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Abstract: An interval analysis approach for the design of robust state feedback
controllers is proposed. It is shown that when regional pole placement specifications
are represented as spectral sets of interval polynomials, the robust state feedback
design problem can be entirely formulated and solved in the context of the concepts
and methods of interval analysis. Explicit convex polyhedral representations of a
class of robust state feedback controllers satisfying an interval Ackerman’s equation

are derived. A design procedure based on nonlinear programming which aims
at maximizing the non-fragility of the resulting robust controller is introduced.
Numerical examples illustrate the design of robust state feedback controllers
through the interval analysis approach proposed. Copyright c©2005 IFAC
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1. INTRODUCTION

The problem of designing state feedback con-
trollers for linear time-invariant systems has been
extensively treated in the control system litera-
ture. Stabilizability conditions via constant state
feedback, as well as state feedback solutions for
pole placement problems under the assumption of
a precisely known system have been completely
characterized (Chen, 1999). However, linear mod-
els of real systems sometimes include parameters
whose values are unknown but bounded in com-
pact sets, often described in the form of closed in-
tervals. In this case, stabilization and performance
via state feedback must be addressed in a robust
sense. The robust control problem consists in find-
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ing a state feedback gain so as to place all closed-
loop poles in the left-half side of the complex plane
(robust stabilization) or in some prescribed region
of it (robust performance) for every possible set
of system parameters. The robust stabilization
problem has been tackled through two distinct
approaches (Wei, 1994). In the first one, the uncer-
tain system is viewed as a nominal system subject
to perturbations. The problem is decomposed into
subproblems of stabilizing the nominal system and
then proving that the closed-loop system remains
stable in spite of all the admissible perturbations.
According to the second approach, the stabiliz-
ability of the system is initially determined and
then a stabilizing control is designed.

In this paper a robust state feedback approach
for linear time-invariant interval systems which
combines some of the above characteristics is



proposed. As in (Keel and Battacharyya, 1999),
regional pole placement specifications are for-
mulated as spectral sets of interval polynomials,
which can be efficiently described through the
Edge Theorem (Bartlett et al., 1988). However,
the design of robust state feedback controllers is
based on the application of concepts and methods
of interval analysis (Alefeld and Herzberger, 1983)
to the interval matrix representation of the sys-
tem. Interval analysis is becoming an important
tool in several areas related to control system
design, as comprehensively discussed in (Jaulin
et al., 2001). As in (Smagina and Brewer, 2002),
the core of our approach is the interval Acker-

mann’s equation, the equation associated with the
Ackerman’s formula, whose inner (or tolerable)
solutions are known to represent robust stabiliz-
ing controllers. This basic idea is then combined
with results about inner solutions of linear interval
equations (Rohn, 1986) and the formalism derived
in (Lordelo and Ferreira, 2002) for systems de-
scribed by transfer functions, according to which
robust pole placement controllers are viewed as
inner solutions of an interval Diophantine equa-

tion.

The paper is organized as follows. In Section II,
the robust pole placement principle used for the
design of state feedback controllers is presented.
Section III addresses the problem of designing
robust controllers assuming complete access to
the state vector. The interval Ackermann’s equa-
tion for robust pole placement is presented; con-
vex polyhedral representations of the set of ro-
bust controllers associated with the Ackermann’s
equation are derived. The design of non-fragile
state feedback controllers as a design centering

problem is addressed in Section IV. In Section
V, a sufficient condition for robust controllability
(observability) of interval systems based on an
interval QR–factorization method is proposed in
the context of multivariable systems. Finally, in
Section VI some conclusions are presented.

Notation. The sets of real (complex) numbers
and real m× n matrices are represented as R (C)
and R

m×n, respectively. The symbol := means
equal by definition. The transpose of A ∈ R

m×n

is denoted as AT , and defining A = {αij}, the
absolute value matrix of A equals |A| = {|αij |}.
The sets of interval real numbers and interval real
m×n matrices are represented as IR and IR

m×n,
respectively. A closed interval [α] ∈ IR is denoted
as [α] = [α−, α+], where the α−, α+ ∈ R, with
α+ ≥ α−. An interval matrix [A] is defined by
[A] = {[aij ]}, where [aij ] := [a−ij , a

+

ij ] for each i, j.
Alternatively,

[A] = [A−, A+] = {A : A− ≤ A ≤ A+},

where A− := {a−ij}, A+ := {a+

ij} and the in-
equality is meant to be componentwise. The width,

center and radius of [A] are defined by Aw = A+−
A−, Ac = 1

2
(A+ + A−) and Aδ = 1

2
(A+ − A−),

respectively. An inclusion of the form [A] ⊂ [B]
means that A− ≥ B− and A+ ≤ B+. If the sym-
bol ∗ represents one of the arithmetic operations
+,− or ·, and [A] and [B] are interval matrices of
compatible dimensions, then

[A] ∗ [B] :=

{A ∗B : A ∈ [A−, A+], B ∈ [B−, B+]},

As usual the symbol · for multiplication of re-
als or intervals is omitted. A monic n-degree
interval polynomial is defined by p(s) = sn +
pn−1s

n−1+· · ·+p0, where pi ∈ [pi] := [p−i , p
+

i ], i =
0, 1, . . . , n − 1; another representation is [p(s)] =
sn + [pn−1]s

n−1 + · · · + [p0]. The numerical op-
erations on intervals reported in this paper have
been performed using INTLAB, an interval arith-
metic software package developed by S. Rump
(http://www.ti3.tu-harburg.de).

2. ROBUST POLE PLACEMENT

Consider the linear time-invariant single input,
single output interval system

ẋ = [A]x+ [b]u, (1)

y = [c]x, (2)

where x = x(t) ∈ R
n, u = u(t) ∈ R and

y = y(t) ∈ R are the state, control and output
variables of the system, respectively. The interval
state matrix [A] ∈ IR

n×n and the interval control
and output vectors [b] ∈ IR

n×1 and [c] ∈ IR
1×n

are introduced so as to model structured uncer-
tainties in the form of unknown but bounded
system parameters. In this paper the robust pole
placement design principle originally introduced
in (Soh et al., 1987) is adopted. According to that
principle, it is required to robustly assign closed-
loop characteristic polynomials in an interval fam-
ily of characteristic polynomials

[p(s)] := sn + [pn−1]s
n−1 + · · ·+ [p0],

where [pi] := [p−i , p
+

i ], i = 0, 1, . . . , n − 1 are
interval coefficients. Explicit representations for
[p(s)] when the closed-loop poles assume simple
forms are discussed in (Soh et al., 1987). An alter-
native robust pole placement design procedure is
proposed in (Keel and Battacharyya, 1999) via the
concept of spectral set of an interval polynomial,
defined as

S([p(s)]) := {s ∈ C : p(s) = 0,

pi ∈ [p−i , p
+

i ], i = 0, 1, . . . , n− 1}.

The basic idea in (Keel and Battacharyya, 1999)
is to create a regional pole placement specification
in the form of the spectral set of an interval



polynomial, taking advantage of the fact that
that spectral sets of interval polynomials can be
effectively described through the Edge Theorem

(Bartlett et al., 1988). Assuming that adequate
closed-loop characteristic polynomials have been
previously specified, the following robust control
system design problems can be formulated.

Controller design. Given [p(s)], find a con-
stant state-feedback gain k ∈ R

1×n such that

det(sI −A+ bk) ∈ [p(s)]

for every A ∈ [A] and b ∈ [b].

Observer design. Given [q(s)], find a constant
observer gain l ∈ R

n×1 such that

det(sI −A+ lc) ∈ [q(s)]

for every A ∈ [A] and c ∈ [c].

If the poles in S([q(s)]) are sufficiently faster than
those in S([p(s)]), and the state x is replaced
by its observed value x̂, one obtains a robust
state-observed feedback controller u = −kx̂. The
computation of the observer gain l is not explicitly
considered in this paper. It can be obtained by
applying the interval analysis approach proposed
to the interval dual system

ż = [A]T z + [c]T v,

w = [b]T z.

It is apparent that the existence of a robust con-
troller assigning closed-loop poles in arbitrary lo-
cations of the complex plane requires controllabil-
ity (observability) in a robust sense. The interval
system ([A], [b], [c]) is said to be controllable if the
rank of the n× n controllability matrix

M :=
[
b
... Ab

... · · ·
... An−1b

]

equals n for every pair (A, b) ∈ ([A], [b]). The pair
([A], [b]) is then said to be controllable. Invoking
the duality principle in control system design
(Chen, 1999), one concludes that the interval
system ([A], [b], [c]) is observable if and only if the
pair ([A]T , [c]T ) is controllable.

The interval matrix extension of the controllabil-
ity matrix is given by (Alefeld and Herzberger,
1983)

[M] =
[
[b]

... [A] [b]
... · · ·

... [A]
n−1

[b]

]
.

It should be observed that [M] ∈ IR
n×n contains

every possible controllability matrix of the inter-
val system, but not all matrices in [M] are control-
lability matrices. Nevertheless, if rank (M) = n

for every M ∈ [M], then the pair ([A], [b]) is

controllable. Denoting as [det([M])] the inter-
val extension of det(M), M ∈ [M], it follows
that ([A], [b]) is controllable if 0 6∈ [det([M])].
To obtain the interval extension [det([M])] is,
however, computationally expensive. A numerical
procedure for testing controllability (observabil-
ity) based on an interval extension of the QR–
factorization method (Bentbib, 2002) is proposed
in Section V, in the context of multivariable sys-
tems.

3. CONTROLLER DESIGN

An extension to interval systems of the classical
state feedback design technique is presented in
this section. In the non-interval case, given the
characteristic polynomial of A,

det(sI −A) = sn + αn−1s
n−1 + · · ·+ α1s+ α0,

and the desired closed-loop characteristic polyno-
mial

p(s) = sn + pn−1s
n−1 + · · ·+ p1 + p0,

a constant feedback gain k := [k0 k1 · · · kn−1]
assigning p(s) can be computed by the Acker-
mann’s equation (Ogata, 1997)

kMW + α = p, (3)

where

p :=
[
p0 p1 · · · pn−1

]
, α :=

[
α0 α1 · · · αn−1

]

and

W :=




α1 α2 · · · αn−1 1
α2 α3 · · · 1 0
...

...
. . .

...
...

αn−1 1 · · · 0 0
1 0 · · · 0 0



.

Since the coefficients of the characteristic poly-
nomial of A are multilinear functions of its ele-
ments, the interval extensions of these coefficients,
namely [αi], i = 0, 1, . . . , n− 1, can be computed,
as well as [W] ∈ IR

n×n, the interval matrix exten-
sion of W considering that A ∈ [A]. The interval
extension of the Ackermann’s equation is given by

k[M][W] + [α] = [p], (4)

where [p] ∈ IR
1×n represents the interval closed-

loop characteristic polynomial. A necessary condi-
tion for the solvability of linear interval equations
of the form (4) is that pw ≥ αw, meaning that the
width of p must be greater than or equal to the
width of α. The next step is to remove [α] from
the left-hand side of (4), which can not be done
by using the standard definition of interval sub-
traction because, in general, [α]− [α] 6= [0, 0]. The
extended subtraction (Inuiguchi and Kume, 1991)

[p]ª [α] := [p− − α−, p+ − α+],



is used instead. Noting that [α]ª [α] = [0, 0], one
obtains the system of linear interval equations

k[T ] = [f ], (5)

where [T ] := [M][W] and [f ] := [p]ª [α]. As hap-
pens in the non-interval case, the controller design
has a simple solution when the state equation is
the interval controllable form, in which

[A] =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1
−[α0] −[α1] −[α2] · · · −[αn−1]




and

[b]T = bT =
[
0 0 · · · 0 1

]
.

It is readily seen that the above interval pair
([A], [b]) is always controllable. Interval control-
lable representations are easily obtained from sys-
tems represented by interval transfer functions.

Theorem 1. Let ([A], [b], [c]) be a linear time-
invariant interval system in the interval control-
lable form. Then

k ∈ [f ] = [p]ª [α]. (6)

solves the robust pole placement problem.

Proof: Given the structures of [A] and [b], it
follows that

det(sI−[A]+[b]k) = sn+([αn−1]+kn−1)s
n−1+

· · ·+ ([α1] + k1) + ([α0] + k0),

and the solution of det(sI− [A]+ [b]k) = [p(s)] by
using the extended subtraction leads to (6). 2

Clearly, (6) generalizes the solution of the con-
troller design problem based on pole placement, in
the sense that if p− = p+ = p and α− = α+ = α,
then k = p − α. Although any feedback gain sat-
isfying (6) solves the pole placement problem, the
central controller k = fc = 1

2
(f+ + f−) seems to

be preferable due to its maximal non-fragility with
respect to gain variations. The maximal variation
allowed in the coefficients of fc, that is, the radius
of the interval vector centered in fc, referred as θ,
is easily computed.

Example 1. Consider the interval controllable form
associated with a third order interval transfer
function discussed in (Jaulin et al., 2001):

A =




0 1 0
0 0 1
−α0 −α1 −α2


 , b =



0
0
1


 , cT =



γ

0
0


 ,

where

α0 =
p2
3

p2

, α1 = p2
3 +

p3

p2

, α2 = p3 +
1

p2

, γ =
p1p

2
3

p2

.

Assuming that [p1] = [p2] = [p3] = [0.97, 1.03] and
using interval arithmetics, one obtains the interval
system ([A], [b], [c]) characterized by

[α0] = [0.9134, 1.0937], [α1] = [1.8826, 2.1227],

[α2] = [1.9408, 2.0609], [γ] = [0.8860, 1.1265].

The interval characteristic polynomial

[p(s)] = s3 + [7.469, 8.536]s2+

[20.89, 27.32]s+ [25.98, 38.87],

encloses the nominal characteristic polynomial
p(s) = s3 +8s2 +24s+32 (poles at −4, −2± j2).
The spectral set of [p(s)] is illustrated in Figure 1
by using light grey lines. Since the system is in the
interval controllable form, a possible solution for
the robust pole placement problem is the central
controller k = fc = [31.42 22.10 6.001]. The
spectral set of det(sI − [A] + b[k]) is illustrated
in Figure 1 using dark grey lines. The closed-loop
poles remain inside the spectral set of [p(s)] for
all possible A ∈ [A] and k ∈ [k], where [k] is
the interval vector with center in fc and radius
θ = 0.0793. 2
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Fig. 1: Spectra of [p(s)] and det(sI − [A] + b[k]).

In (Smagina and Brewer, 2002) is shown that
the robust stabilization problem may have a so-
lution of the form k = fc(Tc)

−1, provided that
fc(Tc)

−1[T ] ∈ [f ], and that [p(s)] is an interval
Hurwitz polynomial satisfying pw > αw. Here,
using concepts and results of interval analysis
applied to systems of linear interval equations,
the whole set of robust pole placement controllers
which can be derived from the interval Acker-
mann’s equation is characterized. The solution set
of (5) is defined by (Rohn, 1989)

K := {k : kT = f for some T ∈ [T ], f ∈ [f ]}.

The subset of the inner solutions of K, given by
(Rohn, 1986)

K0 := {k : kT ∈ [f ], T ∈ [T ]},

characterizes all the robust state feedback con-
trollers associated with (5). The following repre-



sentations of K0 are consequences of the applica-
tion of interval analysis results.

Theorem 2. (Representations of K0). Let K0 be
the set of all inner solutions of the interval Acker-
mann’s equation k[T ] = [f ] and define

K1 := {k : |kTc − fc|+ |k|Tδ ≤ fδ};

K2 := {k : k = k1 − k2,

k1T− − k2T+ ≥ f−,

k1T+ − k2T− ≤ f+,

k1 ≥ 0, k2 ≥ 0 };

K3 := {(k, k̄) : kTc − k̄Tδ ≥ f−,

kTc + k̄Tδ ≤ f+,

− k̄ ≤ k ≤ k̄ }.

Then K0 = K1 = K2 and k ∈ K0 if and only if
there exists k̄ such that (k, k̄) ∈ K3.

Proof: The proofs involving the equivalences K0 =
K1 = K2 are derived from (Rohn, 1986). The
correspondence between K0 and K3 is based on
(Kelling, 1994) 2

From the equivalence K0 = K1, one concludes that
K0 is a convex set. In addition, if every column of
Tδ has at least one nonzero element, then K0 is
bounded.

4. NON-FRAGILE DESIGNS

An important concern while designing feedback
controllers is to avoid that small variations in the
coefficients of the designed controller, dictated by
implementation issues, for example, deteriorate
the closed-loop performance significantly (Keel
and Battacharyya, 1997). To avoid fragility, a
controller design procedure based on the solution
of a design centering problem, a classical problem
in nonlinear programming, is proposed. The idea
is to find the center k and the largest radius θ ≥ 0
such that

k + θC ∈ K0,

where C is a given set specifying how the controller
coefficients can vary and k+θC := {k+θv, v ∈ C}.
The radius θ represents a measure of the fragility
of the robust controller k when its coefficients
vary as specified by C. Assuming that C is an
hyperretangle (that is, an interval vector), the
controller design problem assumes the form

(Pθ)

∣∣∣∣∣∣∣∣∣∣

max θ

s.t. (In ± θV )kTc − k̄Tδ ≥ f−,

(In ± θV )kTc + k̄Tδ ≤ f+,

−k̄ ≤ (In ± θV )k ≤ k̄,

θ ≥ 0,

where ’±’ stands for two inequalities (one for ’+’,
another for ’−’), In denotes the n-order identity
matrix and V := diag (v1, v2, . . . , vn), where vi ≥
0 represents the relative weight attributed to i-th
gain: the larger the value vi relatively to the other
vj , j 6= i, the smaller the variation allowed in ki.
The nonlinear problem (Pθ) has been solved by
using MATLAB (Optimization Toolbox).

5. MULTIVARIABLE SYSTEMS

The design of state feedback controllers for MIMO
systems can be reduced to the design of SISO
systems if one assumes that A is cyclic, that is,
if the characteristic polynomial of A equals its
minimal polynomial. If the pair (A,B) is con-
trollable and A is cyclic, then the pair (A,Bq)
is controllable for almost all q ∈ R

m, where m

is the number of system inputs (colums of B)
(Chen, 1999). Adopting the interval extension of
this design principle (Smagina and Brewer, 2002),
the robust state feedback gain for interval MIMO
systems assumes the form K = qk, where k can be
obtained by letting [b] := [B]q and then applying
the design procedure discussed in the previous
sections of this paper. Of course, one can simply
apply the procedure and try to obtain a robust
controller without an a priori controllability test.
For the sake of completeness, the following con-
trollability (observability) test based on an in-
terval extension of the QR–factorization method
(Bentbib, 2002) is proposed. Given any interval
matrix [N ] ∈ IR

m×n with m ≥ n, one obtains an
orthogonal m × m interval matrix [Q], an upper
trapezoidal m × n interval matrix [R], and then
a factorization of the form [N ] = [Q][R], mean-
ing that for every N ∈ [N ] there exist matrices
Q ∈ [Q] and R ∈ [R] such that N = QR. Then
rank([N ]) = n if rank([R]) = n. Since [R] exhibits
the upper trapezoidal interval form

[R] =




[
R̃
]

· · ·[
0
]


 ,

where [R̃] ∈ IR
n×n is an upper triangular interval

matrix, it follows that rank([R]) = n if and only
if 0 6∈ [r̃ii] for i = 1, 2, . . . , n.

Example 2. Consider the linearized state equation
for the longitudinal motion speed of a helicopter,
discussed in (Smagina and Brewer, 2002):

[A] =



[a1] [a2] −9.8
[a3] [a4] 0
0 1 0


 , [B] =



[b1] 0
0 [b2]
0 0


 ,

with [a1] = [−0.031,−0.0128], [a2] = [−3.4,−0.1],
[a3] = [−0.00077,−0.0007], [a4] = [−0.32,−0.31],
[b1] = [−18,−15] and [b2] = [−3.3,−3]. The



interval QR–factorization method has been used
for checking the controllability of ([A], [B]). For
convenience the algorithm has been applied to
[M]T ∈ IR

6×3. The relevant interval matrix for
the analysis is

[R̃] =



[29.7, 38.7] [−0.40, 0.24] [−0.73, 1.21]

[0, 0] [3.11, 3.52] [−1.55,−0.47]
[0, 0] [0, 0] [−3.81,−2.43]


 .

Since 0 6∈ [r̃ii], i = 1, 2, 3, we conclude that
rank([R]) = n and therefore the pair ([A], [B])
is controllable. In (Smagina and Brewer, 2002),
given the interval family of Hurwitz polynomials

[p(s)] = s3 + [3, 4]s2 + [2, 8]s+ [0.5, 5.5],

it is required to find a state feedback gain K ∈
R

2×3 such that det(sI − A + BK) ∈ [p(s)] for
every A ∈ [A] and B ∈ [B], thus assuring
the robust stability of the closed-loop system.
Adopting qT = [0.8 1.2] and solving problem (Pθ)
with V = diag(1, 1, 1), the robust state feedback
gain k∗ = [0.0266 − 0.9297 − 0.7028] is found,
which then provides

K∗ = qk∗ =

[
0.0213 −0.7438 −0.5622
0.0319 −1.1157 −0.8433

]
.

The optimal value of θ has been θ∗ = 0.0852,
meaning that the state feedback gains may vary
up to 8.5% without destabilizing the closed-loop
system. 2

6. CONCLUSIONS

The design of state feedback controllers for inter-
val systems based on the robust pole placement
design principle has been addressed in this pa-
per. Simple conditions for the existence of robust
state feedback controllers have been derived; a
procedure based on the solution of a design cen-
tering problem which aims at maximizing their
non-fragility has been proposed and applied, with
good simulation results. The authors are currently
investigating ways of improving some numerical
aspects involved in the application of interval
analysis to robust control system design, espe-
cially those associated with the concept of con-
trollability (observability) of interval systems.
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