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Abstract: Automata-theoretic models have been used successfully in model-
based process supervision and diagnosis. From a practical viewpoint, their main
drawback is their complexity, which increases fast with the size of the original
discrete-event system. This complexity can be reduced by compositional modelling
resulting in an automata network. The reduced complexity of the network leads to
a complexity reduction of the diagnostic algorithm, as the fault diagnosis can be
performed in a decentralised way. The paper develops such a diagnostic method
for nondeterministic and stochastic automata networks. Copyright c©2005 IFAC
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1. INTRODUCTION

The automaton is a well-known model type for
discrete-event and discrete-time systems. It is
easy to use and straightforward to implement.
In recent years automata have also been used in
process monitoring and fault diagnosis (Förstner
and Lunze, 2001; Lamperti and Zanella, 2003).
The drawback of the automaton is its size (num-
ber of possible state transitions), which increases
fast with the size of the original system. This
phenomenon is known as state space explosion.
One way to counteract is to describe the behaviour
of the system in terms of the behaviour of its com-
ponents (compositional modelling). The result is
an automata network which will be used in this
paper for model-based fault diagnosis.

Automata networks, in principle, allow for dis-
tributed diagnosis which requires no global di-
agnoser, but uses instead multiple local diag-
nosers to determine the diagnostic result com-
ponentwise. Decentralised diagnosis of networks
of nondeterministic discrete-event automata has

been investigated by a number of groups e.g.
(Lamperti and Zanella, 2003; Pencolé, 2000; De-
bouk et al., 2000; Su and Wonham, 2004). This
paper presents methods for decentralised diagno-
sis of networks of stochastic and nondeterministic
discrete-time automata which are synchronised by
a clock. The presented approach differs from the
cited, because no explicit unfolding is done and
the usage of stochastic information changes the
diagnostic method and result fundamentally.

The structure of the paper is as follows. In Sec-
tion 2 the automaton is defined formally and the
solution to the diagnostic problem is presented.
In Section 3 the automata network will be intro-
duced. Decentralised diagnosis of networks is then
presented in Section 4.

2. DIAGNOSIS OF DISCRETE-TIME
AUTOMATA

In this section the stochastic and nondeterministic
automaton are presented and it is shown how they



can be used for diagnosis. Parts of this section
have been described in more detail in (Blanke et
al., 2003; Schröder, 2003).

2.1 Stochastic Automata

The stochastic automaton (SA) is described by
the tuple

S = (Nz,Nv,Nw,Nf , L,p(z0),p(f0)) (1)

with the sets Nz={1, . . . , N} of automaton states,
Nv={1, . . . ,M} of input symbols, Nw={1, . . . , R}
of output symbols, and Nf={1, . . . , S} of faults.
The state of the automaton is denoted by z∈Nz,
the input by v∈Nv, the output by w∈Nw, and the
fault by f∈Nf . The initial state and initial fault
are given as probability distributions p(z0), p(f0).
At every time-step k for every signal a symbol
from the respective domain is selected as its value.

The dynamics of the SA is given by the behav-
ioural relation

L : Nz ×Nw ×Nz ×Nv ×Nf → [0, 1]. (2)

It describes the probability P for a state transition
from z(k) to z(k + 1) for a given input v(k) while
producing output w(k) affected by fault f :

L(z(k+1), w(k)|z(k), v(k), f) = L(z′, w|z, v, f)

= P (z(k+1), w(k)|z(k), v(k), f(k)). (3)

Although all approaches presented in this paper
allow non-constant faults, for notational conve-
nience it will be assumed throughout the paper
that all faults are constant. The relation will be
abbreviated by

L(k) := L(z(k+1), w(k)|z(k), v(k), f).

The presented model is a discrete-time model,
meaning a clock determines the progress of time
(Cassandras and Lafortune, 1999).

State sequences are denoted by

Z(0 . . . kh) = (z(0), z(1), . . . , z(kh)).

The input and output sequences V (0 . . . kh),
W (0 . . . kh) are defined analogously.

2.2 Nondeterministic Automata

The nondeterministic automaton (NA) can be
derived from the SA by omitting the probabilistic
information and merely stating if a transition is
possible or not. The NA is described by the tuple

N = (Nz,Nv,Nw,Nf , L̄, z0, f0) (4)

with the sets defined as above. With the assump-
tion of a constant fault (without restriction of
generality) the dynamics of the NA is given by

L̄ : Nz ×Nw ×Nz ×Nv ×Nf → {0, 1}, (5)

which describes which state transition from z(k)
to z(k + 1) may occur given input v(k) while
producing the output w(k) under the influence
of fault f . Since the possibility of an event is
described by the function

Poss(•) : domain(•) → {0, 1}

which assumes the value 1 for a possible and 0 for
an impossible event, the transition is possible if
the relation

L̄(z(k + 1), w(k), z(k), v(k), f) = 1 (6)

holds, otherwise L̄ = 0.

2.3 Solution to the Diagnostic Problem

The aim of diagnosis is to determine the fault
f which causes a system to operate abnormally.
Since the initial state z0 is in general unknown
and the model is nondeterministic, the solution to
the diagnostic problem is not a single fault, but a
probability distribution p(f) is found for a SA or
a set of possible faults F for a NA. The diagnostic
problem for a single SA is stated as follows:

Fault diagnostic problem (SA).
Given:- Stochastic automaton S

- Measurements V (0 . . . kh), W (0 . . . kh)
- Probability distribution of initial state

p(z0) and fault p(f0)
Find: - Probability distribution pkh

(f |V,W )

The probability of a sequence of states Z(0 . . . k)
given the measured input and output sequences
V (0 . . . k), W (0 . . . k) and a fault f can be calcu-
lated by

P (Z(0 . . . k), f |V (0 . . . k),W (0 . . . k)) =
∑

z(k+1)

L(k) · · ·L(1)L(0)P (z0)P (f0)

∑

Z(0...k+1)

L(k) · · ·L(1)L(0)P (z0)P (f0)
. (7)

The probability that the current state is z and
the actual fault is f , given the measurements, is
calculated using the acquired state sequences:

P (z(k), f |V (0 . . . k),W (0 . . . k)) =
∑

Z(0...k−1)

P (Z(0 . . . k), f |V (0 . . . k),W (0 . . . k)).

This calculation summarises the probabilities of
all state sequences ending in state z. This is done,
because it is of no interest how the system moved
to the actual state, but only how likely it is for the
system to reach the state z under the influence of
the fault f . The probability of the fault is obtained
by projecting the result onto the fault space:

P (f |V (0 . . . k),W (0 . . . k)) =
∑

z(k)

P (z(k), f |V (0 . . . k),W (0 . . . k)). (8)



The distribution pk(f) is a vectorial notion of the
result (8) for all faults f ∈ Nf .

The solution for the NA can be derived from (8)
by omitting the probabilistic information:

Poss(f |V (0 . . . k),W (0 . . . k)) =
∨

z(k)

Poss(z(k), f |V (0 . . . k),W (0 . . . k)). (9)

The diagnostic result is the set of all possible
faults:

F(kh)={f |Poss(f |V (0 . . . kh),W (0 . . . kh))=1}.

Note that a recursive solution of the diagnostic
problem has been found in (Schröder, 2003) which
allows to calculate the current probability distri-
bution pk(f) by using the calculation result of
the last step pk−1(f) and the additional measure-
ments v(k), w(k). This implies that no explicit
unfolding is computed. It has also been proven
that the diagnostic result is both complete and
sound, meaning no fault is excluded wrongly and
all fault candidates explain the observation.

3. AUTOMATA NETWORKS

An automata network consists of several intercon-
nected automata (e.g. Figure 1). In this section
the network is formally introduced and it is in-
vestigated how a network can be composed into a
single automaton.

Automaton 1

z k1( ) Automaton 2
v k1( )

v k2( )

s k2( )
s k3( )

s k1( )

w k1( )

Automaton 3

z k3( )

z k2( )

Figure 1. Example of an automaton network

3.1 Automata with Multiple Inputs and Outputs

To be able to connect several automata to a
network, the definition of the automaton has to
be extended to include multiple input and output
signals. Therefore the behavioural relation of the
SA is modified to

L(z′,w|z,v, f) = P (z′,w|z,v, f), (10)

where v is a set containing all input signals
und w a set containing all output signals. All
signals have a unique name. The sets Nv and
Nw no longer contain single symbols, but the
domains of the different signals. Every one of
these domains is assigned uniquely to the specific
signal. 1 Using this formalism, multiple faults can
also be introduced easily. The same extension also
applies to the NA.

1 Formally the maps domv : v → Nv and domw : w →
Nw which assign to every signal the respective domain have

3.2 Modelling the Network

A stochastic automata network (SAN) consists of
γ SA. To distinguish between the network signals
and the signals of an automaton the network’s
signals are marked by superscripts as opposed
to subscripts for the automata’s signals. Network
input signals are denoted by v1, . . . , vµ, network
output signals by w1, . . . , wρ and coupling signals
by s1, . . . , sκ. The network state z consists of the
states of all γ automata of the network.

The i-th SA (i∈{1, . . . , γ}) of the network is
defined by

Si = (Nzi,Nvi,Nwi,Nfi, Li,p(zi0),p(fi0)) (11)

with

Li(z
′
i,wi|zi,vi, fi) = P (z′i,wi|zi,vi, fi).

The stochastic automata network is then given by

SAN = (S1, . . . ,Sγ). (12)

The nondeterministic automaton network (NAN)
is defined analogously. As the single automa-
ton is a clocked system the same holds true for
the network. 2 An extended introduction to au-
tomata networks can be found in (Lunze and
Neidig, 2003; Lunze and Schröder, 2003).
The couplings are defined by using the same sym-
bols as input and output for different automata.
E.g. a coupling from Automaton 1 to Automa-
ton 2 in Fig. 1 occurs through signal s1, which
is an output signal of Automaton 1 and an input
signal of Automaton 2. In other words, the net-
work topology is completely defined by the sets of
input and output signals v,w of all automata of
the network.

Example: The network (S1,S2,S3) in Fig. 1
consists of three automata and has two input
signals v1 and v2 and one output signal w1. All
other signals are coupling signals. Automaton 1 is
given by

S1 = (Nz1,Nv1,Nw1, L1, z10)

with the behavioural relation L1(z
′
1,w1|z1,v1)

and v1 = {v1, s2}, w1 = {w1, s1}.

3.3 Composition Rules

Composing an automaton network means to
create a single automaton with the same in-
put/output behaviour as the original network.
The principal approach to composition can be

to be defined. However, to keep the formalism as simple

as possible it is assumed that every signal vi has its own
domain Nvi.
2 Synchronised signals in combination with feedback con-
nections may result in conflicts. The problem is known and

has been dealt with, however, this is beyond the scope of

this paper, cf. (Schröder, 2003; Pache, 2004).



found e.g. in (Lee and Varaiya, 2003). The compo-
sition of the network SAN = (S1, . . . ,Sγ) results
in the automaton

S̃ = (Ñz,Nv,Nw,Nf , L̃,p(z̃0),p(f̃0))

with Ñz = Nz1×· · ·×Nzγ and the sets of network
inputs and outputs Nv, Nw. The behavioural
relation L̃ of the composed SA is calculated by
multiplying all behavioural relations of the SAN
(element by element), evaluating this expression
for all possible values of all coupling signals, and
summing up the results. For a serial connection as
shown in Fig. 2 this amounts to

L̃(z̃′, w2|z̃, v1)

=
∑

s1

L1(z
′
1, s1|z1, v1) · L2(z

′
2, w2|z2, s1) (13)

for the stochastic automaton network and to

˜̄L(z̃′, w2, z̃, v1)

=
∨

s1

L̄1(z
′
1, s1, z1, v1) ∧ L̄2(z

′
2, w2, z2, s1) (14)

for the nondeterministic network (cf. (Lunze and
Schröder, 2003; Plateau and Atif, 1991)).

w2s1v1

S1 S2

Figure 2. Serial connection

4. DIAGNOSING AUTOMATA NETWORKS

In this section several approaches to diagnose au-
tomata networks are presented. In Section 4.1 it is
shown how automata networks can be diagnosed
in a centralised way, whereas in Section 4.2 decen-
tralised diagnosis is presented. It will be proven
that decentralised diagnosis can be applied to
all NAN, but only to a small class of stochastic
automata networks.

System fault

N1 N2 Ng

Coupling network

Centralised diagnosis Dc

Overall model

a) Centralised diagnosis

Local   faults

Coupling network

N1 N2 Ng

Dd1

N1
Dd2

N2
Ddg

Ng

b) Decentralised diagnosis

Figure 3. Different approaches to diagnosis

4.1 Centralised Diagnosis

In centralised diagnosis one diagnoser Dc has ac-
cess to all network inputs and outputs, which are
lumped to vector-valued sequences V and W ,

and the complete network model (cf. Fig. 3a)).
The result of the centralised diagnosis is a global
probability distribution p(f) for the SAN or a set
of global fault candidates F for the NAN. The
centralised diagnostic problem can be stated as
follows:
Centralised diagnosis (SAN).
Given:- Stochastic automata network SAN

- Measurements V (0 . . . kh), W (0 . . . kh)
- Probability distribution of initial state

p(z0) and fault p(f0)
Find: - Global probability distribution pc

kh
(f) 3

The diagnostic problem can be solved using so-
lution (8) developed for the single stochastic au-
tomaton if the composition rule is applied to the
network. However, the resulting SA might be too
large to handle even with modern computers and
therefore must not be built explicitly. Instead the
composition rule has to be integrated into the
diagnostic algorithm to calculate the diagnostic
result directly. The probability of a sequence of
network states Z(0 . . . k) for given network input
and output sequences V (0 . . . k), W (0 . . . k) and
a fault f is then calculated in case of the serial
connection as shown in Fig. 2 by

P (Z(0 . . . k), f |V (0 . . . k), W(0 . . . k)) =

Σ
z(k+1)

Σ
s1

L1(k)L2(k) · · ·L1(0)L2(0)P (z10, f10, z20, f20)

Σ
Z(0...k+1)

Σ
s1

L1(k)L2(k) · · ·L1(0)L2(0)P (z10, f10, z20, f20)
.

The probability distribution pc
kh

(f) is computed
as described in Section 2.3. The approach can be
applied to NAN analogously. Since it has been
proven that solution (8) is complete and sound
and that a SAN can be composed to a single SA
with the identical behaviour using the composi-
tion rule, the solution for centralised diagnosis is
also complete and sound. This solution uses far
less memory capacities compared to the usage of
a single automaton since all calculations are done
element by element. However, it is rather time
consuming.

4.2 Decentralised Diagnosis

Although the presented approach to centralised
diagnosis does not calculate the global model ex-
plicitly, it treats the model as a single unit and
not as a collection of components. In decentralised
diagnosis every component i is diagnosed inde-
pendently by a local diagnoser Ddi as shown in
Fig. 3b). Every local diagnoser has only a model
of the respective component and access to the
component signals Vi ⊂ V and Wi ⊂ W . The
diagnostic result is a local probability distribution

3 The superscript c marks the result of a centralised
diagnosis



p(fi) for every component. The main advantages
of decentralised diagnosis are lower memory us-
age, good scalability, robustness, reusability of
component models, and possibility to distribute
calculations locally. The decentralised diagnostic
problem can be given as a collection of local diag-
nostic problems:

Local diagnosis (SAN).
Given:- Stochastic automaton Si of a network

- Local measurements Vi(0 . . . kh) ⊂ V ,
Wi(0 . . . kh) ⊂ W

- Probability distribution of local initial
state p(zi0) and faults p(fi0)

Find: - Local probability distribution pkh
(fi)

Decentralised diagnosis (SAN).
Given:- Local probability distribution pkh

(fi),∀i

Find: - Global probability distribution pd
kh

(f) 4

The local and the decentralised diagnostic prob-
lem as stated above can easily be adapted to NAN.
Here the result of a local diagnosis is a local set
of fault candidates Fi and, hence, the result of
decentralised diagnosis a global set Fd.

The problem statement is straightforward, how-
ever, before a local diagnosis can be performed
it has to be investigated if the global diagnostic
problem can be separated into several local prob-
lems at all. Additionally, it has to be examined
how the subdivision and neglecting of the coupling
signals alters the diagnostic result, meaning how
pc

kh
(f) and pd

kh
(f) and accordingly Fc and Fd are

related. This is done in the remainder of the paper
by proving the following two theorems.

Theorem 1. Two automata in a stochastic au-
tomata network are stochastically independent,
iff in every time-step k the value of the coupling
signal s is unambiguously defined through the mea-
sured input v and output w.

Proof 1. This proof will be shown for two SA
in a series connection without loss of generality,
since every network can be composed to a single
automaton using the composition rule. Because
SA possess the Markov property the proof can be
restricted to k = 0. The symbols are denoted as
in Fig. 2. Let

Z ′
1(v1) = {z′1 |L1(z

′
1, s1|z1, v1, f1) > 0}

be the set of all states the automaton S1 can
be in at time k + 1 with a given input v1. This
automaton has an output function H1 : Nv1 →
Ns1. The set

Z ′
2(w2) = {z′2 |L2(z

′
2, w2|z2, s1, f2) > 0}

and the output function H2 : Ns1 → Nw2 are
defined analogously for automaton S2. Let Qv be

4 The superscript d marks the result of a decentralised
diagnosis

the set of all possible values of s1 given input v1

and Qw of s1 given output w2:

L1 > 0 ∀ z′1 ∈ Z ′
1(v1) ⇔ Qv = H1(v1)

L2 > 0 ∀ z′2 ∈ Z ′
2(w2) ⇔ Qw = H−1

2 (w2).

When calculating P (z(0), f(0)|v(0), w(0)) one gets
the following equation for the nominator in (7)
∑

z′

1
,z′

2

L̃ (z′1, z
′
2, w2|z1, z2, v1, f1, f2)P (z10, z20)P (f10, f20)

=
∑

z′

1
,z′

2
,s1∈(Qv∩Qw)

L1L2P (z10)P (f10)P (z20)P (f20)

=
∑

s1∈(Qv∩Qw)

(
∑

z′

1

L1P (z10)P (f10) ·
∑

z′

2

L2P (z20)P (f20)).

If and only if card(Qv ∩ Qw) = 1 the value of s1

is defined unambiguously and

· · · =
∑

z′

1

L1P (z10)P (f10)·
∑

z′

2

L2P (z20)P (f20) (15)

holds. This ensures the independence of the au-
tomaton states.

Corollary: A diagnostic problem for SAN can
be divided into local diagnostic problems iff the
automata are stochastically independent. Then
pc

kh
(f) = pd

kh
(f) holds.

Theorem 2. The diagnostic problem for NAN
can always be divided into local diagnostic prob-
lems. If the network contains non-measurable sig-
nals then Fc ⊆ Fd holds.

Proof 2. This proof will be held analogously to
Proof 1. The symbols are denoted as in Fig. 2.

Poss(z1(0), z2(0), f1(0), f2(0), v1(0), w2(0)) =

=
∨

z′

1
,z′

2

˜̄L(z′1, z
′
2, w2, z1, z2, v1, f1, f2)

∧ Poss(z10, z20) ∧ Poss(f10, f20)

=
∨

z′

1
,z′

2

∨

s1

L̄1(z
′
1, s1, z1, v1, f1) ∧ L̄2(z

′
2, w2, z2, s1, f2)

∧ Poss(z10, f10) ∧ Poss(z20, f20)

=
∨

s1

(

∨

z′

1

L̄1 ∧ Poss10 ∧
∨

z′

2

L̄2 ∧ Poss20

)

≤
∨

s1

(

∨

z′

1

L̄1 ∧ Poss10 ∧
∨

z′

2

L̄2 ∧ Poss20

)

∨

(

∨

s∗,z′

1

L̄1 ∧ Poss10 ∧
∨

s∗∗z′

2

L̄2 ∧ Poss20

)

with s∗, s∗∗ ∈ Ns, s
∗ 6= s∗∗

=

(

∨

s1,z′

1

L̄1 ∧ Poss10

)

∧

(

∨

s1,z′

2

L̄2 ∧ Poss20

)

= Poss(f1|v1(0)) ∧ Poss(f2|w2(0))

with Poss10 = Poss(z10, f10) and Poss20 =
Poss(z20, f20). This proves that the result of the
centralised diagnosis is a subset of the merged
results of the two local diagnosers: Fc ⊆ Fd.



Immeasurable signals lead to additional uncer-
tainties in diagnosis. Since the goal is to have a
complete result, that is to ensure that the true
fault is included, all possible values of immeasur-
able signals have to be considered. It is impossible
to ensure that the unknown signal has the same
value for all connected NA, since every NA is
treated by a separate diagnoser that has no in-
formation about the other diagnosers. Therefore,
more signal combinations are considered during
diagnosis than physically possible, leading to a
larger number of spurious solutions. Since the
result of the centralised diagnosis Fc is complete
and it has been proven that Fc ⊆ Fd holds, de-
centralised diagnostic result Fd is also complete.

The number of fault candidates can be reduced
by explicitly including coupling signals in the
solution and therefore treating them as dependent
variables. It can also be reduced by additionally
measuring coupling signals. It is the engineer’s
task to decide for the given system what signals
may lead to a large number of fault candidates.

4.3 Complexity Considerations

The advantage of the decentralised approach be-
comes apparent, when analysing the computa-
tional complexity of the presented approaches.
An automata network with γ automata can be
represented by a table with

∑γ
i=1 N2

i MiRi en-
tries (worst case), where N,M,R are defined as
in Section 2. A single automaton with the same
behaviour as the network is represented by a
table with

∏γ
i=1 N2

i MiRi entries. Considering a
network of 10 automata with 10 states, 10 inputs,
and 10 outputs each, the network is represented
by 105 and the single automaton by 1040 en-
tries. A comparison with the number of grains
of sand on earth (1024) shows that the single
automaton representation is not realisable. The
same holds true for the number of calculations.
The centralised diagnostic approach is of the or-
der O(

∏γ
i=1 N2

i Ci) (worst case), where Ci denotes
the number of symbols of the coupling signals of
automaton i. The decentralised approach is of the
order O(

∑γ
i=1 N2

i Ci).

5. CONCLUSION

This paper has presented an approach for mod-
elling automata networks and a method for cen-
tralised diagnosis has been shown which does not
necessitate to compose the network to a single
automaton explicitly. It has been proven that au-
tomata in a nondeterministic automata network
can be diagnosed separately allowing for decen-
tralised diagnosis (Theorem 2). The result of the
decentralised diagnosis is complete, meaning all

candidates that explain the fault are found. How-
ever, it has also been proven that, in general, de-
centralised diagnosis of stochastic automata net-
works is not possible (Theorem 1). A criterion for
testing if two automata are stochastically inde-
pendent has been given.
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