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Abstract: In this paper, we consider design of H∞ feedback control systems
with quantized signals. We first assume that a state feedback has been designed
for a continuous-time LTI system so that the closed-loop system is (Hurwitz)
stable and a desired H∞ disturbance attenuation level is achieved, and that the
states are quantized before they are passed to the controller. We propose a state-
dependent strategy for updating the quantizer’s parameter, so that the system is
asymptotically stable and achieves the same H∞ disturbance attenuation level.
We then extend the result to the case of observer-based dynamic output feedback
where the measurement outputs are quantized, and propose an output-dependent
strategy for updating the quantizer’s parameter. Copyright c© 2005 IFAC
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1. INTRODUCTION

In classical feedback control theory, various signals
or data in the control loop have been assumed
to be passed directly without data loss, except
in saturated systems. However, this is not true in
many real applications. For example, in networked
control systems (Bushnell, 2001; Ishii and Fran-
cis, 2002) where all signals are transferred through
network, package dropouts or data transfer rate
limitations always happen. Another important as-
pect, which is well known in signal processing
area, is signal quantization. Since quantization al-
ways exists in computer based control systems,
many researchers have begun to study the analysis
and design problems for control systems involving
various quantization methods. (Delchamps, 1990)
addressed the problem of stabilizing an unstable
linear system by means of quantized state feed-
back, i.e., state feedback where the measurements

of the system state are quantized. The quantizer
in (Delchamps, 1990) takes value in a countable
set. (Brockett and Liberzon, 2000) defined a quan-
tizer taking value in a finite set and considered
quantized feedback stabilization for linear systems.
It has been shown there that if it is possible to
change the sensitivity of the quantizer on the ba-
sis of available quantized measurements, then a
hybrid control strategy, for both continuous- and
discrete-time systems, can be designed to guar-
antee global asymptotic stability. Noting that the
approach in (Brockett and Liberzon, 2000) relies
on the possibility of making discrete online adjust-
ments of quantizer parameters, (Liberzon, 2003)
extended the approach for more general nonlinear
systems with general types of quantizers involving
the states of the system, the measured outputs,
and the control inputs. The idea and results in
(Liberzon, 2003) are applied for stabilization of



discrete-time LTI systems with quantized measure-
ment outputs in (Matsumoto, Zhai and Mi, 2003).
Recently, (Zhai, Matsumoto, Chen and Mi, 2004)
considered the stabilization problem for a discrete-
time LTI system via state feedback involving both
quantized states and control inputs. As assumed in
(Liberzon, 2003), the system considered in (Zhai
et al., 2004) is supposed to be stabilizable and a
stabilizing state feedback has been designed with-
out taking quantization into account. However,
the system’s states are quantized before they are
passed to the controller, and the control inputs are
quantized before they are passed to the system.
This is a natural setting in networked control sys-
tems, where all informations (reference input, plant
output, control input, etc.) are exchanged through
a network among control system components (sen-
sors, controller, actuators, etc.). Due to the quanti-
zation effects, the desired system stability can not
be guaranteed. For this reason, (Zhai et al., 2004)
defined the two quantizers with general forms as
in (Liberzon, 2003) and then proposed a hybrid
quantized state feedback strategy where the values
of the quantizer parameters are updated at discrete
instants of time.
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Fig.1 Feedback System with Quantized State

or Measurement Output

Noticing that the above works deal with only
stability/stabilization problems, we aim to extend
the results to H∞ feedback control systems in
this paper. We consider both state feedback and
dynamic output feedback. First, we assume that a
state feedback has been designed for a continuous-
time LTI system so that the closed-loop system
is (Hurwitz) stable and a desired H∞ disturbance
attenuation level γ is achieved. However, the states
are quantized before they are passed to controller
(see Fig.1), and due to the quantization error, the
system does not have the same performance as the
case where no quantization is involved. For this
reason, we propose a state-dependent strategy for
updating the quantizer’s parameter, so that the
system is asymptotically stable and achieves the
same H∞ disturbance attenuation level γ. Then,
we extend the consideration to the case of observer-
based dynamic output feedback and assume that
the measurement outputs are quantized in the

controller. To deal with the quantization error, we
propose an output-dependent strategy for updating
the quantizer’s parameter, so that the system has
the same performance as before. We note that
the control strategies of updating the quantizer’s
parameter are dependent on time in the existing
works (Brockett and Liberzon, 2000; Liberzon,
2003; Matsumoto et al., 2003; Zhai et al., 2004),
and such control strategies can not be applied for
the case of H∞ control systems since we do not
know the value of the disturbance inputs and thus
can not drive the state into an invariant region, as
done in (Liberzon, 2003). As a great contrast, the
control strategy in this paper is state or output
dependent, which is usually regarded to have more
robustness.
The rest of this paper is organized as follows.
Section 2 gives the definition and the property
of generalized quantizer. Section 3 considers state
quantization in state feedback, and proposes state-
dependent strategy for updating the quantizer’s
parameter, so that the system is asymptotically
stable and achieves the same H∞ disturbance at-
tenuation level. Section 4 extends the consideration
to the case of observer-based dynamic output feed-
back, and obtain parallel result. Finally, Section 5
gives some concluding remarks.

2. QUANTIZER DESCRIPTION

First, we give the definition of a quantizer with
general form as introduced in (Liberzon, 2003). Let
z ∈ �l be the variable being quantized. A quantizer
is defined as a piecewise constant function q : �l →
D, where D is a finite subset of �l. This leads to a
partition of �l into a finite number of quantization
regions of the form {z ∈ �l : q(z) = i}, i ∈ D.
These quantization regions are not assumed to have
any particular shapes. We assume that there exist
positive real numbers M and ∆ such that the
following conditions hold:
(1) If

|z| ≤ M (1)

then

|q(z) − z| ≤ ∆ . (2)

(2) If

|z| > M

then

|q(z)| > M − ∆ .

Throughout this paper, we denote by | · | the stan-
dard Euclidean norm in the n-dimensional vector
space �n, and denote by ‖ · ‖ the corresponding
induced matrix norm in �n×n. Condition 1 gives
a bound on the quantization error when the quan-
tizer does not saturate. Condition 2 provides a way



to detect the possibility of saturation. We will refer
to M and ∆ as the range of q and the quantization
error, respectively. We also assume that q(x) = 0
for x in some neighborhood of the origin. The
example of satisfying the above requirements is
given by the quantizer with rectangular quantiza-
tion regions in (Brockett and Liberzon, 2000; Liber-
zon, 2000).
In the control strategy to be developed below, we
will use quantized measurements of the form

qµ(z)
�
= µq(

z

µ
) , (3)

where µ > 0 is the parameter. The extreme case
of µ = 0 is regarded as setting the output of the
quantizer as zero. The range of this quantizer is
Mµ and the quantization error is ∆µ. We can view
µ as a “zoom” variable: increasing µ corresponds
to zooming out and essentially obtaining a new
quantizer with larger range and larger quantization
error, while decreasing µ corresponds to zooming
in and obtaining a quantizer with smaller range
but also smaller quantization error. We will update
µ later depending on the system state (or the
measurement output). In this sense, it can be
considered as another state of the resultant closed-
loop system.

3. STATE QUANTIZATION IN STATE
FEEDBACK

In this section, we consider the continuous-time
LTI system described by{

ẋ = Ax + B1w + B2u

z = C1x ,
(4)

where x ∈ �n is the state, w ∈ �h is the dis-
turbance input, z ∈ �p is the controlled output,
and u ∈ �m is the control input. The matrices
A,B1, B2, C1 are constant and of appropriate di-
mension. We assume that the pair (A,B2) is stabi-
lizable.
Suppose that for the system (4), we have designed
a state feedback

u = Kx (5)

so that the closed-loop system, composed of (4)
and (5), is stable and the H∞ norm of the transfer
function from w to z is less than a specified level
γ. More precisely, the closed-loop system is writen
as {

ẋ = Āx + B1w

z = C1x
(6)

where Ā = A+B2K. Then, the hypothesis is that,
without taking quantization into consideration, the
gain K in (5) is designed so that Ā is (Hurwitz)
stable and ‖C1(sI − Ā)−1B1‖∞ < γ . Therefore,

according to the well known Bounded Real Lemma
(Iwasaki, Skelton and Grigoriadis, 1998), there ex-
ist two positive definite matrices P and Q satisfying
the Riccati equation

ĀT P + PĀ + γ−2PB1B
T
1 P + CT

1 C1 + Q = 0 . (7)

We will let λm(·) and λM (·) denote the smallest
and the largest eigenvalue of a symmetric matrix,
respectively. Since P and Q are positive definite,
the inequalities

λm(P ) |x|2 ≤ xT Px ≤ λM (P ) |x|2

λm(Q) |x|2 ≤ xT Qx ≤ λM (Q) |x|2
(8)

holds for any x.
Here, we deal with the case where only quantized
state information is available. For this reason,
we modify the state feedback (5) using quantized
information of x as

u = Kµq(
x

µ
) . (9)

For any fixed positive scalar µ, the closed-loop
system composed of the system (4) and the new
state feedback (9) is given by{

ẋ = Āx + B1w + D(µ, x)

z = C1x ,
(10)

where

D(µ, x) = µB2K

(
q(

x

µ
) − x

µ

)
. (11)

Now, the control problem is very natural. Due to
the existence of quantization error, the stability
and the desired H∞ disturbance attenuation level
γ is not guaranteed. For this reason, we propose
a control strategy which adjusts µ appropriately
online, depending on the state, so that the same
H∞ disturbance attenuation level is achieved.
Theorem 1. Assume that M is chosen large
enough compared to ∆ so that we have

M > 2∆
‖PB2K‖
λm(Q)

. (12)

Then, there exists a control strategy for updating
µ, which is dependent on the state, that makes the
closed-loop system (10) asymptotically stable and
achieves H∞ disturbance attenuation level γ.
Proof. Since x

µ is quantized before going to the
state feedback, we obtain by using the properties
of general quantizers in (1) and (2) that whenever
|x| ≤ Mµ, the following holds.∣∣∣∣q(x

µ
) − x

µ

∣∣∣∣ ≤ ∆ (13)

We consider the Lyapunov function candidate

V (x) = xT Px (14)



for the closed-loop system (10). By using the Ric-
cati equation (7), we obtain that when |x| ≤ Mµ,
the derivative of V (x) along solutions of (10) sat-
isfies

V̇ =
(
Āx + B1w + D(µ, x)

)T
Px

+xT P
(
Āx + B1w + D(µ, x)

)
=−xT

(
Q + γ−2PB1B

T
1 P + CT

1 C1

)
x

+wT BT
1 Px + xT PB1w

+D(µ, x)T Px + xT PD(µ, x)

≤−zT z + γ2wT w − λm(Q)|x|2

+2|x|‖PB2K‖∆µ

=−zT z + γ2wT w

−λm(Q)|x|
(
|x| − 2∆

‖PB2K‖
λm(Q)

µ

)
. (15)

According to (12), we can always find a scalar
ε ∈ (0, 1) such that

M > 2∆
‖PB2K‖
λm(Q)

× 1
1 − ε

, (16)

which is equivalent to

1
1 − ε

× 2∆
‖PB2K‖
λm(Q)

µ < Mµ . (17)

Therefore, for any nonzero x, we can find a positive
scalar µ such that

1
1 − ε

× 2∆
‖PB2K‖
λm(Q)

µ ≤ |x| ≤ Mµ . (18)

This is also true in the case of x = 0, where we set
µ = 0 as an extreme case and consider the output
of the quantizer as zero.
In other words, if we always choose µ so that (18)
is satisfied, then (15) holds and thus

V̇ ≤−zT z + γ2wT w − ελm(Q)|x|2

≤−zT z + γ2wT w − ε
λm(Q)
λM (P )

V

=−ε
λm(Q)
λM (P )

V − Γ(t) , (19)

where Γ(t)
�
= zT (t)z(t) − γ2wT (t)w(t) .

First, by setting w = 0 in (19), we see clearly that
the system is asymptotically stable.
Next, since V (t) ≥ 0, we obtain from (19) that
V̇ ≤ −Γ(t), and thus for any t > t0,

V (t) − V (t0) ≤ −
t∫

t0

Γ(τ)dτ . (20)

Using V (t) ≥ 0 again, we obtain

t∫
t0

zT (τ)z(τ)dτ ≤ V (t0) + γ2

t∫
t0

wT (τ)w(τ)dτ ,(21)

which implies that H∞ disturbance attenuation
level γ is achieved. This completes the proof.
Remark 1. In the existing references (for ex-
ample, (Liberzon, 2003), (Zhai et al., 2004)), the
value of µ is updated in a time-controlled manner,
i.e., when to change the value of µ is dependent
only on time. This is not possible for the present
situation because we do not know the value of w(t)
and thus we can not drive x(t) into a specified
invariant region, as done in (Liberzon, 2003; Zhai
et al., 2004). To overcome this difficulty, we have
proposed a state-dependent strategy (18) for ad-
justing the value of µ. As also pointed out in many
other references, such a state-dependent strategy
is usually more robust to modelling imperfection
than time-dependent one.
Remark 2. There is an important observation
concerning the implementation of the quantizer
proposed in this section, and it is also valid for
the quantizer in the next section. We assume that
the function q(·), which may be very complicated,
has been designed and we implement µq(x

µ) (NOT
q(x

µ ) only) as a parameter-dependent quantizer.
Since the variable of the function q(·) is x

µ , the
quantizer can flexibly deal with large or small state
x by adjusting the value of µ, so that the condition
(18) is satisfied. This is very important in H∞
control problems since the state x may be very
large temporarily due to unexpected disturbance
input. In the case where only q(x

µ) is viewed as a
quantizer, the output of the quantizer has to be
scalared by µ before it is passed to the controller.
The function q(·) in this paper is a general concept
for quantization, and thus careful consideration is
required in real implementation.
Remark 3. Although the H∞ disturbance at-
tenuation level γ is fixed in this paper, the same
discussion is applicable for any positive γ > γopt,
where γopt is the optimal H∞ norm that the system
(4) can reach via state feedback.

4. OUTPUT QUANTIZATION IN
OBSERVER-BASED OUTPUT FEEDBACK

In the case where the state information is not avail-
able in the feedback loop and also in the quantizer,
we need to pull out certain output information
from the system and then consider output feed-
back. For this reason, we consider in this section
the continuous-time LTI system described by

⎧⎪⎪⎨
⎪⎪⎩

ẋ = Ax + B1w + B2u

z = C1x

y = C2x ,

(22)



where y ∈ �q is the measurement output, and
all the other vectors are the same as before. We
assume that the triple (A,B2, C2) is stabilizable
and detectable.
Suppose that for the system (22), we have designed
a full order Luenberger observer described by{ ˙̂x = (A + LC2)x̂ + B2u − Ly

u = Kx̂
(23)

so that the closed-loop system, composed of (22)
and (23), is stable and the H∞ norm of the transfer
function from w to z is less than a specified level
γ. Since the closed-loop system is writen as

{ ˙̃x = Ãx̃ + B̃1w

z = C̃1x̃
(24)

where x̃ =
[
xT (x − x̂)T

]T and

Ã =

[
A + B2K −B2K

0 A + LC2

]

B̃1 =

[
B1

B1

]
, C̃1 =

[
C1 0

]
,

(25)

the hypothesis is that, without taking quantization
into consideration, the gains K and L in (23) are
designed so that Ã is (Hurwitz) stable and ‖C̃1(sI−
Ã)−1B̃1‖∞ < γ . Therefore, according to the well
known Bounded Real Lemma (Iwasaki et al., 1998),
there exist two positive definite matrices P̃ and Q̃
satisfying the Riccati equation

ÃT P̃ + P̃ Ã + γ−2P̃ B̃1B̃
T
1 P̃ + C̃T

1 C̃1 + Q̃ = 0 .(26)

Here, we deal with the case where only quantized
measurements of the output y are available. For
this reason, we modify the observer (23) using
quantized information of y as

{
˙̂x = (A + LC2)x̂ + B2u − Lµq(

y

µ
)

u = Kx̂ .
(27)

Then, the closed-loop system composed of the
system (22) and the new observer (27) is given by

{ ˙̃x = Ãx̃ + B̃1w + D(µ, y)

z = C̃1x̃ ,
(28)

where

D(µ, y) = −µL̃

⎡
⎣ 0

y

µ
− q(

y

µ
)

⎤
⎦ , L̃ =

[
0 0
0 L

]
. (29)

Using the state of the closed-loop system, we write
the measurement output y as

y = C̃2x̃ , C̃ =
[
C2 0

]
. (30)

Also, due to the existence of quantization error,
the stability and the desired H∞ disturbance at-
tenuation level γ is not guaranteed. Next, we pro-
pose a control strategy which adjusts the quan-
tizer’s parameter µ appropriately, depending on
the measurement output, so that the stability and
the desired H∞ disturbance attenuation level γ is
achieved.
We are in the position to state and prove the main
result in this section.
Theorem 2. Assume that M is chosen large
enough compared to ∆ so that we have

M > 2∆
‖P̃ L̃‖‖C2‖

λm(Q̃)
. (31)

Then, there exists a control strategy for updating
µ, which is dependent on the measurement output,
that makes the closed-loop system (28) asymptoti-
cally stable and achieves H∞ disturbance attenua-
tion level γ.

Proof. Since y
µ = C2x

µ is quantized before being
passed to the observer, we obtain by using the
properties of general quantizers in (1) and (2) that
whenever |y| ≤ Mµ, the inequality∣∣∣∣ yµ − q(

y

µ
)
∣∣∣∣ ≤ ∆ (32)

is true. We consider the Lyapunov function candi-
date

V (x̃) = x̃T P̃ x̃ (33)

for the closed-loop system (28). By using the Ric-
cati equation (26), we obtain that when |y| ≤ Mµ,
the derivative of V (x̃) along solutions of (28) sat-
isfies

V̇ =
(
Ãx̃ + B̃1w + D(µ, y)

)T

P̃ x̃

+x̃T P̃
(
Ãx̃ + B̃1w + D(µ, y)

)

=−x̃T
(
Q̃ + γ−2P̃ B̃1B̃

T
1 P̃ + C̃T

1 C̃1

)
x̃

+wT B̃T
1 P̃ x̃ + x̃T P̃ B̃1w

+D(µ, y)T P̃ x̃ + x̃T P̃D(µ, y)

≤−zT z + γ2wT w − λm(Q̃)|x̃|2 + 2|x̃|‖P̃ L̃‖∆µ

=−Γ(t) − λm(Q̃)|x̃|
(
|x̃| − 2∆

‖P̃ L̃‖
λm(Q̃)

µ

)

≤−Γ(t) − λm(Q̃)|x̃|
(

|y|
‖C̃2‖

− 2∆
‖P̃ L̃‖
λm(Q̃)

µ

)

≤−Γ(t) − λm(Q̃)|x̃|
‖C2‖

(
|y| − 2∆

‖P̃ L̃‖‖C2‖
λm(Q̃)

µ

)
.

(34)



According to (31), we can always find a scalar
ε̃ ∈ (0, 1) such that

M > 2∆
‖P̃ L̃‖‖C2‖

λm(Q̃)
× 1

1 − ε̃
, (35)

which is equivalent to

1
1 − ε̃

× 2∆
‖P̃ L̃‖‖C2‖

λm(Q̃)
µ < Mµ . (36)

Similarly as in Theorem 1, if we choose the quan-
tizer’s parameter µ for any y such that

1
1 − ε̃

× 2∆
‖P̃ L̃‖‖C2‖

λm(Q̃)
µ ≤ |y| ≤ Mµ , (37)

then (34) is true and thus

V̇ ≤ −Γ(t) − ε̃
λm(Q̃)|x̃|
‖C2‖ |y| . (38)

The remaining proof, concerning the asymptotic
stability and H∞ disturbance attenuation level, is
the same as in Theorem 1, and is thus omitted.
Remark 4. The difference between the control
strategies (18) and (37) is that (18) is dependent on
the state while (37) is dependent on the measure-
ment output. This is natural since in the present
situation we can not obtain the state information
directly.
Remark 5. Although we focused our attention on
Luenberger observer here, the result in this section
can be easily extended to the case of the general
dynamic output feedback{ ˙̂x = Âx̂ + B̂y

u = Ĉx̂ + D̂y
(39)

where x̂ ∈ �n̂ (n̂ is a fixed order on which there is
no limitation), y is assumed to be quantized in the
closed-loop system.

5. CONCLUDING REMARKS

In this paper, we have studied stabilization and
H∞ disturbance attenuation problem for feedback
control systems where the states or the measure-
ment outputs are quantized before they go to the
controller. We have proposed a state-dependent (or
output-dependent) control strategy for updating
the quantizer’s parameter on line so that the sys-
tem is asymptotically stable and achieves the same
H∞ disturbance attenuation level as in the case
where no quantization is involved.
Our future interest is H∞ disturbance attenuation
problem for feedback control systems with two
quantizers (quantization of both states/outputs
and control inputs), as shown in Fig.2. Further-
more, the application of these results for design

of networked control systems is an interesting and
challenging problem.
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Fig.2 Feedback Control Systems with Two Quantizers
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