARFC) scheme, which can be used
to control a class of uncertain nonlinear systems,
for the problem of ship roll stabilization. In the
scheme, Takagi-Sugeno type fuzzy logic systems
are used to approximate unknown functions in
the systems and adaptive robust fuzzy control
(ARFC) algorithm, which makes the closed-loop
be uniformly ultimately bounded around x(t) = 0,
can be achieved by use of Lyapunov theorem. The
main feature of the algorithm proposed in this
paper is the adaptive mechanism with minimal
learning parameterizations, e.g. no matter how
many states in the system are investigated and
how many rules in the fuzzy system are used, only
one parameter needs to be adapted on-line, so the
computation load of the algorithm can be reduced

and it is a convenience to realize this algorithm
for engineering. The feasibility of the proposed
method is verified through a container ship sim-
ulation. Simulation results show the effectiveness
of the control scheme.
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