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Abstract: This paper presents state space closed forms and transfer function recursive 
algorithms for evenly distributed RC interconnect models and their even length-order 
(ELO) model reduction.  The closed-forms have a computation complexity O(1). The 
characteristics of the ELO model simplification to its original model are revealed.  It is 
shown that extremely high-order RC interconnects can be accurately approximated only 
by a tenth or higher order ELO model. The order may be reduced further when external 
ports are included and dominated.  The results are useful to VLSI interconnect model 
reduction and design, and to control systems with a distributed transmission line.  
Copyright © 2005 IFAC  
 
Keywords: Interconnect, Distributed, transmission lines, modelling, algorithms, model 
reduction.  

 
I.  INTRODUCTION 

Modeling is important for systems and control.  The 
rapid increase of integration level and operation 
speed makes IC interconnect one of the important 
limiting factors of today’s VLSI circuit design 
performance. The advance of high-speed deep-
submicron VLSI technology requires chip 
interconnect and packaging to be modeled by 
distributed circuits (Boese, et al., 1992; Chen and 
Wang, 1999; Freund, 1999; Liu, Pileggi and Stojwas, 
1999; Pillage and Rohrer, 1990; Reed and Rohrer, 
1999; Wang, Yu and Kuh, 2000; Wang, et al., 2002; 
Yuan, Wang and Wang, 2004; Zhou, Preparata and 
Kang, 1991).  Such a detailed modeling level 
eventually results in large scale linear circuits to be 
analyzed. An effort of reducing the circuit order is 
then necessary in order to evaluate the circuit 
performance and characteristics in a reasonable time 
period, as required by real design practice. This 
modeling is also important for control systems with a 
distributed transmission line.    

A lot of efforts have been done, such as widely used 
Asymptotic Waveform Evaluation for Timing 
Analysis (AWE) based on Padé approximation 
(Pillage and Rohrer, 1990), and recent error bounded 
Padé approximation via bilinear conformal 
transformation (Chen and Wang, 1999).  The 
Balanced Truncation Method (BTM) is also useful 
for model reduction (Yuan, Wang and Wang, 2004) 
with a guaranteed model reduction performance over 
the whole frequency range. Some efforts for DC 
matching with a cost of high frequency mismatching 

and for fast computation with new algorithms have 
been emerged for the BTM (Freund, 1999). Other 
effort is via passive model order reduction algorithm 
based on Chebyshev expansion of impulse response 
of interconnect networks (Wang, Yu and Kuh, 2000). 

Because the original distributed interconnect models 
have very high orders, it is important to have their 
closed forms and to further investigate model 
reduction approaches and features.  A simple method 
seems to evenly divide interconnect into m-pieces and 
assume that each piece has its RC/RLC parameter 
values in proportion to its length if each has a same 
physical size.  It is correct if m is sufficiently large in 
view of the infinitesimal pieces.  This method is 
called an even length order (ELO) reduction or 
simplification method if m is small/low.  This ELO 
model reduction method has a nature of simplicity 
and passive implementation.  However, how large 
will the order m be sufficient in practice?  What is its 
performance error?  A thorough study is needed.  

In order to offer a basis for evaluation of the ELO 
model reduction, a through and careful knowledge of 
original interconnect models are needed.  Thus, this 
paper first derives precise state space model closed-
forms and transfer function recursive algorithms of 
evenly distributed RC interconnect.  They are also 
useful for future investigating performance 
robustness when uncertainties are considered (Wang, 
Lin and Shieh 1998).  The conventional way to find 
this distributed linear model is bound to meet 
computation of high dimension matrix inverse and 
matrix multiplications.  Recently, Wang et al. (2002) 



have presented an approach for an exact closed-form 
of the state space model and an elegant recursive 
algorithm of the transfer function for the RC 
distributed interconnects.  Wang’s method (2002) 
avoids matrix inverse and reaches exact model 
accuracy.  This paper follows Wang’s approach to 
extend the models to include a source resistor and a 
load capacitor in addition to the load resistor.   

Further, this paper develops the ELO model reduction 
via the closed-form in the time domain and the 
recursive algorithm in the frequency domain.  Then, 
the performance, relationship and characteristics of 
the ELO model reduction for evenly distributed RC 
interconnect are investigated.  Finally, two cases are 
studied and simulated.   

The main features and contributions of this paper are 
the accuracy and effectiveness of the closed-forms 
and algorithms, and the simplicity and passivity of 
their ELO reduction models.  The results are useful 
not only to VLSI interconnect but also to control 
systems with a long distributed transmission line.    

II.  PROBLEM FORMULATION 

In general, interconnect can be modeled as an RC 
interconnect or an RLC interconnect. Here, RC 
interconnect is considered first. The RLC 
interconnect will be discussed in a separate paper.  

Two evenly distributed RC interconnect circuits are 
considered.  One is an RC interconnect itself in Fig. 
1. Another one is an RC interconnect with a source 
resistor Rs, a load resistor R0 and a load capacitor C0, 
in Fig. 2.  The order of the distributed circuits is n 
(n>>1) as assumed.  The input voltage is )(tvin , then 
the output port has a voltage )(tvo , where 

)()( tvtv sin =  in Fig. 2.  Its evenly distributed resistor 
is R and capacitor is C.  The unevenly distributed 
interconnect model may refer to Wang et al. (2002).  
Because most interconnects can be considered as an 
evenly distributed interconnect, or consists of a set of 
evenly distributed interconnects. Thus, an evenly 
distributed RC interconnect is considered here.  

 
Fig. 1.  Evenly distributed RC interconnect circuit 

 
Fig. 2.  Evenly distributed RC interconnect with connection 

In the models, the node subscripts are ordered from 
the output terminal to the input terminal, different 
from a normal way.  The state vector x(t) is selected 
as the node voltages of the interconnect circuit  

                      Ttvtvt n )](,),([)( 1�=x  (1) 
in Figs.1-2. The distributed RC interconnect circuits 
can be described by a linear state-space model: 
          )()()( ttt BuAxx +=� ,  )()()( tDutty += Cx ,     (2) 

where the state variable nRt ∈)(x , the input variable 
Rtu ∈)(  and the output variable Rty ∈)( .   

Its transfer function from )(sVin  to )(sVo  is  
                )(/)()(/)()( sDsNsVsVsT ino ==   (3) 
where )(sN  and )(sD  are polynomials of s, and 

)()( sVsV sin =  in the model of Fig.2.  

Suppose an interconnect has its “total resister” Rt and 
“total capacitor” Ct, where the quote is used because 
it is really distributed, not “total”.  Thus, an accurate 
model of an evenly disturbed RC interconnect circuit 
should be a very high n-th-order model for its 
distribution nature.  Then, its RC evenly distributed 
models in Figs. 1-2 have  
                          nRR t= , nCC t=    (4) 
The ELO reduction method divides an interconnect 
into m-even-length divisions with the division 
parameters proportional to the division length. Thus, 
the m-th ELO model has its RC parameters as  
    rRmnRmRR tm === / , rCCm = , mnr /=  (5) 
where r is the reduction ratio of the original model 
order to the ELO reduction model order. 

The problems are: (i) to find an accurate state space 
model and a transfer function recursive algorithm for 
the interconnect; (ii) to derive its ELO model and 
characteristic relationship to the original model; (iii) 
to execute simulation; and  (iv) to analyze results.   

The ELO model is notated as },,,{ Dememem CBA  
and )(/)()( sDsNsT ememem = , where m is the reduced 
model order with m<n.  It is noticed that the m-th-
order ELO model has a same type of structure as in 
Figs. 1-2, but it replaces the order n by the order m.   

The ELO model performance evaluation is executed 
by comparison with its corresponding original 
accurate n-th-order model for (i) the step response, 
(ii) the Bode plot, and (iii) the ∞H -norm of their 
transfer function difference, i.e., ELO reduction error,  
 )()(max)()(

),0[,
sTsTsTsTE em

js
emem −=−=

∞∈ωω=∞  (6) 

The performance criterion (6) is the worst error of 
)()()( ω−ω=ω jTjTjE emem  over the whole frequency 

range.  From the below theorems and case study on 
},,,{ Dememem CBA  and )(sTem  of the ELO model, a 

suitable order m in practical cases can be found.  
Because the ELO model has a similar structure to its 
original one, but with order m, therefore an obvious 
benefit is its inherent passive implementation, 
compared with other model reduction methods.  



III.  ELO MODEL OF EVEN RC INTERCONNECT 

Wang, et al. (2002) presented the closed form of the 
state space model and the recursive algorithm of the 
transfer function model for the evenly distributed RC 
interconnect circuit shown in Fig.1.  Here, its ELO 
model is derived as Theorem 3.1 as follows.  

Theorem 3.1. Consider an n-th-order evenly 
distributed RC interconnect circuit in Fig.1 with its 
total length resistor Rt and total capacitor Ct in (4).  
Its m-th-order ELO model },,,{ Dememem CBA  is   

 Aem = omRCr A⋅)]/(1[ 2 , [ ]Tem RCr 001)]/(1[ 2
�⋅=B ,  

                    [ ]100 �=emC , 0=D ,  (7) 

where mm
em R ×∈A , 1×∈ m

em RB , m
em R ×∈ 1C ,  
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the state variable vector )(tx , the input variable )(tu  
and the output variable )(ty  are respectively as  

           mRt ∈)(x , )()( tvtu in= , )()( tvty o= .  (9) 
Its transfer function is )(/)()( sDsNsT ememem = , 

                   )/(1)( 2 mmm
em RCrsN = ,                    

  )(
1

)(
2

)( 2,2241,2, sD
RCr

sD
CRr

ssD jejeje −− −�
�

�
�
�

� += ,  

                                mj ,,2 �=  (10) 
with its initial values  

           1)(0, =sDe ,   )]/(1[)( 2
1, CRrssDe += .  (11) 

When 1=m , it leads to that nr = ,  

    )/(1)( 2
1 CRnsNe =  and )]/(1[)( 2

1 CRnssDe += .   (12) 

Due to the page limit, all proofs are omitted hereafter. 

From Theorem 3.1, it is clear that the m-th-order ELO 
model has a similar structure to its original model in 
Wang (2002), but with an order m, not n, and a model 
order reduction factor mnr = .  It coincides with the 
ELO principle. 

Theorem 3.2.  The ELO model reduction error of an 
evenly-distributed RC interconnect or transmission 
line in (6) is related to its reduction factor r in (5), but 
independent of its parasitic parameters RC.   

Theorems 3.1-3.2 reveal the characteristics of the 
ELO model and its relationship to the original model.  

IV.  ELO MODEL OF EVEN RC INTERCONNECT WITH 
CONNECTION 

Theorem 4.1. Consider the distributed RC 
interconnect circuit with the source and load parts as 
shown in Fig. 2.  Take the state variable vector )(tx  
in (1), the input variable )(tu  and the output variable 

)(ty  respectively as  

             )()( tvtu s= , )()()( 1 tvtvty o == .  (13) 

Then, its state space model { D,,, CBA } is:                      

A= ⋅)/1( RC  
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�B , ]100[ �=C , 0=D ,  (15)    

where nnR ×∈A , 1×∈ nRB  and nR ×∈ 1C .  

Its transfer function )(/)()( sDsNsT nnn =  has a 
recursive algorithm:  

             ])/1)(/1/[(1)( 0
nn

sn RCRRCCsN ++= ,      

        )(
1
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2

)( 2221 sD
RC

sD
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ssD jjj −− −�
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�
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                  1,,2 −= nj � , ( 2>n )  (16) 
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with the initial values  
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s +

+
⋅+= , 1)(0 =sD . (18) 

Now let us consider its m-th-order ELO model.  

Theorem 4.2.  The m-th-order ELO model with its 
source and load as shown in Fig. 2 has its state space 
model  },,,{ Dememem CBA :  0=D ,  
                           emA = ⋅)/1( 2RCr  
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Its transfer function is )(/)()( sDsNsT ememem = , 

       ])/1)(/1(/[1)( 0
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with the initial values 
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where mnr /= .  When 1=m , it leads to that nr = , 
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Remark 4.1.  The above theorems show that the ELO 
model with the source and load parts depends on its 
parameter ratios of its distribution parameters to 
external parameters respectively as sRR / , 0/ RR , 

0/CC , ( st RR / , 0/ RRt , 0/CCt ), and the order 
reduction ratio r .   

Remark 4.2.  The case of a distributed interconnect 
itself (Theorem 3.1) is really an extreme case of a 
distributed interconnect with its source and load parts 
(Theorem 4.2) as its source resistance 0→sR , load 
capacitance 00 →C  and load resistance ∞→0R , i.e., 

0/1 0 →R .  This extreme case is an important case 
without any external distortion. 

There are two extreme situations or cases: one is an 
interconnect itself without any distortion as 
mentioned above, which returns to the results in 
Theorem 3.1; another one is with large external 
parameters as discussed below.  A regular case will 
be between these two extreme cases.   

Corollary 4.3. Consider the distributed RC 
interconnect circuit in Fig. 2 with the dominant 
source and load parts   
          0/ 0 ≈RR , 0/ 0 ≈CC , 0/ ≈sRR .  (24) 
Then, its state space model { D,,, CBA } is:  
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where nnR ×∈A , 1×∈ nRB  and nR ×∈ 1C .  Its transfer 
function )(/)()( sDsNsT nnn =  has the following 
recursive algorithm:  

                   )/(1)( 11
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with the initial values 
                    1)(0 =sD ,   )]/(1[)( 01 RCssD += .  (28) 

Corollary 4.4. The m-th-order ELO model in Fig. 2 
with its dominant source and load  
          0/ 0 ≈RRt , 0/ 0 ≈CCt , 0/ ≈st RR ,  (29) 

has its state space representative:  
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Its transfer function is )(/)()( sDsNsT ememem = , 
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with the initial values 
      1)(0, =sDe , )(1, sDe = )]/(1[ 0rRCs +   for 1>m   (33) 

where mnr /= .  When 1=m , it leads to that nr = , 
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Theorems 3.1, 3.2 and 4.2 reveal the characteristics 
of the ELO models and their respective relationship 
to their original distributed RC interconnect models.  
Corollaries 4.3 and 4.4 present the corresponding 
results for an extreme case of interconnect with 
dominant external parameters, while Theorem 3.1 is 
for the interconnect without any distortion of external 
parameters.  

V.  CASE  STUDIES 

In this section two cases are studied.  One is an 
interconnect itself without the distortion to its 
characteristics.  Another one is an interconnect with 
its dominant source and load parts. 

Case 1: Consider an interconnect of 0.01cm long with 
the distribution characteristic data of resistor 
parameter 5.5kΩ/m and capacitor parameter 
94.2pf/m. An 100th-order evenly distributed RC 
interconnect model is used as its original model with 
R = 5.5⋅10-3 Ω and C = 9.42⋅10-5 pF.  From Corollary 
3.3 (Wang et al., 2002) and Theorem 3.1, the original 
model { D,,, CBA }, its m-th-order ELO model 

},,,{ Dememem CBA  and transfer function 
)(/)()( sDsNsT ememem = , ,3,2,1=m  are as follows:  

       18109301.1 ⋅=A 100,oA , T]001[109301.1 18
�⋅=B ,       

                         [ ]100�=C , 0=D ,  
where 100,oA  is in (8) with 100== nm ;  
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[ ]1003 =eC ; 

       14
1 109301.1 ⋅=eN , 14

1 109301.1)( ⋅+= ssDe ; 
29

2 109606.5 ⋅=eN
29142

2 109606.5103162.2)( ⋅+⋅⋅+= sssDe ; 
45

3 102419.5 ⋅=eN , 
45312153

3 102419.5108105.1106856.8)( ⋅+⋅+⋅+= ssssDe

Their approximation errors in (6) are as follows: 
dbEe 0114.91 −= ,  dbEe 6492.122 −= , 

dbEe 5285.153 −= . 

Figure 3 shows the step responses of the original 
model and its ELO models with 25,10,5,3,2,1=m .  
The steepest curve is of the original model with the 
fastest rising time.  The ELO models have slow step 
responses.  The lower the ELO model order is, the 
larger the rising time is.  The step response curves of 
the 1st, 2nd and 3rd order ELO models are the far right 
three curves respectively.  It is observed that all ELO 
models have a same final value as the original model 
has, i.e., their DC values are the same.  The time at 
which the step response reaches 0.9 is listed as a 
rising time in Table 1.  

Figures 4-5 display their Bode plots. It is seen from 
Fig.4 that the ELO models coincide well with the 
original one in a very large range of frequencies, 
especially in low frequencies.  It is reflected in the 
time domain as that they have the same DC value 
(i.e., final value) in the step responses in Fig.3.  
However, their Bode plots are different in the high 
frequency range, and correspondingly they have 
different rising time in the time domain, i.e., their 
transient responses are different. The original model 
shows an increasing suppression as the frequency 
increases above 1016 Hz.  However, the low-order 
ELO models can not follow this property well when 
the frequency is above a certain frequency, which is 
called the discord (or separate) frequency fd of model 
approximation.  The reason to have their fd is that 
they have different roll-off rates as −20m db/dec in 
high frequency range from the theory, where m is the 
ELO model order.  Therefore, the higher the ELO 
model order is, the higher its discord frequency fd is.  
It is also noticed that the lower order model has a 
narrower bandwidth, while the original model has the 
largest bandwidth of 7.39⋅1013 Hz.  The bandwidths 
and the discord frequencies are listed in Table 1 as 
shown in Figs.  4-5.   

From Table 1 and Figs. 3-5, it is observed that at least 
the 5th order or a higher 10th order model is required 
for a sufficiently good approximation to the original 
(100th-order) model for any various source and load 
parts in view of the time domain responses and 
frequency domain characteristics.  

Case 2: Consider the above interconnect with 
dominated external parameters: Ω= 500sR , Ω= MR 10  
and pFC 10 = .  Table 2 lists the performance of its 
ELO models.  It shows that the 1st or the 2nd order 
ELO model can approximate the original model well.  

However, the required ELO model order for a very 
good model approximation depends on various detail 
source and load data. When the source resistance and 
load capacitance reduce and the load resistance 
increases, the ELO model order should be larger than 
one in order to reach a good approximation.  
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The above cases reflect Theorem 3.1 and Corollary 
4.4, i.e., two extreme cases of interconnects: without 
external distortion and with dominated external ports.   



VI.  CONCLUSIONS 

This paper presents two evenly distributed RC 
interconnect models and their corresponding ELO 
(even length order) reduction models by the closed-
forms of the state space models in the time domain 
and the recursive algorithms of the transfer function 
models in the frequency domain. One is an 
interconnect itself and another is an interconnect 
together with its source resistor, load resistor and 
capacitor.  The new closed-form formulas and 
recursive algorithms are very efficient and powerful 
for model reduction in avoiding operation of large-
dimension matrix inverse and matrix multiplication.  
The model closed-forms have only O(1) computation 
complexity.  The theorems and corollaries reveal the 
characteristics of the ELO models and their 
relationship to the accurate high-order original model.  

The ELO model reduction method of the evenly 
distributed RC interconnects is thoroughly 
investigated in the paper.  It is revealed that ELO 
model reduction is independent of its parasitic 
parameters of RC.  

The case studies are executed in both time domain 
and frequency domain.  The ELO model 
approximation error, discord frequency and rising 
time are investigated.  The results show that a very 
high order RC interconnect itself, such as 100th-
order, can be accurately approximated by its only 
5th−10th or higher order ELO model. When the 
source and load ports are included, the whole model 
can be well approximated by a lower order ELO 
model, e.g., only the first or second if the external 
parameters are dominant.  However, for a good 
approximation, the ELO model order depends on 
their parameter ratios. More important is from 
Theorem 3.2 that this case study conclusion is really 
valid for any various parasitic parameters.  

The ELO model is simple and can be used for the RC 
interconnect model reduction with the availability of 
the new model closed-forms and recursive 
algorithms.  The ELO model has its inherent passive 
character.  The results are useful not only for VLSI 
RC interconnect model reduction, but also for control 
systems with a (long) distributed transmission line.   
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Table 1.   Performance comparison of ELO model reduction in Case 1 

Performance Original ELO order 1 ELO order 2 ELO order 3 ELO order 5 ELO order 10 ELO order 25 ELO order 50 

Rising t  (10-15 sec) 5.40 11.9 8.36 7.29 6.51 5.90 5.56 5.45 

Discord  fd   (1015Hz)  1.20 3.12 6.36 15.1 46.0 274 732 

Bandwidth  (1013Hz) 7.39 3.06 4.59 5.36 6.11 6.74 7.16 7.30 

H-inf  Error Eem  0.35435 0.23310 0.16733 0.10626 8.8609·10-15 8.5840·10-15  

Table 2.   Performance comparison of ELO model reduction in Case 2 

Performance Original ELO order1 ELO order 2 ELO order 3 ELO order 5 ELO order 10 ELO order 25 ELO order 50 

Rising t  (10-9 sec) 1.16 1.16 1.16 1.16 1.16 1.16 1.16 1.16 

Discord fd  (1014Hz)  1.68 4.54 13.8 40.4 243 2.18⋅103 6.99⋅103 

Bandwidth  (108 Hz) 3.14 3.14 3.14 3.14 3.14 3.14 3.14 3.14 

H-inf Error  (10-6)  5.0407 2.4905 1.6425 0.9647 0.45681 4.3694⋅10-5   


