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Abstract: Different methods for change detection of signal features are compared for a
residual generated at a hydraulic servo axis. The residual is based on a physical model of
the pressure buildup inside the hydraulic cylinder. Nevertheless, it is augmented with an
observer to counteract slight model impurities even over prolonged periods of operation.
Different sensor faults are introduced, which affect the mean and/or the variance of
the residual. Methods have been implemented, which allow to detect changes in the
mean and variance of a signal. These methods are compared in terms of the size of the
smallest detectable fault, time-to-detection and computational expense. All results have
been verified experimentally.Copyrightc©2005 IFAC
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1. INTRODUCTION

Today, hydraulics are used in manifold areas of ap-
plications, ranging from shipbuilding and aeronautics
to industrial machines and process automation. Many
of these areas of applications are safety-critical (e. g.
aeronautics) and thus have an ever-thriving demand
for fault detection and fault diagnosis methods as to
detect possibly severe faults early enough in order
to initiate counter-measures or to reach a safe state
before the faulty system comes into danger.

For a long time, fault detection in hydraulic systems
was based on relatively simple methods such as mon-
itoring the hydraulic fluid for debris or mounting ex-
pensive flow meters to monitor the hydraulic flow in
and out of components (Watton, 1992).

With the advent of mechatronic systems (Isermann,
2003), i. e. the spatial and functional integration of
electric, electronic, mechanic and information pro-
cessing components, it is now possible to augment the
system functionality with advanced fault detection and
diagnosis methods, such as model-based fault detec-

tion and diagnosis (Isermann, 1997; Gertler, 1998; Is-
ermann, 2005).

Two typical model-based fault detection methods are
parity equationsand parameter estimation(Höfling,
1996). For parity equations, a model of the process is
run in parallel to the process and e. g. the deviation
between the model output and the plant output is con-
stantly monitored. In the fault free case, both outputs
should match and thus the arithmetic difference be-
tween them should be close to zero. In the faulty case,
the two outputs will depart from each other and thus
their difference will deviate perceivably from zero.
The models used can e. g. be analytical models or
neural nets (Ramdén, 1998; Ramdénet al., 1995). In
this paper, the residuals will be generated using parity
equations. Another approach is to extract parameters
from the input-output behavior of the process, e. g. us-
ing an Extended Kalman Filter (Kress, 2002; Kazemi-
Moghaddam, 1999).

The residual must then be monitored for changes.
Thesechange detection methodstypically monitor
characteristic statistical properties of the signal, such



as the mean and variance. There are different ap-
proches to monitor changes in the mean and variance
of signals as e. g. reported in (Basseville and Niki-
forov, 1993; Basseville, 2003; Moseler, 2001; Füs-
sel, 2001). The paper at hand will examine these
different methods and compare them with respect to
the size of the smallest detectable fault, the time-to-
detection and their computational expense. This com-
parison will be based on experimental data obtained at
a hydraulic servo-axis.

The paper is divided as follows: In Section 2, the
algorithms will be shortly introduced. This is then fol-
lowed by a description of the testbed and the examined
residual. Section 4 is concerned with the sensitivity
of the proposed methods. It is examined which mini-
mal fault size can be detected by the different meth-
ods. Next, the time-to-detection is discussed, which is
another important quantity in the evaluation of fault
detection methods. Finally, the computional expense
is looked at in Section 6. This is another important
aspect since all algorithms have to run in real-time.
The reaction of the residual to a fault will be shown in
Section 7. Conclusions (Section 8) end this paper.

2. INTRODUCTION TO THE ALGORITHMS

The simplest way to monitor changes in a signalx is to
constantly compare the signal values against an upper
and a lower threshold,

x< xupper, x> xlower. (1)

This is termedlimit checkingand is a computationally
quite inexpensive technique. However, many signals,
such as e. g. a residual, are noisy due to model im-
purities, process and sensor noise, etc. Therefore, the
thresholds have to be increased to avoid false alarms.
However, increasing the thresholds means that small
changes in the signal might not be detected.

More advanced methods monitor statistically charac-
teristic quantities of the signal, such as themeanand
variance. The mean of a discrete time signal of length
N is defined as (Papoulis, 1991)

µx =
1
N

N∑

i=1

x(i) (2)

and the variance is given as

σ2
x =

1
N−1

N∑

i=1

(x(i)−µx)
2 . (3)

These calculations are only suitable for the offline cal-
culation of time invariant statistical quantities. How-
ever, fault detection algorithms are typically imple-
mented online and furthermore, the statistical quan-
tities are time-varying. The fault will come into ex-
istence at some unspecified time instanttF, thus the
mean and variance will change around this time in-
stant. This will lead to the recursive versions of Eq. 2
and Eq. 3,

µx(k) = µx(k−1) +
1
k

(x(k)−µx(k−1)) (4)

σ2
x(k) =

k−2
k−1

σ2
x(k−1)+

1
k

(x(k)−µx(k−1))2(5)

Furthermore, the mean and variance can be calcu-
lated over atime windowof finite lengthN, see e.g.
(Moseler, 2001). At the discrete timek, these quanti-
ties can be calculated as

µx(k) =
1
N

k∑

i=k−N+1

x(i) (6)

σ2
x(k) =

1
N−1

k∑

i=k−N+1

(x(i)−µx(k))2 . (7)

Time-Window Average and Variance: The formula-
tions in Eq. 6 and Eq. 7 are computationally expensive.
An alternative is to apply recursive calculations. The
mean can be calculated as

µx(k) = µx(k−1)+
1
N

(x(k)−x(k−N)) (8)

and the recusive equation for the variance is given as

σ2
x(k) = σ2

x(k−1)+
1

N−1

(
(x(k)−µx(k))2

−(x(k−N)−µx(k))2 +
1
N

(x(k)−x(k−N))2
) (9)

The performance of these two algorithms can be tuned
by changing the window lengthN. Changes in the sig-
nal can now be monitored by comparing the estimates
of the mean and variance against fixed thresholds.

There exists a couple of other well-known algorithms,
which can detect changes in the mean and variance
of a signal. A description of these methods can e.
g. be found in (Basseville and Nikiforov, 1993). The
key concepts generatingtest quantitieswill shortly be
summarized in the following:

Shewart Control Chart : This test, as all following
tests can discern between two hypotheses. These hy-
potheses state that the variableθ has the valueθ0 (Hy-
pothesis 0) orθ1 (Hypothesis 1). In the following, it
is assumed, that the signal samples under scrutiny are
Gaussian-distributed with mean valueµ and variance
σ2.

The Shewart control chart is now implemented to test
for a change in the mean fromµ0 to µ1. Thedecision
functionis given as

SN
1 =

µ1−µ0

σ2

N∑

i=1

(
xi−µ0− µ1−µ0

2

)
(10)

This decision function is tested against a conveniently
chosen thresholdh. Hypothesis 1 is true, if

SN
1 > h. (11)



Now, the assumption that the mean in the fault free
case isµ0 = 0 will be utilized. This allows a few
simplifications,

S̃N
1 =

N∑

i=1

xi (12)

which is tested against a new thresholdh̃.

Geometric Moving Average Control Chart: This
method is based on the idea of using higher weights
on recent observations and lower weights on past
observations, which is also known under the term
exponential forgetting. For a change in the mean of
a Gaussian sequence, the decision function is given as

g(k) = (1−α)g(k−1) +α(x(k)−µ0) . (13)

Once again, forµ0 = 0, the equation can be rewritten
as

g(k) = (1−α)g(k−1)+αx(k). (14)

The starting value can conveniently be chosen as
g(0) = 0.

For a change in the variance fromσ2
0 to σ2

1, the
decision function is given as

g(k) = (1−α)g(k−1) +α (x(k)−µ)2 . (15)

Since the meanµ once again is zero, this equation can
be rewritten as

g(k) = (1−α)g(k−1)+αx(k)2. (16)

with the starting valueg(0) = 0.

Finite Moving Average Control Charts: Now, a
finite memory is utilized with arbitrarely chosen
weights. For a change in the mean, the decision func-
tion reads

g(k) =
N−1∑

i=0

γi (xk−i−µ0) (17)

The major disadvantage of this algorithm is the large
number of parameters, since allγi must be tuned to
achieve optimal performance of the algorithm. Since
all other algorithms are much easier to tune and de-
pend on one parameter only, this Finite Moving Aver-
age Control Chart will be left out of the comparison.

Cumulative Sum (CUSUM): For an increase in the
mean, the algorithm is given as

g(k) =
[
g(k−1)+

µ1−µ0

σ2

(
x(k)− µ1 +µ0

2

)]+

,

(18)
where the functiony = [x]+ is defined as

y =
{

x if x> 0
0 otherwise

(19)

A decrease in the mean can be detected by a straight-
forward extension of Eq. 18.

Low Pass Filtering: Approximate estimations of the
mean and variance can also be calculated by low
pass filtering, see (Höfling, 1996). The corresponding
block diagram is shown in Fig. 1. All the described
methods will now be compared.

Fig. 1. Calculation of Mean and Variance by Low Pass
Filtering

3. DESCRIPTION OF THE RESIDUAL OF A
PARITY EQUATION

At a testbed consisting of a linear hydraulic servo-
axis, the parity equation described in the following
has been implemented. In the evaluation, the parity
equation governing the hydraulics of the cylinder will
be examined. The behavior of the system is highly
nonlinear. The pressure buildup in chamber A of the
hydraulic cylinder amounts to

ṗA =
E(pA)(V̇A−AA ẋ−GAB(pA−pB))

V0A + AA x
(20)

Here,E is the pressure dependent bulk modulus.AA

is the cross-sectional area andV0A the volume at
x = 0. GAB is the coefficient of laminar leakage flow
between chamber A and B. This flow depends on the
pressure difference between chamber A,pA, and B,
pB. All measured variables are also depicted in Fig. 2,
which displays the schematic cross-sectional drawing
of a proportional valve and cylinder as used at the
hydraulic servo-axis.

Fig. 2. Schematic View of a Hydraulic Servo-Axis

The displacement of the valve spool and the thereby
determined opening of the control edges determines
the flow into chamber A,̇VA, given by

V̇A = BV1(xV)
√
|pP−pA|sign(pP−pA)

−BV2(xV)
√
|pA−pT|sign(pA−pT) ,

(21)

where BV1 and BV2 are the spool displacementxV

dependent coefficients of turbulent flow across the
control edges.pP is the pressure at the pump andpT

is the pressure in the return line, whose influence is
typically neglected (pT = 0).

For the observer, Eq. 20 will be solved forẋ instead of
ṗA



ẋ =
1
A

(
V̇A−GAB(pA−pB)− ṗA

V0A + AA x
E

)
(22)

In the literature, it is normally reported that Eq. 20
is implemented. However, the model governed by
Eq. 22 is proposed as a basis for parity equations and
observers, since the dynamics inẋ are much slower
than those inṗA. The high fidelity of this model
allows to run the model in parallel to the plant without
the need for an observer-based feedback scheme for
the output error over a short time period. Figure 3
shows the open loop-response of the model to an
APRBS input. An equation similar to Eq. 22 can
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Fig. 3. Comparison of Open Loop Model and System
Response

be implemented for chamberB of the differential
cylinder.

To avoid that the model output departs from the system
output over extended time periods, an observer will
now be introduced into the system. The output error is
fed back amplified by an observer gainh. The observer
block diagram is shown in Fig. 4. The output error,
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Fig. 4. Block Diagramm of the Observer for Correct-
ing the Model Output,̂x(t) of the servo-axis

r = x̂−x, (23)

will now be used as a residual. In the fault free case,
the residual should have zero mean. In the presence
of the faults, the observer has to constantly adapt
the model output to the process output and thus the
variance and/or the mean of the residual will change.

4. SMALLEST DETECTABLE FAULT

The following methods have been compared:

(1) Limit checking, Eq. 1
(2) Time-window average with parameter window

lengthN, Eq. 8
(3) CUSUM test for increase in mean with parame-

ter threshold̃h, Eq. 18
(4) CUSUM test for decrease in mean with parame-

ter threshold̃h, analog to Eq. 18
(5) Shewart Control Chart with parameter window

lengthN, Eq. 12
(6) GMA for mean with parameter forgetting factor

α, Eq. 14
(7) GMA for variance with parameter forgetting fac-

tor α, Eq.16
(8) Estimation of mean with one low-pass filter of

first order with parameter time constantT, Fig. 1
(9) Estimation of variance with two low-pass filters

of first order with parameter time constantT,
Fig. 1

(10) Estimation of mean with one low-pass filter of
second order with parameter time constantT,
Fig. 1

(11) Estimation of variance with two low-pass filters
of second order with parameter time constantT,
Fig. 1

All methods have at most one parameter. Offset faults
for all sensors have been investigated. For the dis-
placement sensorx, an offset fault will only lead to
a temporary deflection of the residual, because of the
feed-back structure. Therefore, this fault has not been
considered in the comparison. Faults in sensorpB do
barely affect the residual and can much more easily
be detected by reformulating Eq. 22 for chamberB.
Therefore, this fault has also been neglected for a com-
parison. The other three faults have been numbered as
follows:

(1) Fault inpP

(2) Fault inpA

(3) Fault inxV

Table 1 shows the sensititvity to the individual faults.
The bold number denotes the overall smallest de-
tectable fault. The different methods have been tested
with ten data sets recorded at the testbed. First, the re-
action of the different methods to the fault free signals
has been determined. Then, the thresholds for raising
an alarm have been determined by adding a safety
margin of 10%. In Fig. 5, the minimum detectable
fault as a function of the tunebale parameter has been
plotted. This diagramm illustrates that for all methods
in fact the minimum has been found.

5. TIME-TO-DETECTION

Next, the time-to-detection is considered. This is an-
other important quantity, since faults should be de-



Table 1. Smallest Detectable Fault of the
Different Methods

Method Fault 1 Fault 2 Fault 3
1 1.64 % 1.68 % 0.52 %
2 1.03 % 0.91 % 0.33 %
3 1.02 % — 0.31 %
4 — 0.89 % —
5 0.89 % 0.78 % 0.28 %
6 1.06 % 0.82 % 0.34 %
7 1.59 % 0.90 % 0.48 %
8 1.06 % 0.82 % 0.34 %
9 1.72 % 1.03 % 0.50 %
10 1.07 % 0.89 % 0.36 %
11 1.80 % 1.06 % 0.60 %
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tected near to their time-origin. The minimum de-
tectable fault as a function of the final time is shown in
Fig. 6. One can clearly see the trade-off between fault
size and time-to-detection. It is difficult to compare the
individual methods by the time to detect a certain fault
size, since the individual methods differ quite much in
their performance and their ability to detect a certain
fault size.
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6. COMPUTATIONAL EXPENSE

Another important aspect is the computational ex-
pense, since in on-line fault detection applications,
these algorithms must run in real-time. In Tab. 2, the

Table 2. Computational expense

Method Sum of Operations
1 1
2 5
3 4
4 4
5 3
6 4
7 5
8 4
9 10
10 11
11 24

computational expense for the different algorithms is
listed. In determining the computational expense, it
has been assumed that the residual has zero mean.
Otherwise, one subtraction has to be added to each
algorithm for subtracting the (non-zero) mean from
the actual value and thereby generating a zero mean
sequence. Since multiplications are typically less ex-
pensive than divisions, all division with a constant
divisor have been counted as multiplications. All tests
have been implemented as one-sided tests.

7. RESIDUAL REACTION

In this section, the high sensitivity of the residual to
faults will be shown. In Fig. 7, a 2% sensor offset for
sensorxV has been inserted after timet = 4 sec. One
can see from the upper subplot that this small change
is barely visible in the signal from the sensor. In the
lower subplot, a time-window average with a window
length of 1500 samples is shown. One can see the
clear reaction to the inserted sensor fault. The time-of-
origin of the fault is marked by the thick vertical line
at t = 4sec. The upper and lower threshold are denoted
by thick horizontal lines.
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8. CONCLUSIONS

The individual algorithms will now be rated. This
is shown in Tab. 3. The table evaluates the sensitiv-
ity (sens), time-to-detection (t-to-d) and the computa-
tional expense (comp exp).



Table 3. Rating of the Methods (+ + best,
- - worst)

Method Sens. T-to-D Comp. Exp.
1 - - 0 + +
2 + 0 0
3 + 0 +
4 + 0 +
5 + + + + +
6 + 0 0
7 - 0 0
8 + 0 0
9 - - + -

10 + - - - -
11 - - + - -

Based on this table, method 5 performs best, which is
the Shewart Control Chart. Methods 3 and 4 perform
well both in the sensitivity as well as the computa-
tional expense. These methods represent the CUSUM
algorithm. Method 2, 6, and 8 perform well with re-
spect to the sensitivity. These are the Moving Average
and the GMA for mean, as well as the estimation of
mean with a low-pass filter of first order. SLightly
worse performance is shown by the low-pass of sec-
ond order and the low-pass filter estimation of the vari-
ance. This illustrates that the sensor faults considered
change mainly the mean of the residuum and not so
much the variance.

In Summary, it should first be mentioned that a new
parity equation was proposed for the supervision of
a linear-hydraulic servo axis. The high fidelity of the
model allows to detect sensor faults as small as 2% or
less reliably.

Then different methods have been compared which
allow to detect changes in a residuum. These changes
can stem from sensor and/or process faults. A total of
eleven different methods has shortly been introduced
and then compared with respect to the sensititviy,
time-to-detection and the computational expense. Al-
though the Shewart Control Chart algorithm per-
formed best, there exist a couple of well-performing
methods to detect changes in the mean and/or variance
of a signal.
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