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Abstract: The problems of robust overlapping decentralized control for a class of multi-
area longitudinal power systems are discussed in this paper. A special overlapping 
decomposition method is presented in terms of inclusion principle. Based on the 
decomposition, a new control method is formed by means of Linear Matrix Inequality 
(LMI) approach of Organically-Structured Control (OSC). The proposed method is 
applied to a three-area longitudinal power system, and the simulation results show that 
the performances of the controllers designed by proposed method are better than the one 
by OSC directly. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
It is well known that the overlapping decomposition 
has been widely applied to various control designs of 
complex systems (Siljak, 1991; Chen and Stankovic, 
1996; Akar and Ozguner, 2002; Knittel et al., 2002). 
The concept of overlapping decentralized control has 
been put forward to solve the problems about the 
decentralized control of the interconnected systems. 
Generally, the overlapping means that there is a 
common part in different subsystems, which is called 
overlapping part. It may be different when the 
partition of the subsystems is different. The choice of 
the overlapping or the partition of the subsystems 
will affect the overlapping decentralized control of 
overall system. Knittel et al. (2002) provided an 
example about choosing overlapping, and pointed out 
the fact that considering the overlapping in systems 
can make overall system has better control 
performances. Therefore, how to use of the 
overlapping and overlapping decomposition in 
complex systems to improve control performances is 
a researchable problem.  

 
The decentralized control for interconnected power 
systems has also attracted considerable attention of 
researchers in the field of complex and large-scale 
systems (Siljak, 1991; Chen and Stankovic, 1996; 
Chen et al., 2001; Chen et al., 2002; Stankovic, 
1999). We know that multi-area interconnected 
power systems have a complex structure. They often 
exist in network forms, but in some special cases, 
they can also exist in longitudinal or loop or radial 
structure. In order to simplify the problem on control 
design, we can study respectively for different cases. 
Chen et al. (2001 and 2002) presented a 
decentralized control method for multi-area power 
systems, i.e. it decomposed the overall system as a 
group of pair-wise area subsystems, then designed 
the decentralized controllers for each area according 
to the decentralized design method for two-area 
overlapping power systems (Chen and Stankovic, 
1996). In this way, maybe there are many 
decentralized controllers for each area. But the 
method did not give us the strategy to choose, 
optimize and coordinate the controllers. It also did 



not consider the interconnections between the pair 
area systems when the pair area subsystems are 
designed. Therefore, the performances of control are 
not perfect. To improve the control performance 
indices and consider the interconnections between 
subsystems more completely, a special overlapping 
decomposition method is studied in framework of the 
inclusion principle and LMI method of Organically-
Structured Control (Siljak and Stipanovic 2001) is 
adopted to add the positive effect of the 
interconnections in the control design for the multi-
area interconnected power systems. 
 
The objective of this paper is to present a new 
decentralized controller design idea for multi-area 
longitudinal interconnected power systems. In order 
to implement the control idea, an overlapping 
decomposition method, which decomposes the 
interconnected power system into a group of pair-
wise area subsystems, is presented in terms of the 
restriction conditions of Inclusion Principle. The 
decomposition mode can separate out the 
interconnections between each pair-wise area. When 
the controllers are designed, the interconnections can 
be considered as a positive factor. Based on the 
decomposition, the decentralized controllers of each 
subsystem in pair-wise area subsystems are designed 
by using LMI approach of OSC in expanded space. 
Then all the controllers can be combined together 
and contracted back to original space by using the 
contraction condition of inclusion principle and 
implemented in original space. The proposed method 
is applied to a three-area longitudinal power system, 
and the simulation results show that the performances 
of the controllers designed by proposed method is 
better than the one by OSC directly.  
 
 

2. MODELS AND STRUCTURE OF SYSTEMS 
 
We consider a class of interconnected power systems 
composed of interconnected N areas described by the 
following differential equations (Calovic, 1984; 
Siljak, 1978) 
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11 22( , , , )NNB blockdiag B B B=  
 

11 22( , , NNC blockdiag C C C=  

11 22( , , )NNF blockdiag F F F=             (2) 
 
In matrix A , the diagonal block iiA represents the 
parameter of i-th area subsystem, and ijA is the 
interconnection between areas. The equation of i-th 
area subsystem can be described as 
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where is the constant matrix blocks 

corresponding to the state 

,i iA C

ix∆ ; 2, in
ti ija m R −∈ , 

2jn
jim R −∈ are constant coupling vectors; 

2in
id R −∈  is the bias factor related to area control 

error of AGC; 1 10 /i P P0iα = is a steady-state load 
normalization factor based on area 1. In fact, the 
normalization factor 1iα is uncertain, because the 
loads of the areas are inconstant along with the load 
perturbation and the fluctuation of generating power. 
 
We notice the fact from the model  (1) and  (2) that 
there are the interconnections only in matrix A. , 

and
B

C F  have been block-diagonal matrices. If the 
power systems have longitudinal structure, the matrix 
A can be simplified as follows: 
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where MA, MB, MC and MF are the complementary 
matrices with the dimensions n , , n× n m× l n× , 

n m× . To let S  be an expansion of S, a proper 
choice of MA, MB, MC and MF is required, and the 
restriction conditions of the inclusion principle can 
be used. The conditions are divided into two classes. 
They are provided by the following theorem (.Siljak, 
1991; Stankovic, 1999). 

 
The main characteristic of longitudinal structure is 
that the area subsystems are connected like a chain. 
Suppose i-th area subsystem is in the middle of the 
chain. Because i-th area subsystem includes 
simultaneously the information of two areas 
connecting with it, i.e., the information overlapping 
affected by the other two areas is formed in i-th area. 
Therefore, i-th area can be regarded as the 
overlapping structure of adjacent areas. The 
overlapping decomposition of this structure has a 
particular character.  
 
 
3.  SPECIAL OVERLAPPING DECOMPOSITION 

OF LONGITUDINAL STRUCTURE 
 
Special overlapping decomposition is different from 
general overlapping decomposition, it regards the 
whole area subsystem not part subsystem as the 
overlapping part. The interconnected system will be 
expanded and decomposed into a group of pair-wise 
area subsystems by using the restriction condition of 
inclusion principle. Suppose the expanded system of 
the longitudinal power system (1) is  
 

S :  ⎧⎨
⎩

 

 

x Ax Bu F

y Cx

ξ= + +
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                      (6) 

 

where ( ) nx t R∈ , , ,  
are the state, control input, output and uncertain 
perturbation input of the expanded system S  
respectively. , 

( ) mu t R∈ ( ) ly t R∈ ( ) nt Rξ ∈

A B , and C F are still constant 
matrices with expanded dimensions. And there are 
always , , ln n< m m< l< . Suppose that the pairs 
of matrices (U,V), (Q,R), (S,T) are given, and V, U, R, 
Q, S and T are all full rank transformation matrices, 
their dimensions are n , , , n× n n× m m× m m× ,  

,  respectively, and satisfy l l× l l× nUV I= , 
, ,  where denotes a i identity 

matrix.  In terms of inclusion principle, then the 
matrices , 

mQR I= lST I= iI i×

A B , and C F can be expressed as 
 

AA VAU M= + , BB VBQ M= + , 

 , CC TCU M= + FF VFQ M= + .          (7) 
 

 

Theorem 1. The system S is one of restrictions of S  
if there exists full rank matrices V, R and T such that  

AV VA= , BR VB= , , CV TC= FR VF= .   (8) 
 

Theorem 2. The system S is one of restrictions of S  
if there exists full rank matrices V and R such that 
 

0AM V = , 0BM R = , , .   (9) 0CM V = 0FM R =
 
Because the interconnections between subsystems are 
only in matrix A for the system (1), we only consider 
the overlapping structure decomposition of the state 
equation in the system (1).   
 
First of all, the transformation matrices should be 
chosen. For the longitudinal power systems, choose 
the overlapping decomposition factor β =0.5 
according to the inclusion principle method, then 1-
β =0.5.  The matrices are 
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 When  satisfies the condition AV in  (8), 
we have 
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where dotted lines mark out N-1 pair-wise area 
subsystems. When  satisfies the condition M VA 0A =  
 



in (9), the complementary matrix MA is 
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where .  In the compact 
form, the quadratic constraint of the interconnection 

 is  ( )h x

 
Similarly, F and C can be obtained too. It should be 
noted that the state vector of overall systems is 
transformed  from 1 2[ , , , ]T T T T
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2 2 1 1, , , , , ]T T T T T T
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4. ROBUST DECENTRALIZED CONTROL 
DESIGN 

 
The power system (1) is decomposed into a group of 
pair-wise area subsystems in expanded space after 
overlapping decomposition. We can use LMI 
approach of OSC (Siljak and Stipanovic 2001) to 
design the robust decentralized controllers for each 
pair subsystems. The model of pair-wise area 
subsystems can be described by the following 

:
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where 1,2, , 1i N= − , .  and 

are the interconnections between two 
subsystems. Here, suppose there is not self-
interconnection in each subsystem. Let

1,j i j N= + ≤ ij jA x

ji iA x

ij jA x ( )ih x= , 

( )ji i jA x h x= , where x denotes [ , ]T
i jx x x= . The 

first one of the equations in (15) is used to account 
for the design procedure.  
 
Because the load normalization factor 1iα is uncertain 
but bounded in the interconnections Aij, we can 
suppose the interconnections to satisfy the following 
quadratic constraints. 
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where iα >0 is the bounds of uncertain 
interconnections, Hi is a constant matrix. Consider 
the decentralized state feedback control laws as 
follows 
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Then the closed-loop subsystems can be described as 
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Rewrite the model to a compact form 
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Considering the robust connective stability of the 
system (15), the interconnected matrix ( )ijE e= is 
added into the interconnections of the system (Siljak, 
1978). Therefore 
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dimensions corresponding to the system (15), ijβ is a 

norm of the interconnection  excepted uncertain 

normalization factor in each two-area system. 
Based on (22), the quadratic constraints of the 
interconnection can be denoted as 
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In order to obtain the decentralized control law 

 such that the closed-loop system (19) to be 
robust connectively stable, we use Lyapunov stability 
theory and Schur complementary formula to educe 
following LMI optimization problem  (Siljak and 
Stipanovic 2001).       
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Let N=3, the expanding matrices are selected by (10). 
After the procedure of expansion and contraction, the 
decentralized controllers are designed in terms of 
above proposed method.  Apply them to the three-
area interconnected power system, the output 
response curves to the load disturbance including 
deviation of frequency variations  and the tie 
line power exchange variations  are shown in 
Fig 1. The comparison is done between the results 
obtained by proposed method and the one by using 
OSC approach directly in (Siljak and Stipanovic, 
2001). The real lines denote proposed method and the 
dotted lines denote OSC approach. 
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After the decentralized controllers are designed for 
each pair-wise area subsystem, the gain matrix  
can be formed in expanded space as follows 

DK

 
1 2 1

1 2 2 3( , , , , , )D NK blockdiag K K K K K=         (28) 
 
To implement the decentralized control in the 
original system and form overlapping decentralized 
control laws,  should be contracted back to the 
original space based on the restriction conditions of 
the inclusion principle (Siljak, 1991). The robust 
decentralized controllers for system (1) satisfy 
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Therefore, we can arrive at 
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5. SIMULATION RESULTS 
  
Consider a three-area interconnected power system 
with longitudinal structure. The parameters of the 
two areas in three areas can be found in (Calovic, 
1984; Siljak, 1978), and the other one is chosen 
according to the one of the parameters of two areas. 
The parameters are 
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3 3tf a= , 33 22C C=                                          (31) 
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Fig 1. The output response curves of the main 
variations to the load disturbance 

 
From Fig.1, we can know that the performances of 
the controllers designed by the former are better than 
the latter. The reason is that the two controllers 
considering different interconnections are combined 
together and the interconnections are used 
sufficiently. The simulation results illuminate that the 
proposed method are feasible. 
 
 

6. CONCLUSIONS 
 
Making use of special overlapping decomposition of 
the systems, the paper presents a new robust 

decentralized control method for multi-area 
longitudinal interconnected power systems. Because 
OSC approach sufficiently considers the inter- 
connections between subsystems and the effect 
brought by uncertain structure perturbation, the 
control is robust and it guarantees the connective 
stability of the systems. At the same time, the 
simulation results of proposed method prove the fact 
that considering the overlapping in systems properly 
can improve control performances of overall systems. 
The proposed method can be also applied to the other 
control systems.  
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