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Abstract: Tilting around the foot edges is rarely considered in the modeling of
walking robots. This paper uses a hybrid modeling framework to account for
different possible ground contact situations of a robot foot. Heuristic trajectory
planning is discussed for a robot with five joints and two feet and a method
to compensate deficiencies of the planned trajectories by controlling the ZMP
is introduced. Copyright c©2005 IFAC

Keywords: Trajectory Planning, Hybrid Systems

1. INTRODUCTION

Most trajectory planning methods for biped
robots neglect tilting around foot edges. Control
strategies that rely on precomputed trajectories,
avoid tilting by an appropriate higher-level control
law, see Hirai et al. (1998). However, no strategies
are known, that apply if accidental tilting occurs.

Incorporating controlled tilting as a regular state
into the trajectory planning process could enhance
the flexibility of biped robots. Nishiwaki et al.
(2002) added toe joints to their humanoid robot
to take advantage from this degree of freedom.

Considering configurations with non-flat ground
contact of a foot enhances the number of possible
ground contact situations of the total system.
Then, conditions for transition between differ-
ent contact situations must be formulated. These
transition conditions include collision of the foot
with the environment, which causes discontinuous
behavior. We therefore choose a hybrid modeling
framework, see e.g. Buss et al. (2002), to allow for
discontinuities in the model of a mechatronic sys-

tem, that still acts continuous almost everywhere
else.

As an experimental platform, we consider a
simple-structured biped robot with five actuated
joints and two feet, thus having a variety of possi-
ble ground contact configurations. For this robot,
trajectories with planned and well defined tilting
motions are examined. For a similar robot Albro
and Bobrow (2004) use a purely continuous mod-
eling framework, that models ground contact by
introducing spring-mass-damper-systems. Based
on the model, optimal motions are determined.
Hardt and von Stryk (2002) present an optimal
control algorithm for general systems with hybrid
structure and apply it e.g. to multiped walking
machines, but without considering tilted contact
states.

Our approach to determine hybrid trajectories
is heuristic and does not provide optimal tra-
jectories. The desired trajectories are designed
in repeated simulation experiments by variation
of parameters of predefined trajectories for the
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Fig. 1. Left: Robot with four links, five actuated joints and two feet. Right: Schematic illustration as basis
for modeling. The generalized coordinate vector q = (ξ, η, α, β1, . . . , β5)

T is defined as pictured.

actuated joints. To compensate for deficiencies,
a correcting controller is introduced that acts in
the motion phases with stable ground contact and
keeps the stable contact phase invariant by ZMP
manipulation. The correcting method is related to
the Dynamics Filter Method that was proposed by
Yamane and Nakamura (2003) and the trajectory
planning method for biped robots of Kondak and
Hommel (2003).

For the organization of this paper: In Sec. 2
we introduce the robot and establish the hybrid
model. The heuristic trajectory planning method
is presented in Sec. 3 where we compute stepover
and walking trajectories.

2. MODELING

This paper considers a robot that moves only in
a two-dimensional plane. The robot consists of
five actuated (motor-driven) joints, four links, and
two feet arranged as sketched in Fig. 1. The foot
with ground contact at the initial time is termed
reference foot in the following.

The links are constructed equal and have length
ll = 0.205 m and mass ml = 0.107 kg. The feet
have length lf = 0.2 m, height hf = 0.00706 m
and mass mf = 0.299 kg. For simulation, mass,
length, mass center and inertia matrix of the links
are taken from a CAD-model of the experimental
platform. Only the motors are neglected in the
presented modeling and trajectory planning. As
a consequence the model is symmetric concerning
both, left and right tilting, and the exchange of
reference foot and opposite foot.

Four different ground contact situations are pos-
sible for each foot: One foot has either flat ground
contact, is tilted around the left or right foot
edge, or does not have contact with the ground
at all. Tilting is defined as a free rotational mo-
tion around a foot edge. The combination of the
contact situations of the single feet result in 16
possible configurations of the whole robot. For
simulation purposes the total amount of config-
urations is reduced to a subset of relevant config-
urations where at most one foot has contact at

the same time. It results in only seven possible
contact configurations, as illustrated in Fig. 2.

The system behavior is mainly continuous, char-
acterized by ordinary differential equations, that
are switched subject to the actual contact situa-
tion. Switching between the contact situations is
triggered by the orbit crossing transition surfaces,
that model for example the touching of the ground
of another foot edge. Discontinuities in the orbit
are then allowed to model collisions. Systems,
that combine continuous and discrete behavior are
defined as hybrid systems. Therefore, the hybrid
modeling notation proposed in Buss et al. (2002)
is applied as a basis for simulation and trajectory
planning.

2.1 Hybrid State Vector

A state vector at a given time constitutes the
evolution of the state of a dynamical system for
all future times, if the system input is known. The
hybrid state vector

ζ =





q

q̇

z



 ∈ R
16 × N

for the considered system is composed of a contin-
uous part q = (ξ, η, α, β1, . . . , β5)

T ∈ R
8 with its

derivative q̇ and a discrete part z ∈ N, where the
value of the discrete variable z stands for the con-
tact situation, see Fig. 2. In the next subsection
the continuous part, i.e. the differential equation
for each contact situation, is derived. Then the
transition conditions and the discontinuous tran-
sition behavior are discussed.

2.2 Continuous Model

A differential description is established for the
flying system (z = 0), the contact situation with
stable contact on the reference foot (z = 2)
and for the contact state where the system tilts
around the left edge of the reference foot (z =
3). The descriptions for the remaining contact
states use the same equations with appropriate
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Fig. 2. Transition structure of the contact situations. On the one hand a grouping into situations where
the “black” reference foot (left box), where the “white” foot is (right box) and where no foot has
contact (top) is done. On the other hand contacts with no constraints (top), two constraints (middle)
and three constraints (bottom) are distinguished. Conditions for contact situation changes are either
of dynamic nature (ZMP, force in y-direction) or of kinematic nature (foot touches ground). For
contact state transitions, where the number of active constraints increases, collisions occur.

state transformations. This is possible due to the
symmetry of the construction.

At first, we have to obtain a set of equations of
motion for the unconstrained robot (flight phase),
e.g. by applying the Euler-Lagrange Method. A
Lagrange function L = U − V is composed of the
total kinetic energy U and the total potential en-
ergy V of the robot and Euler-Lagrange Equations
are applied:

d

dt

∂L

∂q̇i

−
∂L

∂qi

= τi, i = 1, . . . , 8

This results in equations commonly written as

M(q)q̈ + N(q, q̇) + G(q) = τ , (1)

where M is the mass matrix, in N we collect
the terms of coriolis and centrifugal forces and
G describes gravity. The input torque is τ =
(0, 0, 0, τ1, . . . , τ5), since only the joints are ac-
tuated. The torque τi is the control input for the
i-th joint.

The equations of motion (1) for a flying system
are the basis for the derivation of the dynamical
equations for any kind of ground contact. Ground
contact is then introduced by algebraic constraints
to the equations of motion for the unconstrained
system. For example for stable contact with the
ground, the reference foot has zero velocity rela-
tive to the ground. Therefore the constraints are

ξ̇ = 0, η̇ = 0, α̇ = 0,

or expressed with the appropriate Jacobian J as

J q̇ =





1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0



 q̇ = 0. (2)

Accordingly for tilted contact the constraints are

ξ̇ = 0, η̇ = 0. (3)

The transposed Jacobian matrix J for the con-
straint condition scaled by the multiplier λ is
added to the equation of motion (1), resulting in

M(q)q̈ + N(q, q̇) + G(q) = τ + JT (q)λ. (4)

For stable ground contact λ = (fx, fy, τz)
T is the

vector of ground contact forces and moments. The
combination of (4) and the derivative of (2),

J q̈ + J̇ q̇ = 0,

results in the differential equation for the system
with stable ground contact and algebraic equa-
tions for the constraint forces λ. See Murray et al.
(1996) for a discussion of the derivation of equa-
tions of motion.

The set of continuous systems is linked by the
discrete aspect of the system.

2.3 Discrete Model

The contact state z = i transforms into the
contact state z = j at a time t, whenever a
transition surface function sij(t, ζ, τ ) = 0 equals
zero. Then the hybrid state ζ+ immediately after
the transition is calculated from ζ−, which is the
hybrid state immediately before the transition.



Two classes of transition conditions arise for the
modeled robot.

One transition type is the onset of tilting from
an initially stable ground contact situation or the
onset of flying from an initially stable or tilted
contact situation. These transitions have in com-
mon, that the state transforms smoothly and only
the discrete state variable z changes its value. To
detect the onset of tilting we employ the Zero Mo-
ment Point (ZMP), see Vukobratovic et al. (2001),
to derive a condition of the form sij(t, ζ, τ ) = 0.
The ZMP is the point on ground level, where
the ground reaction force acts to compensate all
horizontal moments and thus keeps the system in
balance. If the ZMP leaves the area covered by
the foot plate (supporting area), balance is lost
and hence the system starts to tilt. The ZMP is
calculated from the vertical contact force fy and
from the contact moment µz, whereas only the
vertical contact force fy is used to detect the onset
of a ballistic phase.

The second kind of transition is the touch down
of a foot edge, that had no ground contact before.
This occurs e.g. when the robot lands from a
ballistic phase, or when the stance foot changes.
These transitions have in common that collisions
have to be considered and modeled, resulting in
discontinuous behavior. Conservation of angular
momentum is chosen as collision model for an
instantaneous modeled collision, which results in
discontinuous behavior of the joint velocities q̇+ =
Φ(q, q̇−), see Grizzle et al. (2001). The equations
for the transition surfaces sij = 0, that model
the touch down conditions are obtained from the
kinematic equations of the positions of the foot
edges.

The hybrid model presented in this section is used
for simulative evaluation of the control algorithms
in the following.

3. TRAJECTORY PLANNING

Optimal trajectory planning for hybrid walking
machines is difficult, especially in the presence of
nonactuated motion phases and variable, state-
dependant transition times. Therefore we choose
as a first step a heuristic approach to perform
experiments in hardware.

In this work we focus on trajectories, where tilting
motion phases and stable motion phases alternate.
We have chosen a stepover motion and a walking
motion for the following presentation.

The trajectories for the actuated joints are chosen
periodic, depending on parameters. To achieve a
hybrid periodic motion the parameters are varied
and the effect is observed in simulation experi-
ments. This intuitive trajectory planning method

requires a good guess of the parameter-dependant
trajectories and often unwanted behavior cannot
be removed, since the only degree of freedom are
parameters and not the overall shape of the tra-
jectories. Therefore insufficiencies in this heuristi-
cally planned trajectories are compensated by an
additional higher level corrective control, that acts
only in the stable contact phase.

3.1 Stepover Motion

The planar robot is to perform a walking motion,
where the swing foot is moved over the support
foot passing through the singular configuration,
see Fig. 3. This motion is in the following referred
to as “stepover motion”. For a stepover motion
we define the actuated joint angles to follow co-
sine shaped trajectories. The amplitudes and the
frequencies of the cosines are tuned in simulations.

In Fig. 4 details for the resulting stepover motion
are shown. The motion of the total robot, and in
particular the trajectory of the non-actuated de-
gree of freedom α, is a consequence of controlling
the individually actuated joints on the predefined
trajectories.

We use a computed torque control law for the
tracking of desired trajectories of the actuated
joints. For the five actuated joints the desired

trajectories are denoted (βd, β̇
d
, β̈

d
). If the equa-

tions of motion in the stable contact phase are
denoted

Msβ̈ + Ns + Gs = τ (5)

the choice of

τ = Msv + Ns + Gs

linearizes (5) resulting in decoupled linear equa-
tions

β̈ = v,

where v is the control input. Choosing

v = β̈
n

= β̈
d

+ KD(β̇
d
− β̇) + KP (βd − β) (6)

leads to tracking of the desired trajectory, where
KD and KP characterize the dynamic properties.
The controller (6) is termed nominal controller in
the following.

3.2 Corrective Control

Due to the non-optimal trajectory planning, the
robot shows undesired behavior after landing. As
can be seen in Fig. 4, the robot does not reach
a stable contact situation and cycles between
tilted right and tilted left after landing. Finally
the robot falls down, which is seen in Fig. 3.
A model based control approach is applied to
prevent undesired leaving of the stable ground



Fig. 3. Snapshot Series of simulation results for stepover trajectory. Top: The robot falls if no corrective
control is applied. Bottom: Corrective control is active.

contact state. This is closely related to the Dy-
namics Filter Method that was introduced by
Yamane and Nakamura (2003) to make improp-
erly planned trajectories applicable to locomotion
systems.
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Fig. 4. Details to the snapshot series in Fig. 3.
Circled numbers indicate contact situations
z. Top: Tilting angle α without corrective
control. Although the robot is landed, tilting
does not stop (α > 0: tilting left, α < 0: tilt-
ing right). Middle: Tilting angle α with cor-
rective control. Bottom: Zero Moment Point,
grey shaded is the activity time of the correc-
tive controller.

The robot leaves the stable contact phase and
starts tilting if the ZMP crosses the left or right
edge of the supporting area. If tilting must be
avoided, then a controller has to supervise the
ZMP and has to take corrective action if the
ZMP leaves a subset of the supporting area. The
equation for the ZMP is written as

pzmp =
µz

fy

=
µz,0(q, q̇) +

∑

µz,i(q, q̇)q̈i

fy,0(q, q̇) +
∑

fy,i(q, q̇)q̈i

. (7)

It is used, that generalized forces are linear in the
accelerations, where the coefficients µz,i and fy,i

depend on the positions q and the velocities q̇.
The stability condition for the considered planar
robot is

b∗ ≤ pzmp ≤ b∗

where b∗ is the lower bound of a security subset
of the supporting area and b∗ is the upper bound.
Thus if the ZMP with the nominal controller is
about to leave the supporting area, a new control
moment τ has to be determined, that either leads
to

pzmp = b∗ or pzmp = b∗. (8)

Eq. (8) are linear equations for the accelerations
β̈i that have an infinite number of solutions for
β̈ = (β̈1, . . . , β̈5)

T . The next step is to determine

one solution β̈
c

of (8) and to adapt the control

law to track the corrective acceleration β̈
c
.

First we will discuss the choice of a solution of (8)
for the lower bound. It is reminded, that we need
a solution for β̈ of the equation

5
∑

i=1

(µz,i − fy,i)β̈i = Aβ̈ = b∗ fy,0 − µz,0, (9)

which results from inserting (7) in (8). One pos-
sibility is to choose the solution of (9), that is
closest in euclidian norm to the solution, that the
nominal controller proposes. Formally this is the
solution β̈

c
of (9), with

β̈
c

= argmin
β̈

‖β̈ − β̈
n
‖2. (10)

The minimal norm solution is obtained by Pseu-
doinverse application. The matrix A# is the pseu-
doinverse matrix of A, and the minimal norm
solution for the cost function (10) is

β̈
c

= A#(b∗fy,0 − µz,0) + (I − A#A)β̈
n
,

where I is the identity matrix.

To achieve exact tracking of desired accelerations
the computed torque controller is adapted. In
motion phases, where the ZMP must be corrected,
the linear control input is chosen v = β̈

c
instead

of v = β̈
n
, as given in (6).

For trajectories, where tilting is in general al-
lowed, activity of the tilting avoidance controller
must be restricted to time ranges, where tilting is
not wanted. This is in particular after collisions,
that means, when the control error e = KP (βd −

β) + KD(β̇
d
− β̇) is large.

A second possibility to choose a solution of (9) is
related to the approaches by Hirai et al. (1998),
where the ZMP, if it is too large or too small
is corrected by a correcting motion only in the
base link. This approach is comprised in our
approach, if β̈2, . . . , β̈5 are determined by the
nominal controller and only β̈1 is adapted to keep
the ZMP on the margin of the stability region.



Fig. 5. Snapshot Series of simulation results for walking trajectories. The robot falls, if no corrective
control is applied (top).

3.3 Walking

In this example we present heuristically deter-
mined trajectories for a walking motion. Like in
the previous example periodic parameter depen-
dent trajectories for the actuated joints are cho-
sen and the parameters are tuned by inspection
in simulation experiments. There are parameters,
where the walking cycle is periodic and stable,
but there are also parameters, where the robot
falls down. The reason for falling is mostly, that
undesired tilting around the foot edges occurs,
therefore the corrective controller introduced in
the section before is used. In Fig. 5 a snapshots
series of such a periodic walking cycle is shown.
Details for the simulation experiment are given in
Fig. 6.
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Fig. 6. Details to the snapshot series in Fig. 5.
Top: Repetitive tilting destabilizes the peri-
odic motion, the robot falls. Middle/bottom:
Regular and stable behavior is achieved by
corrective control in stable contact phases.

4. CONCLUSIONS

In this paper we presented an approach to deter-
mine periodic trajectories for a hybrid robot with
small computational effort, if the basic structure
of the desired motion is known. The different
ground contact situations are considered in a hy-
brid model. Since the heuristic planning process
often does not deliver feasible trajectories, a cor-
rective controller is presented, that acts in the
motion phase with stable ground contact of one

foot and manipulates the ZMP. The method was
illustrated for a stepover and a walking motion.

For the next time, we plan to automate the
manual parameter tuning of the trajectory design
by formulation as optimal control problem. In
parallel hardware experiments will be performed.
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