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Abstract: We present an iterative algorithm for computation of linear time-invariant
system responses directly from an exact finite input/outputtrajectory of that system. In
particular, the impulse response can be obtained from data,which opens the possibility to
use realization theory in order to retrieve the system parameters. The oblique projection,
used in subspace identification, computes free responses which initial conditions form a
state sequence. We show that the oblique projection corresponds to a block version of
the data driven simulation algorithm. The iterative algorithm, however, has computational
advantages over the block algorithm, which makes it attractive for application in subspace
algorithms.Copyright©2005 IFAC
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1. INTRODUCTION

A precursor of the subspace identification methods is
(Gopinath, 1969). In 1969 realization theory was well
developed but it addresses a very special identification
problem—the one starting from a given impulse re-
sponse. So realization theory was not applicable at that
time to the general deterministic identification prob-
lem and different approaches were searched. The first
solution is proposed in (Gopinath, 1969) and is refined
in (Budin, 1971; Liu and Suen, 1977). More recently,
the deterministic identification problem is treated in
the behavioral setting (Willems, 1986) and via the sub-
space methods (Van Overschee and De Moor, 1996,
Chapter 2).

In this paper, we propose an algorithm that fulfills the
missing link to realization theory. Therefore, we have
a solution to the deterministic identification problem
that could have been the first deterministic identifica-
tion algorithm. Actually the algorithm that we propose
is more general as it allows the computation of an ar-

bitrary response directly from a given (possibly finite)
trajectory of the system.

A trivial modification of the algorithm allows the
computation of free responses of the system, which
initial conditions form a valid state sequence. Such
responses are called sequential. They are an essential
ingredient of the N4SID type subspace identification
methods and are computed by the oblique projection.
We show that the oblique projection corresponds to a
block version of the proposed algorithm and point out
some advantages of the iterative algorithm.

The MOESP type algorithms use free responses that
need not be sequential. The computational tool in this
case is the orthogonal projection. We show that the
orthogonal projection can also be inferred from the
basic idea of this paper: computation of a response of
the system directly from data.



2. DATA DRIVEN SIMULATION

Consider a discrete-time linear time-invariant (LTI)
systemΣ, induced by a minimal state space represen-
tation

σx = Ax+Bu, y = Cx+Du,

wherex(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p, andσ is the

backward shift operator(σ f )(t) = f (t + 1). Let BT
be the set of allT samples long trajectoriesw := (u,y)
of Σ, i.e.,

BT :=
{

w := (u,y) ∈ (Rm)T × (Rp)T |

∃ x∈ (Rn)T s.t.σx = Ax+Bu, y = Cx+Du
}

.

The systemΣ is controllable if for any two trajectories
w1,w2 ∈ B := B∞, there is a third trajectoryw ∈ B

and a natural numbert ′ ∈ N, such thatw1(t) = w(t),
for all t < 0, and w2(t) = w(t), for all t ≥ t ′, see
(Willems, 1991, Section 5). The usual definition of
state controllability, given in terms of a state space
representation of the systemΣ, is equivalent to the
above definition, given in terms of the behaviorB.

The lagl of the systemΣ is defined as its observability
index,i.e., the smallest integeri, such that

col(C,CA, . . . ,CAi−1)

has full column rank. Equivalently,l is the minimal
degree of a difference equation representation of the
systemΣ. Generically,l = ⌈n/p⌉, where⌈r⌉, r ∈ R,
denotes the smallest integer larger than or equal tor.
We will need often the following fact: if

w1 :=
(

[up
uf

]

,
[

yp
yf,1

])

∈ BT

and
w2 :=

(

[up
uf

]

,
[

yp
yf,2

])

∈ BT ,

where(up,yp) is at leastl samples long, thenyf,1 =
yf,2, i.e., matching the firstl samples of the trajectories
w1 andw2, ensures that the initial conditions for the
responsesyf,1 andyf,2 are equal.

Throughout the paper,n, m, p, l, and B are fixed
symbols denoting respectively the minimal order, the
number of inputs and outputs, the lag, and the behavior
of the systemΣ. The considered problem is defined as
follows.

Problem 1.(Data driven simulation). Given a trajec-
tory (ũ, ỹ) ∈ BT of an LTI system Σ, an upper
boundnmax of the ordern, an upper boundlmax of
the lagl, and a time seriesuf ∈ (Rm)t , wheret ∈ N,
find the responseyf of the systemΣ under zero initial
conditions and inputuf .

Problem 1 can be solved indirectly by first identifying
the systemΣ from the given data(ũ, ỹ), nmax, lmax

and then simulating the desired responseyf . Our goal,
however, is to find a direct solution that does not find
as an intermediate step a (more structured) representa-
tion of the systemΣ. Such an algorithm can be viewed

as performing data driven simulation of the implicitly
defined by the data systemΣ.

Note 1.(Nonzero initial conditions). The restriction
that the desired response should be a zero initial con-
ditions response can be relaxed. A way to specify the
desired initial condition, sayxf , is to give a trajectory
(up,yp) of the system that transfers it to the statexf .
Such a trajectory always exists, provided the systemΣ
is controllable. For example, one can take

up =

[

0
lmaxm×1

ūp

]

, yp =

[

0
lmaxp×1

ȳp

]

,

where ūp is an input that transfersΣ from the zero
state to the statexf andȳp is the corresponding output.
In Note 2 we explain how(up,yp) can be used for
simulation of non-zero initial condition responses.

Let H∆(•) be a block-Hankel matrix with∆ block-
rows,e.g., with ũ =

(

ũ(1), . . . , ũ(T)
)

,

H∆(ũ) =











ũ(1) ũ(2) · · · ũ(T −∆+1)
ũ(2) ũ(3) · · · ũ(T −∆+2)

...
...

...
ũ(∆) ũ(∆+1) · · · ũ(T)











.

A time series ˜u is calledpersistently exciting of or-
der ∆ if the matrixH∆(ũ) is of full row rank.

The solution of Problem 1 is based on the following
lemma.

Lemma 2.((Willemset al., 2004)). Assume that

1. the LTI systemΣ is controllable,
2. ũ is persistently exciting of order∆ + n, where

∆ ∈ N andn is the order ofΣ, and
3. (ũ, ỹ) is a trajectory ofΣ, i.e., (ũ, ỹ) ∈ BT , for

certainT ∈ N.

Then

image

([

H∆(ũ)
H∆(ỹ)

])

= B∆.

Assumption 1 is a part of the problem formulation
and is a standing assumption throughout the paper.
Admittedly, it is most restrictive for practical appli-
cations but in the same time it is a convenient one
for theoretical studies. Realization theory relies on the
stronger assumption that the exact impulse response of
the system is given. Also classical identification the-
ory starts from the similar assumption that the given
data is generated by a stochastic ARMAX or ARMA
system. Assumption 3 is mild in the sense that the
set of controllable systems is generic in the set of all
systems. Assumption 2 is nontrivial and as we will
show in Sections 3 and 4, it gives an answer to an open
question in subspace system identification: what is the
sharpest verifiable from the given data(ũ, ỹ) condition
for identifiability of the systemΣ.



Lemma 2 shows that if ˜u is persistently exciting of
sufficient order, any∆ samples long trajectory of the

system is of the form
[

H∆(ũ)

H∆(ỹ)

]

g, for someg ∈ R
j ,

where j := T−∆+1. Now take∆ = t, the length of the
desired responseyf . In Theorem 3, we specify how ag
that corresponds to the trajectory(uf ,yf) can be found.

Theorem 3.Let Σ be controllable,(ũ, ỹ) ∈ Σ, andũ be
persistently exciting of order∆ +lmax+nmax. Define
the matricesUp∈R

lmaxm× j ,Uf ∈R
∆m× j ,Yp∈R

lmaxp× j ,
Yf ∈ R

∆p× j , where j := T −∆−lmax+1, by

H
lmax+∆(ũ) =:

[

Up

Uf

]

, H
lmax+∆(ỹ) =:

[

Yp

Yf

]

. (1)

Then the system of equations




Up

Uf
Yp



g =





0
uf
0



 , (2)

is solvable for anyuf and any particular solution ¯g
allows the computation of the responseyf of Σ due to
the inputuf and zero initial conditions asyf = Yf ḡ.

PROOF. The statement is proven for the special case
of an impulse response in (Markovskyet al., 2004,
Section 3). Here we adapt the proof for the general
case.

Under the assumptions of the theorem, we can apply
Lemma 2 from which follows that

image

([

H
lmax+∆(ũ)

H
lmax+∆(ỹ)

])

= B
lmax+∆.

The time series(uf ,yf) is a zero initial conditions
trajectory ofΣ, so that preceded by any number of
zeros, it remains a trajectory ofΣ, i.e.,

([

0
lmaxm×1

uf

]

,

[

0
lmaxp×1

yf

])

∈ B
lmax+∆.

Therefore, there exists a vector ¯g, such that








Up

Uf
Yp

Yf









ḡ =









0
lmaxm×1

uf
0
lmaxp×1

yf









.

This shows that there exists a solution ¯g of (2) and
thereforeYf ḡ is the desired response.

Conversely, letg be a solution of (2). We have








Up

Uf
Yp

Yf









g =









0
lmaxm×1

uf
0
lmaxp×1
Yfg









(3)

and by Lemma 2
([

0
lmaxm×1

uf

]

,

[

0
lmaxp×1
Yfg

])

∈ B
lmax+l .

This trajectory is identically zero during the firstlmax

samples, which (using the assumptionlmax≥ l) guar-
antees that the initial conditions are set to zero. Then
Yfg is indeedyf .

Note 2.(Splitting of the data into “past” and “future”).
The block-Hankel matricesH

lmax+∆(ũ), H
lmax+∆(ỹ)

are split into two parts, see (1). We refer to the
blocksUp andYp as the “past” and to the blocksUf
and Yf as the “future”. Let row dim(•) denotes the
number ofblock row of its argument. We have that
row dim(Up)= row dim(Yp)= lmaxand row dim(Uf)=
row dim(Yf) = ∆. The reason for this partitioning is to
fix the initial conditions for the computed response in
the “future”. The “past” is sufficiently long to set the
correct initial condition and the “future” is used for
computation of a response, starting from this initial
condition. In Theorem 3 we fix zero initial conditions
by assigning the “past” to zero. Assigning the “past”
to the trajectory(up,yp), defined in Note 1, allows to
compute a nonzero initial conditions response.

Theorem 3 readily gives an algorithm (see Algo-
rithm 1) for the computation of the responseyf . A
hidden limitation of Algorithm 1, however, is that
the persistency of excitation condition requires a suf-
ficiently large lengthT of given time series(ũ, ỹ).
Finite, T samples long data sequence(ũ, ỹ) implies
that the lengtht = ∆ of the responseyf that can be
computed by the block algorithm is

∆ ≤
T +1
m+1

−lmax−nmax. (4)

Algorithm 1 Block algorithm for data driven simul.
1: Input: ũ, ỹ, nmax, lmax, and uf , satisfying the

conditions of Theorem 3.
2: Solve the system of equations (2) and let ¯g be the

computed solution.
3: Computeyf = Yf ḡ.
4: Output: the responseyf of Σ to zero initial condi-

tions and inputuf .

It is possible, however, to find an arbitrary long re-
sponse from a finite amount of data by computing iter-
atively∆ samples long responsesy(0)

f
,y(1)

f
, . . ., where∆

satisfies (4). These blocks are made sequential pieces
of the desired responseyf by matching their initial
conditions. The iterative version of Algorithm 1 (see
Algorithm 2) is based on the following lemma.

Lemma 4.((Markovskyet al., 2004)). Letw̃1 ∈ BT1
,

w̃2 ∈BT2
, and let the lastlmax samples of ˜w1 coincide

with the firstlmax samples of ˜w2, wherelmax is larger
than or equal to the lag ofΣ. Then

w :=
(

w̃1(1), . . . , w̃1(T1),

w̃2(lmax+1), . . . , w̃2(T2)
)

∈ BT1+T2−lmax
.

In the outline of Algorithm 2, we use the notation
f (t1 : t2) := col

(

f (t1), . . . , f (t2)
)

. Acting on a block
matrix,σ removes its firstblockrow.

Note 3.(About the choice of∆). Let ũ be persistently
exciting of order i. Algorithm 2 can be applied if



Algorithm 2 Iterative algorithm for data driven simul.
1: Input: ũ, ỹ, nmax, lmax, uf , and ∆ satisfying the

conditions of Theorem 3.
2: Setk := 0, f (0)

u :=
[0

lmaxm×1

uf(1:∆)

]

and f (0)
y,p := 0

lmaxp×1.

3: repeat

4: Solve

[Up
Uf
Yp

]

g(k) =

[

f (k)
u

f (k)
y,p

]

and let ḡ(k) be the

particular solution found.
5: Compute the responsey(k)

f
:= Yf ḡ

(k).

6: f (k+1)
u :=

[

σ∆ f (k)
u

u(k∆+1:(k+1)∆)

]

, f (k+1)
y,p := σ∆

[

f (k)
y,p

y(k)
f

]

.

7: k := k+1
8: until t < k∆
9: Output: the responseyf := col

(

y(0)
f

, . . . ,y(k−1)
f

)

of Σ to zero initial conditions and inputuf .

i > nmax+lmax, in which case the parameter∆ can be
chosen in the interval[1, i −nmax−lmax]. The choice
of ∆ affects the performance of the algorithm: the
amount of computations is a function of∆ and, in the
presence of noise on the data(ũ, ỹ), the accuracy of
the computed result is a function of∆. These or other
criteria can be optimized by selecting a suitable∆.
The freedom to choose∆ is an important advantage
of Algorithm 2 over Algorithm 1.

Algorithm 1 is a special case of Algorithm 2. Indeed
by taking ∆ = t, Algorithm 2 reduces to the block
computation. There are a number of advantages in
doing the computations iteratively, however. Most im-
portantly, for larget, Algorithm 1 might not be ap-
plicable, while Algorithm 2 still be. Algorithm 1 as-
sumes persistency of excitation of order proportional
to t. By using the idea of weaving responses as stated
in Lemma 4, we make the persistency of excitation
condition independent oft. With ∆ = 1 (the minimal
possible), the assumptions of Algorithm 2 implyT ≥
m(lmax+nmax+1)+lmax+nmax, which is a function
of nmax, lmax, andm only. As shown in (Willemset
al., 2004), this is a necessary condition for identifia-
bility of Σ.

Even when Algorithm 1 is applicable, from an ef-
ficiency point of view it might not be optimal. The
freedom to choose the parameter∆, as discussed in
Note 3, can be used to optimize the efficiency of the
computations. In addition, in the presence of noise on
the data(ũ, ỹ), the accuracy of Algorithm 2 depends
on the choice of∆ and a proper choice of∆ makes
Algorithm 2 superior to Algorithm 1.

In the next two sections, we show that data driven sim-
ulation is a hidden core subproblem of the subspace
identification algorithms.

3. COMPUTATION OF FREE RESPONSES

An essential step of the MOESP algorithms is the
orthogonal projection of the rows ofHnmax(ỹ) on the

orthogonal complement of the row space ofHnmax(ũ),
i.e., the MOESP algorithms compute the matrix

Y0 := Hnmax(ỹ)Π
⊥
ũ . (5)

where

Π⊥
ũ := I −H

⊤
nmax

(ũ)
(

Hnmax(ũ)H ⊤
nmax

(ũ)
)−1

Hnmax(ũ).

(For well posedness of this operation ˜u is assumed to
be persistently exciting of ordernmax.) In subspace
identification it is customary to think in terms of geo-
metric operations: projection of the rows of a certain
matrix onto the row space of another matrix. The fact
that these matrices have special (block-Hankel) struc-
ture is ignored and the link with systems theory is lost.
Still, as we show next, the orthogonal projection (5)
has a simple and useful system theoretic interpreta-
tion.

Observe that
[

Hnmax(ũ)
Hnmax(ỹ)

]

Π⊥
ũ =

[

0
Y0

]

.

Since by assumption the columns of
[

Hnmax(ũ)

Hnmax(ỹ)

]

are

trajectories ofΣ, it follows by the linearity ofΣ that the

columns of
[

0
Y0

]

are also trajectories ofΣ. The inputs

of the derived trajectories are identically zero, so that
the columns ofY0 are free responses ofΣ. Therefore,
Y0 must be of the form

Y0 = ΓX0, where
X0 ∈ R

n×(T−nmax+1) and
Γ = col(C,CA,CA2, . . . ,CAnmax−1)

Assuming that rank(Y0) = n or equivalently that
rank(X0) = n, the parametersA andC can be com-
puted (up to a similarity transformation) fromY0. A
way to do this is to compute a rank revealing factor-
ization ofY0 = LR and to solve the shift equation

(σ∗L)A = (σL),

(σ∗L is the matrix obtained fromL by removing its
first block row) which is a well known technique from
realization theory. In (Verhaegen and Dewilde, 1992,
Sec. 3.3), it is proven that a sufficient condition for
rank(Y0) = n is

rank

([

X0
Hnmax(ũ)

])

= n+nmaxm. (6)

This condition, however, is not verifiable from the data
(ũ, ỹ), either. Therefore, given(ũ, ỹ), except for special
cases ( ˜u white noise or periodic), one can not say
whether the systemΣ is identifiable by the MOESP
algorithms.

Next we show how the orthogonal projection (5) can
be derived from the point of view of Lemma 2,i.e.,
from a system theoretic reasoning. Under the condi-
tions of Lemma 2, there is a matrixG, such that

[

Hnmax(ũ)
Hnmax(ỹ)

]

G =

[

0
Y0

]

. (7)

Moreover, ifG has a maximal rank, then rank(Y0) =
n. The projectorΠ⊥

ũ satisfies (7) and has the maxi-
mal rankT − nmax(m+ 1) + 1 among all matricesG



that satisfy (7). Therefore,Hnmax(ỹ)Π⊥
ũ = Y0 with

rank(Y0) = n as desired. The assumptions of Lemma 2
requires that

ũ is persistently exciting of ordernmax+n. (8)

In (Willems et al., 2004, Corollary 1), it is proven
that (8) implies assumption (6), so that (8) is a veri-
fiable from the given data condition under which the
systemΣ can be identified by the MOESP algorithms.
In an appropriate sense, see (Willemset al., 2004), the
condition is also necessary,i.e., it is sharp.

Note that the orthogonal projection (5) computesj =
T−nmax+1 free responses, where typicallyj ≫ nmax.
Actually for the computation ofA andC, n linearly
independentlmax samples long free responses are
needed. Sincen is unknown,nmax such responses
should be computed. The obtained matrixY0 then cor-
responds to a non-minimal state space representation:
A ∈ R

nmax×nmax and C ∈ R
p×nmax. In order to make

it minimal, n linearly independent columns ofY0 are
selected andY0 is redefined to be the full column
rank matrix of the selected columns. The SVD factor-
ization, used in the MOESP algorithms does namely
this step of making the non-minimal representation a
minimal one.

The observation that the computation ofnmax instead
of j responses suffices results in a huge computational
saving. Similar (but not equivalent) saving is achieved
in the numerical implementation of the MOESP algo-
rithms by what is known as the QR-trick. Let

[

Hnmax(ũ)
Hnmax(ỹ)

]⊤

= QR,

be the QR factorization of the matrix in the left hand
side of the identity and partitionRas follows

R⊤ =:

nmaxm nmaxp
[

R11 0 0
R21 R22 0

]

nmaxm

nmaxp
.

It can be shown, see (Verhaegen and Dewilde, 1992,
Section 4.1), that

image(Y0) = image(R22),

so that only theR22 block of theR factor is needed
for the computation of the parametersA andC. Note
that the QR-trick is a numerical linear algebra tech-
nique that is not motivated from the system theoretic
considerations that we promote here.

4. COMPUTATION OF SEQUENTIAL FREE
RESPONSES

Consider again the splitting of the data into “past” and
“future” as defined in (1) with∆ = lmax and let

Wp :=

[

Up

Yp

]

.

As the key computational step of the MOESP algo-
rithms is the orthogonal projection, the key compu-
tational step of the N4SID algorithms is the oblique

projection ofYf along the space spanned by the rows
of Uf onto the space spanned by the rows ofWp. This
geometric operation, denoted byYf/Uf

Wp, is defined as
follows, see (Van Overschee and De Moor, 1996, eqn.
(1.4) on page 21):

Y0 := Yf/Uf
Wp := YfΠobl, (9)

where

Πobl :=
[

W⊤
p Uf

⊤
]

[

WpW
⊤
p WpU

⊤
f

UfW
⊤
p UfUf

⊤

]+
[

Wp

0

]

.

As the orthogonal projection, the oblique projection
also has a simple and useful system theoretic inter-
pretation that is not clarified in the literature. Next we
show that the oblique projection computes sequential
free responses of the system.

Note that




Wp

Uf
Yf



Πobl =





Wp

0
Y0



 .

The first two block rows of the identity are easy to
verify and the third one is true by definition. The

columns of

[Wp
Uf
Yf

]

are trajectories of the systemΣ and

by the linearity ofΣ, the columns of

[

Wp
0
Y0

]

are also

trajectories ofΣ. The derived from the data trajectories
are such that the inputs are identically zero in the
“future” (the part labeled with subscript f). Therefore,
the corresponding responsesY0 are free responses.
Their initial conditions are set by the “past” (the
part labeled with subscript p) and due to the Hankel
structure ofUp andYp, they are sequential. Therefore,
Y0 must be of the form

Y0 = ΓX0, where
Γ = col(C,CA,CA2, . . . ,CAnmax−1)

X0 =
[

x(1) · · · x( j)
]

andx(1), . . . ,x( j) is a state sequence ofΣ, with j :=
T −2nmax+1.

Under the condition rank(X0) = n, a state sequence,
sayx̃(1), . . . , x̃( j), of the system can be obtained from
a rank revealing factorization ofY0. Once a state se-
quence is available, the system parameters(A,B,C,D)
can be computed (in a basis of the state space, fixed by
the rank revealing factorization) by solving the linear
system of equations
[

x̃(2) · · · x̃( j)
ỹ(1) · · · ỹ( j −1)

]

=

[

A B
C D

][

x̃(1) · · · x̃( j −1)
ũ(1) · · · ũ( j −1)

]

.

(10)
In (Van Overschee and De Moor, 1996, Section 2,
Theorem 2), it is proven that a sufficient condition for
rank(X0) = n is

1. ũ persistently exciting of order 2nmax and
2. row span(X0)∩ row span(Uf) = {0},

see assumption 1 and 2 of (Van Overschee and De
Moor, 1996, Sec. 2, Thm 2). As with assumption (6)



in the MOESP algorithms, however, assumption 2 is
again not verifiable from the given data.

Next we show that the oblique projection (9) is an
implementation of Algorithm 1 for the computation of
sequential free responses. Under the assumptions of
Lemma 2, a matrixY0 which columns are sequential
free responses can be computed from the data by
solving the system

[

Wp

Uf

]

G =

[

Wp

0

]

(11)

and settingY0 = YfG. The zero block in the right hand
side of (11) implies that the columns ofY0 are free
responses of the system and the Hankel structure of
Up andYp implies that the columns ofY0 are sequen-
tial. The projectorΠobl is the least squares least norm
solution of (11), so thatΠobl is a particular solution
of (11). Then the oblique projectionYfΠobl is a matrix
of sequential free responses, as desired. System (11)
andY0 = YfG correspond to Algorithm 1. Persistency
of excitation ofũ of order 2nmax+n (i.e., the assump-
tion of Theorem 3) is a sufficient, verifiable from the
data(ũ, ỹ), condition for assumptions 1 and 2 of (Van
Overschee and De Moor, 1996, Sec. 2, Thm 2).

The oblique projection like the orthogonal projec-
tion computes more responses than needed for the
identification of the system. The matrixY0 computed
via (9) is with j = T−2nmax+1 columns and typically
j ≫ nmax. In fact, only j = nmax+ m+ 2 sequential
free responses are enough for the identification ofΣ.
This follows from the fact that the system parameters
(A,B,C,D) have (n+ m)(n+ p) unknowns, and for
existence of solution of the system of equations (10),
at least that many equations are needed. The numerical
implementation of the N4SID algorithms uses the QR
trick in order to achieve similar computational saving.

5. CONCLUSIONS

We have presented two algorithms for data driven sim-
ulation. The first one does the computation block-wise
and the second one is iterative. A fundamental limi-
tation of the block algorithm is that a persistency of
excitation, proportional to the length of the computed
response is assumed. This limitation is avoided by
the iterative algorithm. In addition, the iterative algo-
rithm has a tunable parameter—the length of a block
computed at a time—that can be used to optimize the
numerical efficiency or another criterion.

We showed that data driven simulation is relevant
for deterministic system identification. From one side,
the algorithms of this paper allow the computation
of the impulse response directly from data and thus
in combination with realization methods they provide
a state space identification procedure. From another
side, data driven simulation is a hidden core subprob-
lem of the existing subspace identification methods:
the orthogonal projection computes free responses and

the oblique projection computes sequential free re-
sponses of the system. Moreover, the oblique projec-
tion corresponds to our block algorithm. We explained
that the QR-trick in the subspace identification algo-
rithm has the system theoretic significance of reducing
the number of computed responses from data. Using
the result of (Willemset al., 2004), we gave sufficient
verifiable from the data conditions for identifiability.
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