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Abstract: We present an iterative algorithm for computataf linear time-invariant
system responses directly from an exact finite input/outi@jgectory of that system. In
particular, the impulse response can be obtained from d&iah opens the possibility to
use realization theory in order to retrieve the system patars. The oblique projection,
used in subspace identification, computes free responses wiitial conditions form a
state sequence. We show that the oblique projection camespto a block version of
the data driven simulation algorithm. The iterative altori, however, has computational
advantages over the block algorithm, which makes it attraéor application in subspace
algorithms Copyrigh 2005 IFAC
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1. INTRODUCTION bitrary response directly from a given (possibly finite)
trajectory of the system.

A precursor of the subspace identification methods isA trivial modification of the algorithm allows the
(Gopinath, 1969). In 1969 realization theory was well computation of free responses of the system, which
developed but it addresses a very special identificationinitial conditions form a valid state sequence. Such
problem—the one starting from a given impulse re- responses are called sequential. They are an essential
sponse. So realization theory was not applicable at thatingredient of the N4SID type subspace identification
time to the general deterministic identification prob- methods and are computed by the oblique projection.
lem and different approaches were searched. The firsMWe show that the oblique projection corresponds to a
solution is proposed in (Gopinath, 1969) and is refined block version of the proposed algorithm and point out
in (Budin, 1971; Liu and Suen, 1977). More recently, some advantages of the iterative algorithm.

the deterministic identification problem is treated in .
the behavioral setting (Willems, 1986) and via the sub- The MOESP type algorithms use free responses that

space methods (Van Overschee and De Moor, 1996,need notr:) N seﬂuenuall. Th? co.mputatlonr?l toorl1|n IT:S
Chapter 2). case is the orthogonal projection. We show that the

orthogonal projection can also be inferred from the
In this paper, we propose an algorithm that fulfills the basic idea of this paper: computation of a response of
missing link to realization theory. Therefore, we have the system directly from data.

a solution to the deterministic identification problem

that could have been the first deterministic identifica-

tion algorithm. Actually the algorithm that we propose

is more general as it allows the computation of an ar-



2. DATA DRIVEN SIMULATION as performing data driven simulation of the implicitly
defined by the data system
Consider a discrete-time linear time-invariant (LTI)
systemz, induced by a minimal state space represen- Note 1.(Nonzero initial conditions). The restriction
tation that the desired response should be a zero initial con-
ox=Ax+Bu, y=Cx+Du, ditions response can be relaxed. A way to specify the

wherex(t) € R?, u(t) € R, y(t) € RP, and o is the desired initial condition, say;, is to give a trajectory
backward shift operatofo f)(t) = f(t+1). Let %; (up,yp) of the system that transfers it to the state
be the set of all samples long trajectories:= (u,y) Such a trajectory always exists, provided the sysiem

of %, i.e, is controllable. For example, one can take
By = {w:: (uy) € (R x (RP)T | Uy — |:01ma_><m><1:| oy {Olma_xpxl} ,
Up Yp

Ixe (R*)T s.t.ox=Ax+Bu, y=Cx+ Du}.
) ) _ i whereu, is an input that transfer® from the zero

The systent is controllabl_e if for_ any two trajectories  siate to the state andyy, is the corresponding output.

Wy, W, € # 1= %, there s a third trajectorw € # 1y Note 2 we explain how(up, y,) can be used for

and a natural numbéf € N, such that, (t) = w(t), simulation of non-zero initial condition responses.
for all t < 0, andw,(t) = w(t), for all t > t/, see

(Willems, 1991, Section 5). The usual definition of

state controllability, given in terms of a state space Let /() be a block-Hankel matrix witi block-
representation of the systeR) is equivalent to the  rows,e.g, with G = ({(2),...,G(T)),

above definition, given in terms of the behavigr

Ga(y) G2 - GT-A+1)
The lagl of the systenk is defined as its observability a2) @) QT —-A+2)
index, i.e., the smallest integer such that Hp(0) = | . : :
col(C,CA...,.CA™Y) GA) GA+1) - G(T)

has full column rank. Equivalently, is the minimal
degree of a difference equation representation of the
systemz. Generically,l = [n/p], where[r], r € R,
denotes the smallest integer larger than or equal to  The solution of Problem 1 is based on the following

A time seriesu’is called persistently exciting of or-
der A if the matrix %, (G) is of full row rank.

We will need often the following fact: if lemma.
Y Yp
W= (hf] ’ { fJD € % Lemma 2((Willemset al, 2004)). Assume that

and " ([up] [yp D c 1. the LTI systenk is controllable,

27 \ LU 1 | Y2 T 2. U is persistently exciting of ordek + n, where
where (up,yp) is at leasti samples long, theg, ; = A € N andn is the order o, and
¥; o, i.€., matching the first samples of the trajectories 3. (0,Y) is a trajectory ofz, i.e, (4,Y) € %y, for
w; andw,, ensures that the initial conditions for the certainT € N.
responses; ; andyﬁ2 are equal. Then
Throughout the pape, m, p, 1, and # are fixed image J,(0) _ 2
symbols denoting respectively the minimal order, the 9 JOG)|) T

number of inputs and outputs, the lag, and the behavior
of the systenk. The considered problem is defined as

Assumption 1 is a part of the problem formulation
follows.

and is a standing assumption throughout the paper.
Admittedly, it is most restrictive for practical appli-
cations but in the same time it is a convenient one
for theoretical studies. Realization theory relies on the
stronger assumption that the exact impulse response of
the system is given. Also classical identification the-
ory starts from the similar assumption that the given
data is generated by a stochastic ARMAX or ARMA
system. Assumption 3 is mild in the sense that the
Problem 1 can be solved indirectly by first identifying set of controllable systems is generic in the set of all
the system> from the given datdd,¥), nmax Lmax systems. Assumption 2 is nontrivial and as we will
and then simulating the desired respogs®©ur goal, show in Sections 3 and 4, it gives an answer to an open
however, is to find a direct solution that does not find question in subspace system identification: what is the
as an intermediate step a (more structured) representasharpest verifiable from the given ddfay) condition

tion of the systen. Such an algorithm can be viewed for identifiability of the systenx.

Problem 1.(Data driven simulation). Given a trajec-
tory (0,¥) € #; of an LTI systemZX, an upper
boundnpmax Of the ordern, an upper bound max of
the lagl, and a time serieg, € (R™)", wheret € N,
find the responsg of the systenk under zero initial
conditions and input.



Lemma 2 shows that i€l s persistently exciting of  Note 2.(Splitting of the data into “past” and “future”).

sufficient order, amA samples long trajectory of the  The block-Hankel matrices?;, _ , A(0), 72, A(Y)

system is of the form ;f:AE“; g, for someg e Ri,  are split into two parts, see (1). We refer to the
Ta Y blocksUp andY, as the “past” and to the blocks

wherej :=T —A+1. Now takeA =t, the length of the ) ” :
desired responsg. In Theorem 3, we specify ho andY; as the “future”. Let rowdine) denotes the
sired responsg we specify howg number ofblock row of its argument. We have that

that ds to the traject be found. ; X .
atcorresponds to the trajectaey, y;) can be foun row dim(Up) = row dim(Yy) = 1maxand row dinfU; ) =

rowdim(Y;) = A. The reason for this partitioning is to
fix the initial conditions for the computed response in
the “future”. The “past” is sufficiently long to set the
correct initial condition and the “future” is used for
v computation of a response, starting from this initial
) ) —- | P condition. In Theorem 3 we fix zero initial conditions
Hrmara(0) = {UJ + Hmacra) = {YJ - @ by assigning the “past” to zero. Assigning the “past”
Then the system of equations to the trajectory(up, Yp), defined in Note 1, allows to
compute a nonzero initial conditions response.

Theorem 3.Let X be controllable((,¥) € %, andube
persistently exciting of ordek + 1max+ nmax Define
the matrices)p € Rimaa] U € R, Y, € Rimaex],
Y, € RA*J, wherej := T —A— 1max+1, by

Up 0
Uf g= uf ) (2)
Yo 0 Theorem 3 readily gives an algorithm (see Algo-

rithm 1) for the computation of the responge A
hidden limitation of Algorithm 1, however, is that
the persistency of excitation condition requires a suf-
ficiently large lengthT of given time serieq(,Y).

) ) Finite, T samples long data sequen@®y) implies
PROOF. The statement is proven for the special case 5t the lengtit = A of the responsg; that can be

of an impulse response in (Markovslet al., 2004, computed by the block algorithm is
Section 3). Here we adapt the proof for the general

is solvable for anyu; and any particular solutiog
allows the computation of the respongeof Z due to
the inputy; and zero initial conditions ag = Y;g.

T+1
case. A< n+1 — Imax— Dmax- (4)
Under the assumptions of the theorem, we can apply
Lemma 2 from which follows that Algorithm 1 Block algorithm for data driven simul.
_ %ﬁmw+A(a) 1: Input: 0, ¥, nmax, 1lmax and u;, satisfying the
MAGA | a®)] ) T Fimace conditions of Theorem 3.
max

2: Solve the system of equations (2) anddéte the

The time series(y;,y;) is a zero initial conditions computed solution.

trajectory ofX, so that preceded by any number of 3: Computey, — Y.q.
X ] . . : . =Y:0.
zeros, it remains a trajectory af i.e., 4: Output: the responsg of X to zero initial condi-

<|:01maxm><1:| 7 [Olmaxpxlb €B, tions and inputy.
max

U Yt . : . .
Therefore, there exists a vecmrsuch that Itis possible, h_oyvever, to find an arbitrary ang re-
sponse from a finite amount of data by computing iter-

Up 0, ax1 atively A samples long responsg@,y(l), ..., WhereA

Us g= U satisfies (4). These blocks are madfe sequential pieces
Yo Olmaxpxl ' of the desired responsg by matching their initial

Y Vi conditions. The iterative version of Algorithm 1 (see

This shows that there exists a solutigrof (2) and ~ Algorithm 2) is based on the following lemma.

thereforeY;g is the desired response. .
Lemma 4((Markovskyet al, 2004)). Letw; ¢ %Tl,

Conversely, leg be a solution of (2). We have W, € %, and let the last max sSamples oft; coincide

Up Olma)@xl with the firstlmayx samples ofv;, wherelmax is larger
$f 9=, Ug 3) than or equal to the lag &f. Then

v et wi= (Wy(1),... Wy (T,),

f f N N
and by Lemma 2 Wy (Lmax+1),-Wa(Tp)) € Py g1
0. 0]
([ 1mGXmX1} , { lmagX1D €EB - In the outline of Algorithm 2, we use the notation
f f

. oo , _ f(t, 1 t,) := col(f(ty),..., f(t,)). Acting on a block
This trajectory is identically zero during the firshax matrix. o removes its firsblock row.

samples, which (using the assumptiggx > 1) guar-

antees that the initial conditions are set to zero. Thenygte 3.(About the choice oh). Let be persistently
Yigis indeedy;. exciting of orderi. Algorithm 2 can be applied if



Algorithm 2 Iterative algorithm for data driven simul.
1: Input: G, ¥, nmax, Imax Ui, andA satisfying the
conditions of Theorem 3.
. . (O) . Imaxmx 1
2: Setk:=0, f{® = | meet | andf(g)
3: repeat
Up £
4:  Solve |y; [ gk =
; 4

p )
particular solution foun
5. Compute the respongé :=Y,g™.

and letg® be the

o

)
(S P I (k1) . g | v
6 = [u(kA+1:(T<+1)A)_’ fyp =0 o
7. ki=k+1
8: until t < kA

9: Output: the responsg; := col(y]EO),...,yf(k*l))
of Z to zero initial conditions and inpuk.

i > nmax+ Lmax IN Which case the paramet&rcan be
chosen in the intervdll,i — nmax— 1max. The choice
of A affects the performance of the algorithm: the
amount of computations is a function &fand, in the
presence of noise on the data ), the accuracy of
the computed result is a function &f These or other
criteria can be optimized by selecting a suitallle
The freedom to choosa is an important advantage
of Algorithm 2 over Algorithm 1.

Algorithm 1 is a special case of Algorithm 2. Indeed
by taking A = t, Algorithm 2 reduces to the block

computation. There are a number of advantages in

doing the computations iteratively, however. Most im-
portantly, for larget, Algorithm 1 might not be ap-
plicable, while Algorithm 2 still be. Algorithm 1 as-

orthogonal complement of the row space#f .. (0),
i.e, the MOESP algorithms compute the matrix

YO = %max(y) né_ (5)
where
Mg :=1-!

Dmax

(@) (A

nmax(l]) %;ax(a)) %max(ﬁ) .

(For well posedness of this operatians assumed to

be persistently exciting of ordefyax.) In subspace
identification it is customary to think in terms of geo-
metric operations: projection of the rows of a certain
matrix onto the row space of another matrix. The fact
that these matrices have special (block-Hankel) struc-
ture is ignored and the link with systems theory is lost.
Still, as we show next, the orthogonal projection (5)
has a simple and useful system theoretic interpreta-
Observe that

tion.
0
%ﬂmax(y) YO .
'#’{)ﬂmax(?) :| are

Since by assumption the columns pf, @)

“Imax
trajectories o, it follows by the linearity o that the
columns of{\%} are also trajectories &. The inputs

of the derived trajectories are identically zero, so that
the columns ofY, are free responses &f Therefore,
Y, must be of the form

xo c RnX(Tfnmaerl) and
[ = col(C,CACA?, ... CAMmax1)
Assuming that rankf,) = n or equivalently that

rank(X,) = n, the parameteré andC can be com-
puted (up to a similarity transformation) frohy. A

Yy =IX,, where

sumes persistency of excitation of order proportional way to do this is to compute a rank revealing factor-
to t. By using the idea of weaving responses as statedization ofY, = LR and to solve the shift equation

in Lemma 4, we make the persistency of excitation
condition independent af With A = 1 (the minimal
possible), the assumptions of Algorithm 2 imgly>
n(Imax+ nmax+ 1) + Imax+ nmax Which is a function

of nmax, lmax @andm only. As shown in (Willemset
al., 2004), this is a necessary condition for identifia-
bility of Z.

Even when Algorithm 1 is applicable, from an ef-
ficiency point of view it might not be optimal. The
freedom to choose the parameteras discussed in

(o"L)A= (oL),

(o*L is the matrix obtained fronh by removing its
first block row) which is a well known technique from
realization theory. In (Verhaegen and Dewilde, 1992,
Sec. 3.3), it is proven that a sufficient condition for
rank(Yy,) =nis

rank([%mxi(ﬁ)D =1+ nmaxa. (6)

This condition, however, is not verifiable from the data

Note 3, can be used to optimize the efficiency of the (,¥), either. Therefore, give(t, ¥), except for special
computations. In addition, in the presence of noise oncases {"white noise or periodic), one can not say

the data((,¥), the accuracy of Algorithm 2 depends
on the choice ofA and a proper choice & makes
Algorithm 2 superior to Algorithm 1.

In the next two sections, we show that data driven sim-

whether the system is identifiable by the MOESP
algorithms.

Next we show how the orthogonal projection (5) can
be derived from the point of view of Lemma Re,,

ulation is a hidden core subproblem of the subspacefrom a system theoretic reasoning. Under the condi-

identification algorithms.

3. COMPUTATION OF FREE RESPONSES

tions of Lemma 2, there is a matr®, such that
A (G)] m

maxt 7 G = . 7

|:'%€1max(y) Y0 ( )

Moreover, ifG has a maximal rank, then raf¥) =

An essential step of the MOESP algorithms is the n. The projectorl1 satisfies (7) and has the maxi-

orthogonal projection of the rows of;, . () on the

mal rankT — npax(m + 1) + 1 among all matrice&



that satisfy (7). Therefore,,,(J)M¢ = Y, with ~ Projection ofY; along the space spanned by the rows
rank(Y,) = n as desired. The assumptions of Lemma 2 0f U; onto the space spanned by the rows\gf This
requires that geometric operation, denoted Mfyupr, is defined as

G is persistently exciting of ordefax+n.  (8) E(ilf;'\’:r'] s:le éV;{l)Qverschee and De Moor, 1996, eqn.
In (Willems et al, 2004, Corollary 1), it is proven ' bad '
that (8) implies assumption (6), so that (8) is a veri- Yo i =Yi/u W = Yi Mo, 9)
fiable from the given data condition under which the
system2 can be identified by the MOESP algorithms. where
In an.e.\ppr.opriate sense, see (V\(illeemal., 2004), the _ - WprT WprT + W
condition is also necessaig., it is sharp. Mopr = [Wp Uy } U, U, " {0} .
Note that the orthogonal projection (5) compujes
T —nmax+ 1 free responses, where typically> nmax-
Actually for the computation oA andC, n linearly
independentlmax Samples long free responses are
needed. Sincen is unknown,nmax such responses
should be computed. The obtained matfjxhen cor-
responds to a non-minimal state space representationNote that
A € Remacmmax gnd C € RP*®max, |n order to make [Wp] {Wp]

Mop =

As the orthogonal projection, the oblique projection
also has a simple and useful system theoretic inter-
pretation that is not clarified in the literature. Next we
show that the oblique projection computes sequential
free responses of the system.

it minimal, n linearly independent columns &f, are Us 0
selected andy, is redefined to be the full column Y; Yo
_ranl_< matrix gf_thehselected COITmn_SHThedSVD factorl- The first two block rows of the identity are easy to
ization, used in the MOESP algorithms does namely o in, ang the third one is true by definition. The
this step of making the non-minimal representation a W
minimal one. columns of{Uf} are trajectories of the systemand

i
The observation that the computationmf,y instead . . Wo
of j responses suffices results in a huge Computationalby the linearity of2, the columns of \% are also
saving. Similar (but not equivalent) saving is achieved trajectories ok. The derived from the data trajectories
in the numerical implementation of the MOESP algo- are such that the inputs are identically zero in the

rithms by what is known as the QR-trick. Let “future” (the part labeled with subscript f). Therefore,
A (0) T the corresponding respons¥g are free responses.
{ %;‘max (N)] =QR Their initial conditions are set by the “past” (the
~mmax y o part labeled with subscript p) and due to the Hankel
be the QR factorization of the matrix in the left hand strycture ol, andY,, they are sequential. Therefore,
side of the identity and partitioR as follows Y, must be of the form
Dmaxd  DmaxP 2 nmax—1
I =col(C,CACA:,... ,CAMmax)
T .| Ry 0 0 | nmam Yo =Xy, where ’ o
R |: R21 R22 0 Dmaxp 0 XO = [X(l) X(J)}
It can be shown, see (Verhaegen and Dewilde, 1992,andx(1),...,x(j) is a state sequence &f with j :=
Section 4.1), that T — 2nmax+ 1.
imageY,) = imageR,,), Under the condition rank,) = n, a state sequence,

so that only theR,, block of theR factor is needed ~ S&YX(1),....X(j), of the system can be obtained from
for the computation of the parameteksandC. Note a rank r'eveah'ng factorization of,. Once a state se-
that the QR-trick is a numerical linear algebra tech- dueénce is available, the system parametars, C, D)

nique that is not motivated from the system theoretic ¢@n be computed (in a basis of the state space, fixed by
considerations that we promote here. the rank revealing factorization) by solving the linear

system of equations

X(2) - X)) | _[AB|[X(1) - X(j-1)
4. COMPUTAT:;JENS%SSESSUENHAL FREE {)7(1) y(j—l)} = [c D] {0(1) o ]

In (Van Overschee and De Moor, 1996, Section 2,
Theorem 2), it is proven that a sufficient condition for

rank(X,) =nis

o |u
Wp = [YS] : 1. U persistently exciting of ordemz,ax and
2. row spafiX,) Nrow spariU;) = {0},

Consider again the splitting of the data into “past” and
“future” as defined in (1) witl\ = 1,55 and let

As the key computational step of the MOESP algo-
rithms is the orthogonal projection, the key compu- see assumption 1 and 2 of (Van Overschee and De
tational step of the N4SID algorithms is the oblique Moor, 1996, Sec. 2, Thm 2). As with assumption (6)



in the MOESP algorithms, however, assumption 2 is the oblique projection computes sequential free re-
again not verifiable from the given data. sponses of the system. Moreover, the oblique projec-
tion corresponds to our block algorithm. We explained
implementation of Algorithm 1 for the computation of that the QR-trick in the sub&_:pa_ce _|c_ient|f|cat|on alg_o-
i . ithm has the system theoretic significance of reducing
sequential free responses. Under the assumptions oi .
Lemma 2, a matrixt, which columns are sequential he number of gomputed responses from dat‘?‘-. Using
' 0 the result of (Willemst al,, 2004), we gave sufficient

free. responses can be computed from the data byverifiable from the data conditions for identifiability.
solving the system

Next we show that the oblique projection (9) is an

W W
G=|" 11
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