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Abstract: Repetitive Control is a relatively new techniquefor controlling systems that
contain periodic reference signals or periodic disturbances. The fundamental idea behind
the method is to use the internal model of the periodic signalto guarantee asymptotic
reference tracking or disturbance rejection. In this papertwo recent Repetitive Control
algorithms are applied to a simulation model of a damper testrig. Damper test rigs
are are widely used in the automotive industry to experimentally verify the mechanical
durability properties of a given damper. These rigs, however, due to their mechanical set-
up, a tendency to generate internal periodic disturbances,which obviously have a negative
effect on the reliability of the test results. The theoretical and simulation results in this
paper show how Repetitive Control can be used to eliminate these periodic disturbances,
resulting in a considerable increase in accuracy.Copyright © 2005 IFAC
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1. INTRODUCTION

Many signals in engineering are periodic, or at least
they can be accurately approximated by a periodic
signal over a large time interval. This is true, for ex-
ample, of most signals associated with engines, elec-
trical motors and generators, converters, or machines
performing a task over and over again. Hence it is an
important control problem to try to track a periodic
signal with the output of the plant or try to reject a
periodic disturbance acting on a control system.

In order to solve this problem, a relatively new re-
search area called Repetitive Control has emerged in
the control community. The idea is to use information
from previous periods to modify the control signal so
that the overall system would ‘learn’ to track perfectly
a given T -periodic reference signal or disturbance.
The first paper that uses this ideology seems to be
(Inouyeet al., 1981), where the authors use repetitive

control to obtain a desired proton acceleration pattern
in a proton synchrotron magnetic power supply.

Since then repetitive control has found its way to sev-
eral practical applications, including robotics (Kaneko
and Horowitz, 1997), motors (Kobayashiet al., 1999),
rolling processes (Garimella and Srinivasan, 1996)
and rotating mechanisms (Funget al., 2000). In this
paper it is shown how Repetitive Control can be used
to eliminate periodic disturbances in a damper test
rig. To be more precise, two recent Repetitive Control
algorithms are applied to a detailed simulation model
of a damper test rig, which internally creates strong
periodic disturbances due to the mechanical set-up of
the system. The results show that using either of the
two Repetitive Control Algorithms, the tracking per-
formancance of the system is superior when compared
to the results from a feedback controller.

The rest of the paper is outlined as follow: Section
2 introduces in detail the damper test rig framework



and how it is used in the automotive industry. Section
3 gives a short review of the two Repetitive Control
algorithms that are used in this paper. This followed by
Section 4, which describes the simulation model used
in this study. Section 5 presents the corresponding
simulation results and analyses the performance of
the Repetitive Control approach. Finally, Section 6
concludes the paper and gives directions for future
research.

2. DAMPER TEST RIG

Structural testing is widely used to characterise the
mechanical properties of structures and components,
for example in the automotive and aerospace indus-
tries, see (Dodds and Plummer, 2001). Automotive
test rigs may be designed to test components such as
individual elastomeric bushes, or complete suspension
systems, through to full vehicle test rigs (Dodds and
Plummer, 2001). The purpose is either to characterise
the dynamic properties of the test specimen, or to test
for durability in a long term test.

Typically a structural test rig incorporates several hy-
draulic actuators which are controlled to impart loads
or motion to the test specimen in a precise man-
ner. However actuators are usually controlled using
individual SISO PID controllers, with limited scope
for reducing the effects of cross-axis interaction. The
damper test rig considered in this paper highlights the
problem and is described below.

Fig. 1 shows the rig. The damper is ’exercised’ by a
vertical actuator, while a side load is applied to the
actuator body using a second actuator. Typically the
vertical actuator is commanded with a sinewave of
amplitude up to 100mm, and frequency up to around
20Hz. The side load command is usually a constant
load of a few hundred Newtons. The problem is that
the vertical motion couples into the side load causing
a large load disturbance.

3. REPETITIVE CONTROL

Repetitive Control is a relatively new method to do
high-quality control for systems that are associated
with periodic signals. As a starting point in discrete-
time Repetitive Control (RC) it is assumed that a
mathematical model

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(1)

of the plant in question exists withx(0) = x0, t ∈
[0,∞). Furthermore,A, B, C and D are finite-
dimensional matrices of appropriate dimensions. From
now on it is assumed thatD = 0, because in practice
it very rare to find a system where the input function
u(t) has an immediate effect on the output variable
y(t). Furthermore, a reference signalr(t) is given,

Fig. 1. Test rig

and it is known thatr(t) = r(t + T ) for a given
T (in other words the actual shape ofr(t) is not
necessarily known). The control design objective is to
find a feedback controller that makes the system (1) to
track the reference signal as accurately as possible (i.e.
limt→∞ e(t) = 0, e(t) := r(t) − y(t)), under the as-
sumption that the reference signalr(t) is T -periodic.
As was shown by (Francis and Wonhan, 1975), a nec-
essary condition for asymptotic convergence is that a
controller

[Mu]t = [Ne](t) (2)

whereM andN are suitable operators, has to have
an internal model or the reference signal inside the
operatorM . The notion ‘internal model’ means that
if the operatorM is applied onr(t) on t ∈ (∞,∞),
then [Mr](t) = 0. In the particular case whenr(t)
is T -periodic, the internal model becomes1 − q−T ,
where[q−T v](t) = v(t − T ) for v : Z → R (i.e. q−1

is the standard left-shift operator), because

(1 − q−T )r(k) = r(k) − q−T r(k)
= r(k) − r(k − T ) = 0

(3)

on the infinite time-axist ∈ (∞,∞).

Thus in the discrete-time RC case the algorithm devel-
opement consists of selecting the operatorN(q) in the
control law

u(t) = N(q)
1

1 − q−T
e(t) (4)

so that the closed-loop system is stablised.

In this section two recent algorithms, namely optimal-
ity based and an adjoint type algorithm are shortly
reviewed because they have been shown to solve ro-
bustly the design proplem proposed above. Further-
more, they are applied to the damper test rig in the
following sections. For a more detailed description of
the algorithms see (Hätönenet al., 2003), (Freemanet
al., 2004) and (Hätönenet al., 2004).



3.1 Optimal algorithm

In the optimal algorithm the idea is to translate the
original system model

A(q)y(k) = B(q)u(k) (5)

to a regulation problem using the internal model
D(q) = 1 − q−T of the reference signalr(t). To see
how this can be done, multiply the process model from
the left withD(q). This results in

D(q)A(q)y(k) = D(q)B(q)u(k)
= A(q)D(q)y(k) = A(q)(y(k) − y(k − T ))
= A(q)(−r(k) − r(k − T ) + y(k) − y(k − T ))
= −A(q)(e(k) − e(k − T )) = −D(q)A(q)e(k)
= B(q)D(q)u(k)

(6)
Using the notatioñu(k) := u(k) − u(k − T ) the
process model becomes

−D(q)A(q)e(k) = B(q)ũ(k) (7)

which is now in the form of a standard regulator
problem, i.e. find̃u(k) so thatlimk→∞ e(k) = 0. One
way of achieving this is to form a state-space model
for the modified plant model (7), resulting in
{

xm(k + 1) = Amxm(k) + Bmũ(k), xm(0) = xm,o

e(k) = Cmx(k)
(8)

and use LQR control to stablilise the ‘extended’ state-
space model (8). To be more precise, in LQR the
following optimisation problem is considered











min
ũ∈l2

J(ũ)

J(ũ) :=

∞
∑

i=1

(

e(i)T Qe(i) + ũ(i)T Rũ(i)
) (9)

whereQ andR are positive-definite weighting matri-
ces, and the corresponding solution is a state-feedback
law

ũ(k) = −Kmxm(k) (10)

whereKm is the solution of a Riccati-equation, see
(Lewis and Syrmos, 1995). However, the statexm(·)
cannot obviously be measured directly. Unfortunately,
in practise it is impossible to measure the statexm(·)
directly. However, it is still possible to construct an ob-
server for the statexm(·), i.e. the states are estimated
with the following equation

x̂m(t+1) = Φmx̂m(t)+Γmũ(t)+L(e(t)−Cmxm(t))
(11)

where L is the observer gain and the control law
becomes

u(t) = u(t − T ) − Kx̂m(t) (12)

Note that it is easy to take noise into account in the
proposed algorithm: suppose that (8) would also have
noise termsw(t) andv(t) in the following way,

xm(t + 1) = Φmxm(t) + Γmũ(t) + Hw(t)
e(t) = Cmxm(t) + v(n)

(13)

wherew(t) and v(t) are zero mean Gaussian noise
and xm(0) = xm,o. Conceptuallyw(t) describes
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Fig. 2. Flow diagram for the optimality based RC
algorithm

uncertainty in the state-space model, whereasv(t)
describes uncertainty in the measurement process. If
the covariance matrixQn of v(t) and the covariance
matrixRn of w(t) are known, it is possible to find an
optimal observer gainL that minimises the variance
of the estimation error. It is also a standard result
in optimal control (see (Lewis and Syrmos, 1995))
that by combining the optimal feedback controller and
optimal observer the resulting closed loop system is
stable, and hence the expected value ofe(t) will go
exponentially to zero ast → ∞.

Note that when the control law is implemented on the
original plant (5), the control law (10) readsu(k) =
u(k−T )+Kmx̂m(k), wherex̂(·) is now the estimated
state of (8). Note also that a similar developement can
be easily carried out for the case when the dynami-
cal system has aT -periodic load disturbance. Fig. 2
shows the flow diagram for the optimality based RC
algorithm.

3.2 Adjoint based-based Repetitive Control

Consider again the plant model (5) which is now
written in the form

y(k) =
B(q)

A(q)
u(k) := G(q)u(k)

= h1q
−1u(k) + h2q

−2u(k) + · · ·
(14)

wherehi are the Markov-parameters of the system. In
the the adjoint Repetitive Control based-algorithm the
idea is to use the control law

u(k) = q−T u(k) + βq−T G(q−1)e(k) (15)

where
G(q−1) = h1q + h2q

2 + . . . (16)

This results in the error evolution equation

e(k) = q−T
(

1 − βG(q)G(q−1)
)

e(k) (17)

A reasonably staightforward application of the the
Nyquist stability condition results in the followingsuf-



ficient condition for asymptotic convergence to zero
tracking error

sup
ω∈[0,2π]

|1 − β|G(ejω)|2| < 1 (18)

which can be always met, ifβ is taken to be suffi-
ciently small. The problem, however, is that the al-
gorithm (15) is typically non-causal, i.e.u(t) is a
function of future values ofe(t). An intuitive way to
avoid this problem is truncate the impulse response of
the plant model afterT steps, i.e. it is assumed that
hi = 0 for i > T , resulting in a nominal finite impulse
response modelGo(q) = h1q

−1 + h2q
−2 + · · · +

hT q−T . In this case the algorithm (15) becomes

u(k) = q−T u(k) + βq−T Go(q
−1)e(k) (19)

and the corresponding error evolution equation is
given by

e(k) = q−T
(

1 − βG(q)Go(q
−1)

)

e(k)

= q−T
(

1 − βU(q)Go(q)Go(q
−1)

)

e(k)
(20)

whereU(q) is the multiplicative uncertainty caused
by truncation. Consequently it is important to analyse
how U(q) affects the convergence properties of the
dynamical system (20). In (Hätönenet al., 2004) it
has in fact been shown that if the phase ofU(q) lies in
between±90◦, then the adjoint based algorithm will
still converge asymptotically to zero tracking error.

4. SIMULATION MODEL OF THE DAMPER
TEST RIG

A dynamical simulation model of the damper test rig
has been developed by Instron Ltd, which incorpo-
rates:

1) the hydraulic servovalve and actuator for the
sideload system

2) the mechanical coupling between vertical motion
and the sideload system

3) the PID controller for the side load actuator

The vertical actuation system is just represented by
the sinusoidal motion it produces; a detailed model is
not required to test the repetitive control algorithms.
For the sideload system, the valve is modelled using
conventional orifice flow equations with second order
spool dynamics, and the actuator includes oil com-
pressibility effects. Other practical phenomena such
as a valve slew rate limit and cross-piston leakage are
also included. The model is implemented in Simulink.
For testing the repetitive control algorithms, a vertical
excitation of 100mm amplitude at 10Hz is used.

5. SIMULATION RESULTS

Fig. 4 shows the performance of the test rig when it
is controlled with a standard PID-controller. The PID-
controller settings have been chosen to reflect settings
that the rig operators would normally find via manual

Fig. 3. Simulink model of the test rig

Fig. 4. Tracking behaviour with a PID controller

tuning. The set-point for the controller is 200N . As
can be seen from this figure, the disturbances caused
by the side load result in considerable oscillations
around the set-point.

5.1 Optimality based algorithm

In this simulation the state-space model of the plant
was identified using a standard subspace identifica-
tion routine. The data for the subspace identification
was obtained by exciting the system with white noise.
Note that in this simulation the algorithm modifies the
reference signal to the PID controller, i.e. the plant
seen by the Repetitive Control algorithm is the closed-
loop plant. Fig. 5 shows the simulation results with the
optimality based algorithm. The various parameters in
the LQR contoller and Kalman filter were tuned man-
ually to maximise convergence speed. The algorithm
converges inside 0.4 seconds, demonstrating sufficient
convergence speed for this particular application.



Fig. 5. Convergence behaviour with the optimal algo-
rithm

Fig. 6. Convergence behaviour with the adjoint algo-
rithm

5.2 Adjoint based algorithm

The plant modelGo(q) for the adjoint algorithm was
obtained from an impulse-response experiment on the
closed-loop plant. Fig. 6 shows how the adjoint algo-
rithm performs with a constant set-point 200N when
the learning gainβ = 1.2. The learning gain was
selected so that the learning rate would be maximised.
The algorithm converges sufficiently fast for this par-
ticular application, but it is slightly slower than the
optimality based algorithm.

6. CONCLUSIONS AND FUTURE WORK

From the simulation results, it is clear that both the
optimality-based algorithm and the adjoint-based al-
gorithm significantly reduce the disturbance on the
side load caused by the vertical excitation. Without
repetitive control, the error is about±300N ; with

either repetitive control algorithm this is reduced to
about±10N . The optimality based algorithm con-
verges more quickly at the expense of more involved
system identification.

It is clear that repetitive control should be able to
dramatically reduce errors where a periodic excitation
interacts with other axes in a structural test rig. This
now needs to be verified in practice. Consequently fu-
ture work consists of implementing the algorithms in
real-time using a suitable microprosessor environment
and applying them to a structural test rig.
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