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Abstract: This paper focuses on the adaptive friction compensation, where the
friction is considered as a position-dependent disturbance. We consider the case
when the desired trajectory is state (e.g., position) periodical which is of course
also time periodical. The key idea of our approach is to use one trajectory past
information along the state axis to update the current adaptation since the friction
is state-periodic. The new method consists of two main steps: Firstly, in the first
repetitive trajectory, an adaptive compensator is designed to guarantee the `2-
stability of the overall system; and secondly, from the second repetitive trajectory
and onwards, a state-periodic adaptive compensator is designed based on stored
past state-dependent information. Rigorous stability analysis is presented with a
simulation example. Copyright c©2005 IFAC
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1. INTRODUCTION

In many electromechanical control system, fric-
tion disturbance is everywhere.That is why fric-
tion is constantly a hot topic in control commu-
nity. Since the early works in friction compensa-
tion (Kubo et al., 1986; de Wit et al., 1989; David
A. Haessig and Friedland, 1990), adaptive friction
compensation controllers have been designed in
(Friedland and Mentzelopoulou, 1992; Yazdizadeh
and Khorasani, 1996; Liao and Chien, 2000; Zhang
and Guay, 2001; Ahn and Chen, 2004). The pio-
neering works in (Friedland and Mentzelopoulou,
1992) provided the possibilities for the adaptive
compensation of the non-Lipschitz disturbance.
Since their works in 1991 and 1992, several mod-
ifications were introduced in (Yazdizadeh and
Khorasani, 1996; Liao and Chien, 2000; Zhang
and Guay, 2001) with a focus on designing new
adaptive friction update laws by proposing new
forms of the tuning function g(|v|) where v is
the velocity. Mainly, the considerations were to
design a more stable nonlinear adaptive controller.
However, in all the existing efforts in attacking
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friction effects, the Coulomb friction coefficient
is assumed to be constant. In other words, the
existing adaptive friction compensations are all
restricted to the simplest Coulomb friction coeffi-
cient problem.

However, like other hard nonlinearities such as
deadzone, hysteresis, and saturation, the friction
force is also related with the state. In Du and
Nair (1998), the friction force was defined as the
disturbance, which is state-dependent parasitic
effect. In practice, the state-dependent external
disturbances exist in many engineering problems.
For example, in Zaremba et al. (1998), the en-
gine crankshaft speed pulsation was expressed as
Fourier series expansion as a function of position;
in de Wit (1999), the tire/road contact friction
was represented as a function of the system state
variable; and in David A. Haessig and Friedland
(1990), the magnitude of friction coefficient de-
pends on velocity which practically is not a con-
stant. For examples and more detailed explana-
tion about the position-dependent disturbance,
refer to de Wit and Praly (2000). As another prac-
tical example of the position-dependent friction
force, let us consider a mobile robot moving on the
floor composed of different materials. The friction



coefficients of each material are different from
each other. Thus, the mobile robot experiences the
different friction forces depending on position 2 .
Hence, as shown in above examples, the main ar-
gument of this paper is that the friction force can
be position-dependent disturbance. The scenario
is as follows: The mobile vehicle is continuously
moving on the fixed trajectory, which could be
the roller-coaster rail, floor composed of different
materials, or any kind of orbit-systems. The ve-
hicle is moving forward and backward repeatedly;
so the sign of the friction force is changing at zero
velocity, but with position-dependent variation.

The paper is organized as follows: In Section 2,
the stability analysis is performed on the time do-
main; in Section 3, simulation tests are performed;
and conclusions are given in Section 4.

2. STATE DOMAIN ANALYSIS ON THE
TIME AXIS

In this section, the position-dependent informa-
tion is matched to the discrete time points. In
this paper, the external state-dependent friction is
denoted as a(x). Similar to the system considered
in de Wit and Praly (2000), without loss of gen-
erality, the following simple servo control problem
is considered:

ẋ(t) = v(t) (1)

v̇(t) =−a(x)sgn(v) + u, (2)

where x is the position; a(x)sgn(v) is the unknown
position-dependent friction; v is the velocity; and
u is the control input. First, before proceeding our
main results, following definitions and assump-
tions are necessary.

Definition 2.1. The total passed trajectory is
given as:

s =

t∫
0

|dx|
dτ

dτ =

t∫
0

|v(τ)|dτ,

where x is the position, and v is the velocity.
In de Wit and Praly (1998), it was defined as
the curvilinear abscissa associated with the tra-
jectory of the relative motion. In our definition,
since s is the summation of absolute position
increasing along the time axis, s is a monotonous
growing signal. Physically, it is the total passed
trajectory, hence it has the following property:
s(t1) ≥ s(t2), iff t1 ≥ t2. With the notation s,
the position corresponding to s(t) is denoted by
x(s) and the friction force corresponding to s(t)
is denoted by a(s).

2 See the article “Robot ‘vac’ is naughty and nice” on
page 9 of the International Herald Tribune, July 17, 2004
(http://www.iht.com/articles/529764.html). In this ar-
ticle, it was reported that the mobile robot encounters
trouble in the corners that presented them with rug and
hardwood floor. Also, it was reported that the mobile
robot prefers materials such as hard, even surface, but shag
carpeting is forbidden. Mobile robot was tested on different
material floors such as linoleum tiles, hardwood floors,
Oriental rugs, carpeting, and etc; but different performance
was observed on different materials.

Definition 2.2. Since the friction force appears as
a function of the position and the desired tra-
jectory to be followed is assumed to be repeti-
tive which is true for many practical applications,
the friction force is also periodic with respect to
position. So, based on Definition 2.1, following
relationship is true:

a(s) = a(s− sp), and x(s) = x(s− sp), (3)

where sp is called the trajectory period.

Definition 2.3. It can be defined that sp of Defini-
tion 2.2 is a periodic trajectory. Therefore, x(t)−
sp is one trajectory past position from x(t). The
time corresponding to x(t) − sp is denoted as
Tt. Then, t − Tt is the time-elapse to complete
one periodic trajectory from the time Tt to time
t. This time-elapse is termed as “cycle”, and it
can be called “trajectory cycle” at time t and
is denoted as Pt. So, Pt = t − Tt. It is called
“the search process” to find Pt at time instant
t (note: the search process can be performed by
interpolation).

Furthermore, the time is always monotonically
increasing, and the discrete time controller is used.
So, the monotonically increasing time variable
is denoted as: ti, i = 0, · · · ,∞, where t0 is the
initial time. Thus, following relationship is true:
s(ti+1) ≥ s(ti). From now on, for accurate no-
tation, the position corresponding to time ti is
denoted as: x(ti) and its total passed trajectory
by the time ti is denoted as: s(ti). Henceforward,
one trajectory past time from the time instant ti
is denoted as Tti

, and its corresponding cycle is
denoted as Pti (i.e, Pti = ti − Tti).

Assumption 2.1. Throughout the paper, it is as-
sumed that the current position and time instant
of the mobile robot are measured. Let us denote
the current position at time ti as x(ti), where x
is the position corresponding to ti. Then, Tti

can
always be calculated, hence Pti is calculated at
the time instant ti.

With the above definitions and assumption, the
following property is observed.

Property 2.1. The following relationship is de-
rived:

x(ti) = s(ti)−msp, (4)

where m is the integer part of s(ti)/sp.

Remark 2.1. As will be shown in the following
theorem, the actual state-dependent friction force
a(s(ti)) is not estimated on the state axis. In our
adaptation law, a(ti) is estimated on the time axis.
So, to find a(s(ti) − sp), the following formula is
used:

a(s(ti)− sp) = a(ti − Pti) (5)

Here, Pti
is calculated in Assumption 2.1 (recall

that Pti
can be used to indicate exactly one-

trajectory past position).



From (4) and (5), following properties can also be
derived:

Property 2.2. The current friction force is equal
to one-trajectory past friction force. From the
relationship:

a(s(ti)− sp) = a(x(ti) + msp − sp)

= a(x(ti)) = a(ti − Pti) (6)

the following equality can be derived: a(x(ti)) =
a(ti − Pti

).

Now, based on the above discussions, the following
stability analysis is performed. Our compensation
approach is summarized as follows:

• When s(ti) < sp, the system is controlled
to be bounded input bounded output (in `2-
norm).

• When s(ti) ≥ sp, the system is stabilized to
track the desired speed at the desired po-
sition. By state-dependent periodic adapta-
tion, the unknown a(x(ti)) is also estimated.

For convenience, the following notations are used:
ea(s(ti)) = a(s(ti))− â(s(ti)); ev = v(ti)− vd(ti),
where â(s(ti)) = â(ti) (note: ti is the current
time corresponding to the current total passed
trajectory s(ti)). Here, let us change ea(s(ti)) =
a(s(ti))− â(s(ti)) into time domain as:

ea(s(ti)) = a(s(ti))− â(s(ti))

= a(ti)− â(ti) = ea(ti). (7)

In the same way, the following relationships are
also true:

x(s(ti)) = x(ti); xd(s(ti)) = xd(ti)

v(s(ti)) = v(ti); vd(s(ti)) = v(s(ti))
The control objective is to track or servo the given
desired position xd(ti) and the corresponding de-
sired velocity vd(ti) with tracking errors as small
as possible. In practice, it is reasonable to assume
that xd(ti), vd(ti) and v̇d(ti) are all bounded.
From now on, let us omit subscript i from ti and
Pti

. Our feedback control law is designed as:

u = â(t)sgn(v(t)) + v̇d(t)− αS(t)− λev(t), (8)

with

S(t) = ev(t) + λex(t), (9)

where α and λ are positive gains; â(t) is an es-
timated friction force from an adaptation mech-
anism to be specified later; v̇d(t) is the desired
acceleration; and ex(t) = x(t) − xd(t) is the
position tracking error. Also be reminded that
ex(s(t)) = ex(t); and S(s(t)) = S(t).

Our adaptation law is designed as follows:

â(t) =
{

â(t− Pt)−Ksgn(v)S(t) if s ≥ sp

z − g(|v|) if s < sp
(10)

where â(t−Pt) = â(ts−Pt) = â(s−sp) (Note that
Pt is the trajectory cycle defined in Definition 2.3);

P1 is the first trajectory cycle specified in the fol-
lowing definition; K is a positive design parameter
called the “periodic adaptation gain”; z will be
defined in the following paragraph; and g(|v|) is
a tuning function to be selected later based on
certain guidelines.

Definition 2.4. The first trajectory cycle P1 is the
elapsed time to complete the first one repetitive
trajectory from the initial starting time t0. In
other words, P1 is the time corresponding to the
total passed trajectory when s(ti) = sp.

In our analysis part, following inequality condition
is required for g(|v|):

1
4

< g′(|v|) < ∞, (11)

where g′(·) = ∂g(·)
∂· . This can be satisfied by

properly selecting a g(|v|) as in Remark 2.3.

Now, consider two cases in our stability analysis:
1) when 0 ≤ t < P1 (0 ≤ s ≤ sp) and 2) when
t ≥ P1 (s ≥ sp). The key idea is that, for case 1),
it is necessary to show the finite time boundedness
of all signals. For case 2), it is required to show
the stability or asymptotic stability in the sense
of Lyapunov.

Remark 2.2. Even if a(x) is state-dependent dis-
turbance, a(x) can be analyzed on the time-axis.
From (7), using ea(s) = ea(t), if ea(t) is stabilized
on the time-axis, then it is interpreted that ea(s) is
stable on the state-axis (s domain). In the follow-
ing Lyapunov analysis, the analysis is performed
on the time-axis corresponding to the state-axis.

Let us investigate the case 2) first. Our major
results are summarized in the following theorems.

Theorem 1. When t ≥ P1 (s ≥ sp), the control
law (8) and the periodic adaptation law (10)
guarantee the stability of the equilibrium points
ex(s(t)), ev(s(t)), and ea(s(t)) as t →∞ (s →∞).

Proof: Consider the following Lyapunov-like
function at s(t), whose corresponding time is t:

V (t) =
1
2
S2(t) +

1
2K

t∫
t−Pt

e2
a(τ)dτ, (12)

(13)

where Pt is calculated by a search process as
commented in Definition 2.3. Then, from (12), the
difference of the positive Lyapunov-like functions
at two discrete time points (Note 1: the stability
analysis can be done along the state-axis also.
Note 2: the time difference is Pt) can be calculated
as:

4V (t) = V (t)− V (t− Pt)



=
1
2
S2(t)− 1

2
S2(t− Pt)

+
1

2K

t∫
t−Pt

[e2
a(τ)− e2

a(τ − Pt)]dτ

=

t∫
t−Pt

S(t)Ṡ(t)dτ

+
1

2K

t∫
t−Pt

[e2
a(τ)− e2

a(τ − Pt)]dτ.(14)

To simplify our presentation, let the first integral
term on the right-hand side be denoted by A
and the second integral term by B. Here, from
a(s − sp) = a(t − Pt) in Remark 2.1, following
equalities are satisfied:

a(s− sp) = a(t− Pt) = a(t) = a(s)

Then, by several algebraic calculations and using
a(t− Pt) = a(t), B can be changed as

B =
1

2K

t∫
t−Pt

{[a(τ)− â(τ)]2 − [a(τ − Pt)

−â(τ − Pt)]2}dτ

=
1

2K

t∫
t−Pt

[â(τ − Pt)− â(τ)][2{a(τ)− â(τ)}

+{â(τ)− â(τ − Pt)}]dτ

=
1

2K

t∫
t−Pt

β(τ)[2{a(τ)− â(τ)} − β(τ)]dτ,(15)

where
β(τ) = â(τ − Pt)− â(τ).

Using the following

ėx = ẋ− ẋd = ev,

ėv = v̇ − v̇d = −a(t)sgn(v) + u− v̇d

we have

Ṡ = ėv + λėx = −a(t)sgn(v)− v̇d + u + λev. (16)

Then, from (8),

Ṡ = −sgn(v)ea − αS,

and A can be expressed as

A =

t∫
t−Pt

[−αS2 − sgn(v)eaS]dτ. (17)

Thus, 4V becomes

4V = A + B

=

t∫
t−Pt

[−αS2 − sgn(v)eaS]dτ

+
1

2K

t∫
t−Pt

β[2{a(τ)− â(τ)} − β]dτ

=

t∫
t−Pt

[−αS2 − 1
2K

β2]dτ

+

t∫
t−Pt

ea

K
[β −Ksgn(v)S]dτ, (18)

where the first integral term on the right-hand
side is denoted by C and the second integral term
is denoted by D. Then, from (10), D = 0. So, we
have

4V = A + B =

t∫
t−Pt

−αS2 − 1
2K

β2dτ

=

t∫
t−Pt

−(α +
K

2
)S2(τ)dτ. (19)

Since α + K
2 > 0, ∆V (s) = ∆V (t) ≤ 0, which

completes the proof of this theorem.

The above theorem only guarantees the stability
property in the sense of Lyapunov. The asymp-
totical stability can be explored as follows.

Theorem 2. If the initial position (x0) is at the
desired initial position (xd(0)), i.e., ex(0) = 0, the
control law (8) and the periodic adaptation law
(10) guarantee the asymptotically stability of the
equilibrium points as t →∞ (t ≥ P1, or s ≥ sp).

Proof: The proof can be completed by LaSalle’s
invariant set theorem. Due to the page limitation,
the proof is omitted.

Now, let us consider the case 1) when t < P1 (s ≤
sp) and the overall stability when t ≥ 0 (s ≥ 0).

Theorem 3. If |ȧ| is bounded and g′(|v|) > 1
4 , the

equilibrium points of ex, ev, and ea are stable (or
asymptotically stable) as t →∞ (s →∞).

Proof: In this case, let us use the following
Lyapunov function:

V (s) =
1
2
αλe2

x(s) +
1
2
e2
v(s) +

1
2
e2
a(s)

=
1
2
αλe2

x(t) +
1
2
e2
v(t) +

1
2
e2
a(t)

= V (t) (20)

Then, the derivative of V is expressed as:

V̇ (t) = αλexev + ev(v̇ − v̇d) + ea[ȧ− ż



+g′(|v|)v̇sgn(v)]

= αλexev + ev[−asgn(v) + u− v̇d]

+ea[ȧ− ż + g′(|v|)v̇sgn(v)], (21)

where the following substitution was used:

ėa = ȧ− ˙̂a = ȧ− ż + g′(|v|)v̇sgn(v). (22)

By inserting the control input, which is given
in (8), to the above equation, the derivative of
Lyapunov function can be re-written as:

V̇ =−eveasgn(v)− (α + λ)e2
v + eaȧ

+ea[g′(|v|)v̇sgn(v)− ż].

Then, using one more adaptation law as follows:

ż = g′(|v|)[u− âsgn(v)]sgn(v) (23)

and after several algebraic calculations, V̇ can be
changed to

V̇ = −eveasgn(v)− (α + λ)e2
v + eaȧ− e2

ag′(|v|).

Finally, using Young’s inequality like a2+ b2

4 ≥ ab,
if (α + λ) > 1 and g′(|v|) > 1

4 , the following
inequality is always true regardless of sgn(v):

−eveasgn(v)− (α + λ)e2
v − e2

ag′(|v|) < 0. (24)

At this moment, V̇ is upper bounded by

V̇ =−[ev ± 0.5sgn(v)ea]2 − (α + λ− 1)e2
v

−[g′(|v|)− 1
4
]e2

a + eaȧ. (25)

Our argument here is to ensure that V̇ is upper
bounded. Denote η ≡ g′(|v|) − 1

4 > 0. From the
above equation, it is easy to see

V̇ ≤ −ηe2
a + eaȧ. (26)

If |ȧ| < Θ, where Θ is the upper bound of ȧ, then,

V̇ ≤−ηe2
a + eaΘ

≤−η{(ea −
Θ
2η

)2}+
Θ2

4η
. (27)

Clearly, if η > 0 and |ȧ| is bounded, then

V̇ ≤ Θ2

4η
. (28)

Thus, it can be concluded that if g′(|v|) > 1
4 , V̇

is bounded when t < P1 (s < sp). Consequently,
when V is bounded at t < P1, ex, ev, and ea
are also bounded in l2 vector norm topology at
t < P1 (s < sp).

Furthermore, when t ≥ P1 (s ≥ sp), the equi-
librium points of ex, ev, and ea are all (asymp-
totically with ex(0) = 0) stable from equation

(19); so we conclude that the system (1)-(2) can
be (asymptotically with ex(0) = 0) stabilized by
the control law (8) and the adaptation law (10) as
t →∞. This completes the proof.

The following remark is given to design the adap-
tation function g(|v|).

Remark 2.3. On design of the adaptation function
g(|v|). In designing g(|v|), the following function
is suggested in order to satisfy the required con-
dition 1

4 < g′(|v|) < ∞:

g(|v|) = ξ|v|+ e−µ|v|, ξ > µ +
1
4
, (29)

where ξ and µ are design parameters for the adap-
tation law. The derivative of g(|v|) is expressed as:

g′(|v|) = [ξ − µe−µ|v|]. (30)

Finally, â(t) in (10) and ż in (23) are designed as:

â(t) = z − ξ|v| − e−µ|v| (31)

ż = [ξ − µe−µ|v|][u− âsgn(v)]sgn(v). (32)

3. SIMULATION ILLUSTRATIONS

For simulation test, the following reference posi-
tion and velocity signals are used:

xr(t) = cos(2πfst)

vr(t) = −2πfs sin(2πfst)

v̇r(t) = −(2πfs)2 cos(2πfst) (33)

where fs = 1
Qs

, and Qs = 2 sec. Note that unlike
the vr(t) used in the literature that is always
positive, in this paper, we can consider any form
of bounded vr(t). The control gains for ex and
ev used in this simulation are that α = 10 and
β = 10. In (10), the periodic adaptation gain K
was selected as 10, and, in (29), ξ was selected
as 10 and µ was selected as 5. The friction force
is [50 + 5 sin(2πx) + 2 sin(4πx) + sin(6πx)]sgn(v).
Figure 1 shows the state tracking results where
the top-left subplot is the desired position and
actual position; the bottom-left is the desired
velocity and actual velocity; the top-right is the
position tracking error and the bottom-right is
the velocity tracking error, all w.r.t. time. In the
first trajectory repetition, the maximum position
tracking error is about −0.2 and the initial veloc-
ity tracking error is about −1.25. As time passes,
the position error becomes less than 0.01 and the
velocity error becomes less than 0.05. The top-left
subplot in Fig. 2 is the true and estimated friction
forces without considering the velocity sign. The
middle-left subplot in Fig. 2 shows the true and es-
timated friction forces with considering the veloc-
ity sign. When the velocity direction changes, the
true/estimated friction value also changes discon-
tinuously. The bottom-left subplot in Fig. 2 is the
friction estimation error. Initially, the error was



−50, because all initial values were set to zeros.
As time passes, the estimated value becomes close
to the true value. The top-right subplot in Fig. 2
is the true and estimated friction force according
to position. The up-curve line is the result when
the velocity is negative, and the bottom-curve line
is the result when the velocity is positive. The
bottom-right subplot in Fig. 2 shows the adaptive
control input signal which looks acceptable.
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Fig. 1. Tracking performances.
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Fig. 2. Friction estimation and control input.

4. CONCLUSION REMARKS

In this paper, a state-dependent friction force
compensation method was suggested. The key
idea of our method was to use the periodic trajec-
tory of the friction disturbance. From one trajec-
tory past information, the current adaptation law
was updated. Even though the stability analysis
was performed on the time axis, the position-
dependent disturbance was successfully compen-
sated on the state-axis. It is believed that the
suggested method can be effectively used in many
real applications such as satellite, trail system,
factory process control, and etc, which have state-
dependent disturbances. Note that even if the
new method was developed for compensating the
friction disturbance, the key idea of our method
can be applied to compensate other nonlinear dis-
turbances which is state dependent. To summarize

in brief, the position-dependent external distur-
bance can be effectively compensated by using
the trajectory periodicity of the state-dependent
disturbance.
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