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Abstract: This paper introduces an algebraic analysis approach to time-varying
systems given by linear ordinary differential equations with meromorphic coeffi-
cients. The analysis is carried out in a generic sense, i.e., the signals are considered
to be smooth except for a discrete set of possible singularities. The algebra is based
on a normal form for matrices over the resulting ring of differential operators,
which is a non-commutative analogue of the Smith form. It is used to establish
a duality between linear time-varying behaviors on the one hand, and modules
over the ring of differential operators on the other. This correspondence leads
to algebraic characterizations of the basic systems theoretic properties such as
autonomy, controllability, and observability. Copyright c©2005 IFAC.
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1. INTRODUCTION

Algebraic analysis is concerned with the study
of systems of linear differential equations using
algebraic tools such as module theory and homo-
logical methods. Pioneering work in this area has
been done, for instance, in (Malgrange, 1964) and
(Palamodov, 1970).

The seminal paper (Oberst, 1990) established
a link between the algebraic analysis approach
and the behavioral approach to systems and con-
trol theory, introduced by Willems in the 1980s;
see (Willems, 1991) for a survey. More precisely,
Oberst introduced a categorical duality between
the solution spaces of linear partial differential
equations with constant coefficients and certain
polynomial modules associated to them.

The key to this correspondence is a property of
some signal spaces (e.g., the space of smooth
functions or the space of distributions) when con-
sidered as a module over the ring of differential
operators, namely, the injective cogenerator prop-

erty. This property makes it possible to translate
any statement on the solution spaces that can
be expressed in terms of images and kernels, to
an equivalent statement on the modules. Thus
analytic properties can be identified with alge-
braic properties, and conversely, the results of
manipulating the modules using (computer) alge-
bra can be re-translated and interpreted using the
language of systems theory. This duality is widely
used in behavioral systems and control theory.

The generalization to varying coefficients is not
at all straightforward (Wood, 2002). This is not
so much due to the technicality that the rings of
differential operators to be considered lose their
commutativity when passing from the constant
to the variable coefficient case. Rather, simple
counter-examples show that in general, the space
of distributions is not an injective cogenerator in
the presence of varying coefficients, which implies
that also no subspace of the distributions can have
this property. In (Fröhler and Oberst, 1998), this
problem could be fixed by resorting to the larger



signal space of hyperfunctions. For showing that
this space is even a large injective cogenerator,
the coefficients had to be restricted to the case of
rational functions without poles in the domain of
interest.

The present paper also addresses the case of
ordinary differential equations with rational (or
meromorphic) coefficients, but uses a different
setting to establish a module-behavior duality.
A similar approach is proposed in the closely
related paper (Ilchmann and Mehrmann, 2004),
where comparable results are obtained, however,
without exploiting the underlying algebraic ma-
chinery; see also (Ilchmann, 1989). A purely al-
gebraic approach to time-varying systems with
coefficients in a differential field can be found
in (Fliess, 1990; Rudolph, 1996; Pommaret and
Quadrat, 1998). This formal theory can also be
applied to systems given by partial differential
equations with variable coefficients (Pommaret
and Quadrat, 1999; Chyzak et al., 2003).

This paper is organized as follows: In Section 2,
the ring D of linear ordinary differential operators
with rational (meromorphic) coefficients is intro-
duced, and its algebraic properties are discussed.
Section 3 presents the signal space A of functions
that are smooth everywhere except for a finite
(discrete) set of points. Its properties are exam-
ined, and first conclusions are drawn concerning
the solution spaces (“behaviors”)

B = {w ∈ Aq | Rw = 0}

of linear systems Rw = 0, where R ∈ Dg×q for
some positive integers g, q. In particular, the D-
moduleA is an injective cogenerator. Section 4 ex-
ploits the resulting module-behavior duality and
addresses the basic systems theoretic notions of
autonomy, controllability etc. Finally, some of
the peculiarities of state space systems are dis-
cussed. The results of this paper are proven in
(Zerz, 2005a).

2. OPERATORS

Let D = K[ ddt ], where K denotes either the field
of real-rational functions, or the field of real-
meromorphic functions. Thus D is the ring of
linear ordinary differential operators with rational
(meromorphic) coefficients.

Each 0 6= d ∈ D possesses a unique representation

d = an
dn

dtn + . . .+ a1
d
dt + a0,

where ai ∈ K and an 6= 0. One calls n the degree
of d.

The ring D is a domain (that is, there are no
zero-divisors) but it is not commutative, because

d
dt ta = a + t ddta holds for all differentiable func-
tions a, and thus one obtains the commutator rule

d
dt t− t

d
dt = 1.

More generally, for k ∈ K, one has d
dtk−k

d
dt = k′.

Theorem 1. The ring D is simple, that is, the only
ideals that are both right and left ideals are the
trivial ones, i.e., 0 and D itself. Moreover, D is a
right and left principal ideal domain, that is, every
left ideal and every right ideal can be generated by
one single element (Goodearl and Warfield, 1989).

In fact, the ring D is even a right and left Eu-
clidean domain (Cohn, 1971), which means that
there exists a right and left “division with remain-
der,” where the Euclidean function is given by the
degree. Anyhow, Theorem 1 implies thatD admits
a skew field K of fractions containing elements of
the form d−1n or nd−1, where 0 6= d ∈ D and
n ∈ D. Thus, the rank of a matrix R ∈ Dg×q is
well-defined via (Lam, 2000)

rank(R) = dimKK1×gR = dimKRKq.

A matrix R ∈ Dg×q is called right invertible if
there exists a matrix X ∈ Dq×g such that RX =
Ig. Similarly, R is called left invertible if there
exists Y ∈ Dg×q such that Y R = Iq. A matrix
U ∈ Dg×g is called unimodular if there exists a
matrix U−1 ∈ Dg×g with UU−1 = U−1U = Ig.

Theorem 2. (Jacobson form). LetR∈Dg×q. Then
there exist unimodular matrices U ∈ Dg×g and
V ∈ Dq×q such that

URV =
[
D 0
0 0

]

where D = diag(1, . . . , 1, d) ∈ Dp×p for some
0 6= d ∈ D, and p := rank(R) (Cohn, 1971).

Since D is Euclidean, the matrices U, V can be ob-
tained by performing elementary row and column
operations. The Jacobson form is also known as
Teichmüller-Nakayama form.

Example: Consider

R =
[
d
dt −1 cos(t)
1 d

dt − sin(t)

]
∈ K[ ddt ]

2×3 (1)

where K denotes the meromorphic functions. The
Jacobson form is given by

URV =
[

1 0 0
0 d 0

]
,

where d = cos(t) + d
dt sin(t) = 2 cos(t) + sin(t) ddt .



3. SIGNALS AND SYSTEMS

If K is the field of rational functions, let A denote
the set of all functions that are smooth except
for a finite number of points, that is, for each
a ∈ A there exists a finite set E(a) ⊂ R such
that a ∈ C∞(R \ E(a),R). If K is the field of
meromorphic functions, this definition is modified
by admitting a discrete (rather than finite) set of
exception points E(a) ⊂ R for a ∈ A. Functions
whose values coincide almost everywhere will be
identified. The set A is a real vector space and
a left D-module. A subspace B ⊆ Aq, where q is
a positive integer, is called a linear behavior. A
linear behavior is called K-differential if it can be
written as the solution space of a system of linear
ordinary differential equations with coefficients
in K. Any linear K-differential behavior can be
written as

B = {w ∈ Aq | Rw = 0}

where R ∈ Dg×q for some positive integer g. One
calls R a (kernel) representation of B. In what
follows, we deal exclusively with behaviors of this
form.

The set B is an (additive) Abelian group. Let

URV =
[
D 0
0 0

]
be the Jacobson form of R, and let W := V −1 ∈
Dq×q. Since Rw = 0 is equivalent to URw =
URVWw = 0, there is an isomorphism of Abelian
groups

B ∼= B̃ := {w̃ ∈ Aq | [D, 0]w̃ = 0}
w 7→ w̃ := Ww

(2)

where

B̃ = {w̃ ∈ Aq | w̃1 = . . .= w̃p−1 =0, dw̃p = 0} (3)

is fully decoupled, since D = diag(1, . . . , 1, d).

Consider the left D-module M = D1×q/D1×gR.
Its significance lies in the fact that there is an
isomorphism of Abelian groups

B ∼= HomD(M,A)

which is known as the Malgrange isomorphism.
Explicitly, the Malgrange isomorphism assigns to
each w ∈ B theD-linear map φw :M→A defined
by φw([x]) := xw, where [x] denotes the residue
class of x ∈ D1×q inM. Conversely, for a D-linear
map φ :M→A, one defines wi := φ([ei]), where
ei denotes the i-th natural basis vector of D1×q.

Therefore, the module

M = D1×q/D1×gR

will play an important role in the following consid-
erations. According to the Jacobson form, there is
an isomorphism of left D-modules

M ∼= M̃ := D1×q/D1×p[D, 0]
[x] 7→ [xV ]

where [·] denotes the residue class of an element
of D1×q in M or M̃, respectively. Thus there is
an isomorphism of left D-modules

M∼= D/Dd⊕D1×m (4)

where m := q − p and p = rank(R). The module
D/Dd is isomorphic to the torsion submodule

tM = {m ∈M | ∃0 6= δ ∈ D : δm = 0}

of M. The elements of tM are called torsion
elements of M. The module M is called torsion
(module) if tM =M, andM is called torsion-free
if tM = 0. The module M/tM ∼= D1×m is not
only torsion-free, but even free (i.e., it possesses a
basis).

The decomposition (4) induces an isomorphism of
Abelian groups

B ∼= {y ∈ A | dy = 0} ⊕ Am, (5)

because HomD(D/Dd,A) ∼= {y ∈ A | dy = 0}
according to the Malgrange isomorphism, and
HomD(D1×m,A) ∼= Am, which follows from the
fact that a D-linear map defined on a free D-
module is uniquely determined by the image of a
basis. Of course, the existence of the isomorphism
(5) can also be seen directly from (2) and (3). The
details of this decomposition will be investigated
in Corollary 6 below.

Let M, N , and P be left D-modules, and let
f : M → N and g : N → P be D-linear maps,
i.e., left module homomorphisms. One says that

M f−→ N g−→ P (6)

is exact if im(f) = ker(g). The same notion is used
when M,N ,P are Abelian groups and f, g are
group homomorphisms. A D-module A is called
an injective cogenerator if the exactness of the
sequence (6) of left D-modules is equivalent to the
exactness of the induced sequence

HomD(M,A)← HomD(N ,A)← HomD(P,A)

of Abelian groups. This property is an extremely
powerful tool for systems theory.

Theorem 3. Let D andA be as defined above. The
left D-module A is an injective cogenerator.



The next section gives some systems theoretic
consequences of the properties of D and A as
described above.

4. SYSTEMS THEORY

4.1 Existence of full row rank representations

Corollary 1. Let B = {w ∈ Aq | Rw = 0} for
some R ∈ Dg×q. Then B can be represented by a
matrix with full row rank.

4.2 Equivalence of representations

Corollary 2. Let R1, R2 be two D-matrices with
the same number of columns, and let B1,B2 be the
associated behaviors. One has B1 ⊆ B2 if and only
if R2 = XR1 for some D-matrix X. If B1 = B2,
then R1 and R2 have the same rank. If R1 and
R2 have full row rank, then B1 = B2 if and only
if R2 = UR1 for some unimodular matrix U .

4.3 Elimination of latent variables

Corollary 3. Consider

B = {w ∈ Aq | ∃` ∈ Al : Rw = M`}

where R ∈ Dg×q and M ∈ Dg×l. Then there exists
a kernel representation of B.

4.4 Input-output structures and autonomy

Let R ∈ Dp×q be a full row rank representation
of B. Then there exists a p× p submatrix P of R
of full rank. Without loss of generality, arrange
the columns of R such that R = [−Q,P ]. Let
w = [uT , yT ]T be partitioned accordingly. Then
the system law Rw = 0 takes the form Py = Qu.
If m = q − p > 0, then this is called an input-
output structure of B and H = P−1Q ∈ Kp×m is
called its transfer matrix. The term input-output
structure is justified by the fact that

∀u ∈ Am∃y ∈ Ap : Py = Qu. (7)

Indeed, the operator P : Ap → Ap is even
surjective, i.e., for all v ∈ Ap there exists y ∈ Ap
such that Py = v, and thus this is true, in
particular, for v = Qu. If (7) holds, one says
that u is a vector of free variables of B. A system
without free variables is called autonomous. This
is formalized in the following definition.

Definition 1. The behavior B is called autono-
mous if there exists no 1 ≤ i ≤ q such that the
projection onto the i-th component

πi : B → A, w 7→ wi

is surjective.

Corollary 4. The following are equivalent:

(1) B is autonomous;
(2) B can be represented by a square matrix of

full rank;
(3) M is torsion.

Theorem 4. The following are equivalent:

(1) B is autonomous;
(2) there exists a finite (discrete) set E ⊂ R such

that for all open intervals I ⊂ R \ E, and all
w ∈ B that are smooth on I, it holds that

w|J = 0 ⇒ w|I = 0

for all open intervals J ⊆ I.

Examples:

• Consider R = d
dt + 1

t . Put E = {0}. On every
interval I ⊂ R \E on which w is smooth, one
has w(t) = c

t for some c ∈ R. In spite of its
singularity at zero, the function w(t) = 1

t can
be interpreted as a distribution on R.

• Consider R = d
dt + 1

t3 . Set E = {0}. The
solutions take the form w(t) = ce

1
2t2 . In

contrast to the previous example, it is known
that there exists no distribution that coin-
cides with the regular distribution generated
by w(t) = e

1
2t2 on R \ {0}. This shows that

the set of distributions is not an injective
cogenerator as a K[ ddt ]-module.

• Consider R = d
dt −

1
t . Again one puts E =

{0}. The solutions are w(t) = ct. Here there
exist solutions that are smooth on all of R,
but also any function of the form

w(t) =
{
c1t for t < 0
c2t for t > 0

where c1, c2 ∈ R is a solution.
• Consider R = d

dt −
1
t3 . Set E = {0}. The

solutions are given by w(t) = ce−
1

2t2 . Putting
w(0) := 0, these solutions are smooth on all
of R, even if one selects different values of the
constant c for t > 0 and t < 0.

• Consider R = d
dt + 2t

(1−t2)2 . Put E = {±1}. A
solution is given by

w(t) =

{
e
− 1

1−t2 for − 1 < t < 1
0 otherwise

which is smooth on all of R. This exam-
ple shows that an autonomous equation may
possess non-zero solutions of compact sup-
port.



4.5 Image representations and controllability

One says that the behavior B admits an image
representation if there exists a matrix M ∈ Dq×l
such that

B = {w ∈ Aq | ∃` ∈ Al : w = M`}. (8)

Corollary 5. The following are equivalent:

(1) B admits an image representation;
(2) any kernel representation matrix of B that

has full row rank is right invertible;
(3) M is free.

Definition 2. The system B is called controllable
if for all w1, w2 ∈ B and almost all t0 ∈ R, there
exists w ∈ B, an open interval t0 ∈ I ⊆ R such
that w1, w2, w are smooth on I, and τ > 0 with
t0 + τ ∈ I such that

w(t) =
{
w1(t) if t < t0
w2(t) if t > t0 + τ

for all t ∈ I.

Theorem 5. B is controllable if and only if it
admits an image representation.

Corollary 6. There exists a largest controllable
subsystem Bc of B, and B can be decomposed
into a direct sum B = Ba ⊕ Bc, where Ba is
autonomous.

This decomposition corresponds to (4). Note that

Ba ∼= HomD(tM,A)
∼= HomD(D/Dd,A) ∼= {y ∈ A | dy = 0}

and

Bc ∼= HomD(M/tM,A)
∼= HomD(D1×m,A) ∼= Am.

4.6 Observability

Let R = [R1, R2] and let w = [wT1 , w
T
2 ]T be

partitioned accordingly. One says that w1 is ob-
servable from w2 in R1w1 + R2w2 = 0 if w1 is
uniquely determined by w2. Due to linearity, this
is equivalent to

B1 := {w1 ∈ Aq1 | R1w1 = 0} = {0}.

Corollary 7. Let B be given by Rw = R1w1 +
R2w2 = 0. Then w1 is observable from w2 if and
only if R1 is left invertible.

An image representation (8) is called observable
if ` is observable from w in w = M`. If B possesses

an image representation at all, then it also admits
an observable image representation.

Corollary 8. B is controllable if and only if it
possesses an observable image representation.

4.7 State space systems

For state space systems, one recovers the well-
known generalizations of the Kalman controllabil-
ity and observability criteria to time-varying sys-
tems. For brevity, only the controllability results
are presented; the observability side is analogous.

Corollary 9. A state space system

ẋ(t) = A(t)x(t) +B(t)u(t)

where A ∈ Kn×n and B ∈ Kn×m, is controllable
if and only if

K=
[
B, (A− d

dt )B, . . . , (A− d
dt )

n−1B
]
∈Kn×nm

has full row rank.

This follows from the fact that the right invert-
ibility of

R =
[
d
dtI −A, −B

]
over D = K[ ddt ] is equivalent to the right invert-
ibility of K over K.

Similarly, there exists a generalization of the
Kalman controllability decomposition. Note that
ẋ = Ax+Bu becomes

ż = T−1(AT − Ṫ )z + T−1Bu

if one sets x=Tz for some non-singular T ∈Kn×n.

Corollary 10. Let a state space system be given
by A ∈ Kn×n and B ∈ Kn×m. There exists a
non-singular matrix T ∈ Kn×n such that

T−1(AT − Ṫ ) =
[
A1 A2

0 A3

]
and T−1B =

[
B1

0

]
where the state space system given by A1 ∈ Kr×r,
B1 ∈ Kr×m is controllable.

Example: Returning to the matrix R from (1),
consider the behavior B that consists of all
[x1, x2, u]T with ẋ(t) = A(t)x(t)+B(t)u(t), where

A(t) =
[

0 1
−1 0

]
and B(t) =

[
− cos(t)

sin(t)

]
.

In view of the Jacobson form computed earlier,
this behavior is not controllable. This is in accor-
dance with the Kalman-like controllability test,



because in the present example, (A− d
dtI)B = 0,

and hence rank(K) = 1. With the transformation
z = Tx, where

T =
[
− cos(t) sin(t)

sin(t) cos(t)

]
,

one obtains the Kalman decomposition

ż1 = u, ż2 = 0.

The equation ż2 = 0 implies that

sin(t)x1(t) + cos(t)x2(t) = const.

along any trajectory of the system, making it in-
tuitively clear that the system cannot be control-
lable. Algebraically speaking, [(sin(t), cos(t), 0)]
is a torsion element of M. In other words,
sin(t)x1(t) + cos(t)x2(t) is an autonomous ob-
servable (Chyzak et al., 2003; Pommaret and
Quadrat, 1999) of the system. On the other hand,
note that

R(t0) =
[
d
dt −1 cos(t0)
1 d

dt − sin(t0)

]
∈ R[ ddt ]

2×3

is right invertible for all t0 ∈ R, which corresponds
to the observation that for all t0, the matrix pair
A(t0) ∈ R2×2, B(t0) ∈ R2×1 is controllable.

The controllable part of B is given by the equa-
tions ż1 = u, z2 = 0, where z1, z2 are as de-
fined above. This corresponds to setting the au-
tonomous observable z2 to zero.

CONCLUSION AND FUTURE WORK

In this paper, the foundations of a new algebraic
analysis approach to the control theory of linear
time-varying systems have been laid. Based on a
normal form for matrices over the ring of linear
ordinary differential operators with coefficients in
a differential field such as the rational or meromor-
phic functions, the basic systems theoretic prop-
erties have been characterized, and the results are
strikingly similar, to a large extent, to the ones
that are well-known for linear ordinary differential
equations with constant coefficients.

The author would like to thank an anonymous ref-
eree for pointing out that the theory of state repre-
sentations and Markovian systems carries over, to
some extent, to the time-varying setting treated
in this paper. However, a detailed treatment of
these issues requires several concepts that have
not been addressed here, such as row-proper rep-
resentations, input-output structures with proper
transfer matrices, and realization theory. Since the
coverage of these topics would go beyond the space
limitations of this article, these questions will be
addressed in a separate paper (Zerz, 2005b).
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