
DEDUCTIVE CAUSE-CONSEQUENCE ANALYSIS
(DCCA)

Lehrstuhl für Softwaretechnik und Programmiersprachen,
Universität Augsburg, D-86135 Augsburg

{ortmeier, reif, schellhorn}@informatik.uni-augsburg.de

Frank Ortmeier, Wolfgang Reif and Gerhard Schellhorn

Abstract: In this paper we present a new form of formal safety analysis: deductive
cause-consequence analysis (DCCA). Deductive Cause-Consequence Analysis is a way
to use formal methods for safety analysis. It substitutes error-prone informal reasoning
by mathematical proofs. DCCA allows to rigorously prove whether a failure on
component level is the cause for system failure or not. DCCA is a formal generalization
of the two most common safety analysis techniques: failure modes and effects analysis
(FMEA) and fault tree analysis (FTA).
We apply the method to a real world case study: the height control in the Elbe-tunnel
in Hamburg. This shows how formal safety analysis with DCCA helps identifying
design flaws and weaknesses in a real-world industrial system. Copyright c©2005 IFAC

Keywords: formal methods, safety critical system, safety analysis, failure modes and
effects analysis, fault tree analysis, dependability

1. INTRODUCTION

The central question of safety analysis is to deter-
mine what components of a safety-critical system
must fail to allow the system to cause damage.
Most safety analysis techniques rely only on in-
formal reasoning techniques which depend heavily
on the skill and knowledge of the safety engineer.
Some of these techniques have been formalized.

In this paper we present a new safety analysis
technique: Deductive Cause-Consequence Analy-
sis (DCCA). This technique is a generalization of
well-known safety analysis methods like FMEA
[McDermott et al. (1996)][IEC (1998)], FMECA
[ECSS (2001)]and FTA [Vesley et al. (2002)]. The
logical framework of DCCA may be used to rigor-
ously verify the results of informal safety analysis
techniques. It is also strictly more expressive (in
terms of what can by analyzed) than traditional
FMEA. We show, that the results of DCCA have
the same semantics as those of formal FTA [Schell-
horn et al. (2002)]. Because of this DCCA may be

used to verify fault trees without formalizing the
inner nodes of the tree.

In Sect. 2 the semantics of DCCA is presented.
A comparison to FMEA and FTA is done in
Sect. 3. We illustrate the technique on a real
world case study: the height control system of the
Elbe-tunnel in Hamburg (see Sect. 4). In Sect. 5
some related approaches are discussed and Sect. 6
summarizes the results and concludes the paper.

2. DCCA

In this section we describe the formal semantics of
DCCA. The formalization is done with Computa-
tional Tree Logic(CTL) [Emerson (1990)]. We use
finite automata as system models. The use of CTL
and finite automata allows to use powerful model
checkers like SMV [McMillan (1990)] to verify the
proof obligations.

In the following we assume that a list of hazards
on system level and a list of possible basic com-

ponent failures modes is given. Both data may
be collected by other safety analysis techniques
like failure-sensitive specification [Ortmeier and
Reif (2004a)] or HazOp [Kletz (1986)]. We assume
that system hazards H and primary failure δ are
described by predicate logic formula. This is true
for most practical problems. We call the set of all
failure predicates ∆.

Now, we define a temporal logic property which
says, whether a certain combination of failures
may lead to the hazard or not. We call this
property criticality of a set of failure modes.

Definition 1. critical set / minimal critical set
For a system SYS and a set of failure modes ∆

a subset of component failures Γ ⊆ ∆ is called
critical for a system hazard, which is described by
a predicate logic formula H if

SY S |= E(λ until H) where λ :=
∧

δ∈(∆\Γ)

¬ δ

We call Γ a minimal critical set if Γ is critical and
no proper subset of Γ is critical.

Here, E(ϕ until ψ) denotes the existential CTL-
UNTIL-operator. It means there exists a path in
the model, such that ϕ holds until the property
ψ holds. The property critical set translates into
natural language as follows: there exists a path
such that the system hazard occurs without the
previous occurrence of any failures except those
which are in the critical set. In other words this
means, it is possible that the systems fails, if only
the component failures in the critical set occur.
Intuitively, criticality is not sufficient to define a
cause-consequence relationship. It is possible, that
a critical set comprises failure modes, which have
nothing to do with the hazard.

Therefore, the notion minimal critical set also
requires, that no proper subset of it is critical.
So minimal critical sets really describe what we
would expect for a cause-consequence relationship
in safety analysis to hold: firstly the causes may
- but not necessarily - lead to the consequence
and secondly the causes are necessary to allow
the consequence to happen. So the goal of DCCA
is to find minimal critical sets of failure modes.
Testing all sets by brute force would require an
effort exponential in the number of failure modes.

However, DCCA may be used to formally verify
the results of informal safety analysis techniques.
This reduces the effort of DCCA a lot, because
the informal techniques often yield good “initial
guesses” for solutions. Note, that the property
critical is monotone with respect to set inclusion
i.e. ∀Γ1,Γ2 ⊆ ∆ : Γ1 ⊆ Γ2 ⇒ (Γ1 is critical set ⇒

Γ2 is critical set). This helps to reduce proof ef-
forts a lot.

3. COMPARISON TO OTHER SAFETY
ANALYSIS METHODS

We can now identify different cases according
to the number of elements in the set of failure
modes which is analyzed and relate them to other
existing safety analysis techniques.

|Γ| = 0
If the empty set of failure modes is examined, then
the proof obligation of minimal criticality corre-
sponds to the verification of functional incorrect-
ness. Minimality is of course satisfied (the empty
set does not have real subsets). The property of
criticality states, that there “exists a path where
no component fails but eventually the hazard oc-
curs” (in CTL: EF H). This is the negation of the
standard property of functional correctness “on all
paths where no component fails, the hazard will
globally not occur” (in CTL: AG ¬H). In other
words, if the empty set can be proven to be a
critical set, then the system has design errors and
is functionally incorrect.

|Γ| = 1
The analysis of single failure modes corresponds
to traditional FMEA. Traditional FMEA analyzes
the effects of a component failure mode on the
total system in an informal manner. If the failure
modes appears to be safety critical than this
cause-consequence relationship is noted as one
row of a (FMEA) spreadsheet. If a singleton
set is minimal critical for a hazard H, then a
correct FMEA must list the hazard H as effect of
the analyzed failure mode. Note, that functional
correctness is a pre-condition for formal FMEA. If
the system is not functionally correct, then there
will be no singleton sets of failure modes which
are minimal critical.

|Γ| > 1
This is a true improvement to FMEA. Combina-
tions of component failure modes are traditionally
only examined by FTA. FTA analyzes top-down
the reasons of system failure. Cause and conse-
quence are linked by certain gates. The gates of

a fault tree state if all causes (AND-gate C) or

any of the causes (OR-gate C) are necessary to
allow the consequence to occur. Iteration builds
a tree like structure where the root is the system
hazard and the leaves are component failure.

The result of FTA is a set of so called minimal cut
sets. These sets may be generated automatically
from the structure of the tree. Each minimal cut
set describes a set of failure modes, which together
may make the hazard happen. This corresponds to
the definition of minimal critical sets obtained by

DCCA. So FTA may be seen as a special case of
DCCA. An introduction to FTA may be found in
[Vesley et al. (2002)].

FTA has been enhanced with formal semantics.
Formal FTA allows to decide whether failure
modes have been forgotten or not. The idea is here
to assign a temporal logic formula to each gate. If
this formula is proven correct for the system, then
the gate is complete. This means no causes have
been forgotten. An example is given in figure 1.

BfailsAfails

C

H

A ((Afails ∧Bfails) P H)

Fig. 1. Fault tree AND-gate and formalization

The figure shows a synchronous cause-consequence
AND-gate. The semantics is that both reasons
– component A fails and component B fails –
must occur simultaneously , before the hazard
may occur. Here, A(ϕ P ψ) denotes the derived
CTL-operator PRECEDES, which is defined as
¬E(¬ϕ until (ψ ∧ ¬ϕ)). Informally PRECEDES
means, that whenever ψ holds, ϕ must have
happened before. Altogether formal FTA distin-
guishes 7 different types of gates, which reflect
temporal ordering, environment constraints and
synchronous vs. asynchronous dependencies be-
tween cause and consequences. A detailed descrip-
tion of formal FTA may be found in [Thums and
Schellhorn (2003)]. One of the main results of
FTA is the minimal cut set theorem. This theorem
states, that for a complete fault tree the preven-
tion of only one failure mode of every minimal
cut set, assures that the system hazard will never
occur. A fault tree is called complete, if all its
gates have been proven to be complete.

DCCA may be used to verify the completeness
of a fault tree analysis as well. To apply DCCA
to FTA we must first introduce the notion of a
complete DCCA. We call a DCCA complete if
all minimal critical sets have been identified. If a
DCCA has been shown to be complete, then it is
proven, that the minimal critical sets of the DCCA
have the same meaning as the minimal cut sets of
a fault tree done with formal FTA. In particular
the following theorem holds:

Theorem 1. Minimal critical sets
For a complete DCCA prevention of one element
of every minimal critical set will prevent the haz-
ard H from occurring.

This is the same property that holds for a formal
fault tree analysis with the semantics of [Thums
(2004)]. However there is a difference as DCCA
is more precise. Formal FTA may yield weaker
cut sets than DCCA. As a simple example take a

system with only one minimal cut set {A,B} (for
e.g. Afails and Bfails are two redundant units).
An intuitively correct fault tree is shown in Fig.
1. But formal FTA may miss the opportunity to
to find this cut set. Instead a fault tree consisting
of a single OR-gate can be proven complete (see
Fig. 2) and thus formal FTA yields two singleton
minimal cut sets {Afails} and {Bfails}. This may

BfailsAfails

C

H

A ((Afails ∨Bfails) P H)

Fig. 2. Incorrect fault tree

make a safe system appear unsafe. The reason is
that the formula of Fig. 2 implies the on of Fig.
1. The underlying problem is that formal FTA
relies on linear time logics. DCCA is defined in
a branching time logic. This allows to distinguish
both cases and yields more precise results than
formal FTA. A second advantage is that DCCA
does not require inner nodes to be formalized.
This is a big advantage in practical applications.
Inner nodes are often very hard to formalize. For
example an inner node of the fault tree of the
example of Sect. 4 is “Timer is started too early”.
Since “too early” refers to the past, this is not
directly expressible in CTL. This problem was
experienced in the case study “Elbe-tunnel” a lot
and was one of the reasons which triggered the
development of DCCA.

A problem of showing completeness of DCCA is
of course the exponential growth of the number
of proof obligations. However, only big minimal
critical sets will result in a lot of proof effort. In
many real applications minimal critical sets are
rather small. In addition, informal safety analysis
helps to find candidates for minimal cut sets
in advance. FTA is one possibility, FMEA is
another. This reduces the combinatorial effort of
checking all possible sets of failure modes a lot.
Finally, monotony of the property critical may be
exploited; if e.g. a singleton set is minimal critical,
then other minimal critical sets will not contain
this element.

4. APPLICATION

As an example for the application of DCCA we
present an analysis of the height control system of
the Elbe-tunnel in Hamburg. For formal modeling
we used finite automata. The proofs were done
using the SMV model checker [McMillan (1990)].

The Elbe-tunnel is a road tunnel which connects
the harbor with the city of Hamburg. The old
tunnel consisted of three tubes with two lanes
each. This tunnel has been enhanced in late 2002
with a new fourth tube. The tunnel comprises a

very complex control system which contains traffic
engineering aspects like dynamic route control,
locking of tunnel tubes, etc. We will consider
only a small part of the whole system, the height
control.

The new tube has been built larger than the
old tubes. This allows overhigh vehicles carrying
goods from the harbor to use the tunnel to reach
the city. The height control system must assure,
that such vehicles may only enter the correct tube.

4 W M

Main−Control

E

Pre−Control

Timer 1

Timer 2

pre

post

leftOD

ODfinal

LB

LB

Zone1
Zone2

ODright

Fig. 3. Layout of the northern tunnel entrance

In the following, we will distinguish between high
vehicles (HVs), which may drive through all tubes
and overhigh vehicles (OHVs), which can only
drive through the new, fourth tube. Figure 3
sketches the layout of the tunnel. The fourth
tube may be cruised from north to south and
the east-tube from south to north only. We focus
our analysis on the northern entrance, because
OHVs may only drive from north to south. The
driving direction on each of the four lanes of the
mid- and west-tube can be switched, depending
on the traffic situation. Flexible barriers, signals
and road fires guide drivers to the tubes, which
are open in their direction.

The system uses two different types of sensors.
Light barriers (LB) are scanning all lanes of one
direction to detect, if an OHV passes. For tech-
nical reasons they cannot be installed in such a
way, that they supervise only one lane. Therefore
overhead detectors (OD) are necessary to detect,
on which lane a HV passes. ODs can distinguish
vehicles (e.g. cars) from high vehicles (e.g. buses,
trucks), but not HVs from OHVs (but light bar-
riers can!). If the height control detects an OHV
heading towards a different than the fourth tube,
then an emergency stop is signaled, locking the
tunnel entrance.

The idea of the height control is, that the de-
tection starts, if an OHV drives through the
light barrier LBpre. To prevent unnecessary alarms
through faulty triggering of LBpre, the detection
will be switched off after expiration of a timer (30
minutes). Road traffic regulations require, that
after LBpre both HVs and OHVs have to drive

on the right lane through tunnel 4. If nevertheless
an OHV drives on the left lane towards the west-
tube, detected trough the combination of LBpost

and ODleft, an emergency stop is triggered. If the
OHV drives on the right lane through LBpost, it
is still possible for the driver to switch to the
left lanes and drive to the west- or mid-tube. To
detect this situation, the height control uses the
ODfinal detector. To minimize undesired alarms
(remember, that normal HVs may also trigger the
ODs), a second timer will switch off detection at
ODfinal after 30 minutes. For safe operation it
is necessary, that after the location of ODfinal it
is impossible to switch lanes. Infrequently, more
than one OHV drives on the route. Therefore the
height control keeps track of several but at most
three OHVs. A formal specification of this system
using finite automata may be found in [Ortmeier
et al. (2003)].

4.1 Primary failure and hazards

There are two different, interesting hazards for
the Elbtunnel height control which we analyzed
- the collision (HCol) of an OHV with the tunnel
entrance and the tripping of a false alarm (HFA).
There exists a variety of failure modes. Besides
the obvious detector errors, another error comes
into play. An OHV may need more than the upper
bound of 30 minutes to travel through one of the
zones. This may be caused by a traffic jam. This is
not a failure in the traditional sense, but rather an
unexpected bad influence from the environment.
However, from a logical point of view it may
be treated in the same way as a (hardware)
component failure. Finally, the misbehavior of
high vehicles must be taken into account.

The component failures may be divided into four
different types: (i)false detection (FD) - The sen-
sor does indicate a vehicle, although there is none.
Possible for all sensors. (ii) miss detection (MD)
- The sensor does not indicate a vehicle, although
there is one. Only possible for OD-type sensors.
(iii) overtime (OT) - Actual driving time of an
OHV exceeds the runtime of a timer. Possible
for zone 1 and zone 2. (iv) high vehicles (HV)
- A high vehicle beneath an overhead detector
is interpreted as an OHV. We write FDfinal as
abbreviation for false detection at overhead de-
tector ODfinal and analogously for all other sen-
sors. Overtime failures can occur in zone 1 and
zone 2. We write OT1 resp. OT2. Note, that the
last item (HV) is not a failure in the traditional
sense, as overhead detectors can not distinguish
between high vehicles and OHVs, high vehicles
at the location of the sensors are (incorrectly)
interpreted as OHVs. For the control system this
has the same effect as a FD of the sensor. Traf-
fic regulations require high vehicle to drive on

the right lane. Because of this we introduce HV-
type error only for ODleft and ODfinal. High
vehicles at ODright are of course modeled (and
may trigger the detector), but are not a failure
as they are part of the expected working environ-
ment of the system. So we get a set of hazards
H = {HCol, HFA} and a set of component failure
modes ∆ = {FDright, MDright, FDleft, MDleft,
HVleft, FDfinal, MDfinal, HVfinal, OT1, OT2,
FDpre, FDpost}.

For any kind of formal safety analysis failure
modes must be integrated in the system model.
The failures are integrated into the formal model
by adding parallel automata and modifying tran-
sition conditions. The automata describe the oc-
currences or absence of the failure mode. Figure 4
show two such failure automata.

yes no

Transient Failure

yes no

Persistent Failure

Fig. 4. Failure automata for transient and persis-
tent failures

The left automaton models a transient failure
which can indeterministically occur and disap-
pear. The right one models a persistent failure.
In the example false detection of the first light
barrier FDpre is a transient failure (e.g. a passing
bird) while false detection at ODleft is normally a
persistent failure (e.g. e.g. rainy weather). Similar
automata may be constructed to reflect mainte-
nance intervals, automatic repair, etc. The pred-
icates δ describing the failure modes can then be
expressed as Failure automatonx = yes.

In a second step the direct effect of this fail-
ure mode must be implemented into the formal
system model. This is usually done by adding
new transitions which can be taken only if the
condition Failure automatonx = yes holds. The
complete system is then the (synchronous) paral-
lel composition of the old system and all failure
automata

4.2 DCCA

When we began with the verification of DCCA
proof obligations we experienced, that even the
empty set a failure modes is critical for the haz-
ard collision. As described in section 2 this cor-
responds to functional incorrectness. Indeed the
presented system was functionally incorrect. The
critical scenario may occur, if two overhigh ve-
hicles pass the first light barrier simultaneously
and travel a very different speeds. A more de-
tailed description of this problem may be found in
[Ortmeier et al. (2003)] where we describe formal
verification of this system in detail.

To go on with the analysis, we marked the si-
multaneous passing of overhigh vehicles through
the first light barrier as an error. This is justified,
as overhigh vehicles are required to drive on the
right anyway. We label this error OHVsim. Now
we could prove, that the empty set is not critical
and thus, that the system is functionally correct.
For singleton sets we could prove that only the
failures MDfinal, OT1, OT2, FDpost and OHVsim

are critical. All minimal critical sets with more
than one element may not include these five failure
modes. Therefore if there exist any such sets they
must be composed only of elements of the other
failure modes. Instead of analyzing in a naive way
all possible combinations we try to rule them out
all at once. We start with the set of all other
possible failure modes. The proof shows that the
set {FDright, MDright, FDleft, MDleft, HVleft,
FDfinal, HVfinal, FDpre} is not critical. Because
of the monotony of the critical set property no
other (minimal) critical sets of failure modes exist
for the hazard collision.

For the hazard false alarm the same analy-
sis yielded a lot of critical singleton sets. We
found the following sets to be minimal criti-
cal: {MDright}, {FDleft}, {HVleft}, {FDfinal},
{HVfinal} and {FDpost}. With a similar proof
strategy as before we could show that these are the
only minimal critical sets. This result is surprising.
A short glance at the control system seems to
show that redundancy has been introduced to
avoid false alarms: the control has been split into
three stages where each stage activates the next
stage and deactivates it after some time. So one
would expect that at least for the hazard false
alarm multiple points of failure would be neces-
sary (for example false detections of both light
barriers within a certain time interval seem to be
necessary for triggering of a false alarm). But this
is not the case. The reason is hidden in the design
of the system. A false detection of both light barri-
ers can be “simulated” by a correct driving over-
high vehicle. Therefore all the redundancy does
not help in improving the system. As a matter
of fact this (previously undiscovered design flaw)
also resulted in bad quantitative approximations.
A quantitative analysis of the system which takes
correct driving overhigh vehicles into account is
presented in [Ortmeier and Reif (2004b)].

In conclusion the example shows that DCCA un-
covered design flaws that might not be discovered
with normal FMEA or FTA. The use of monotony
of critical sets helps a lot in reducing the proof
effort. In the example a complete DCCA done
with naive methodology would have required 213

different proofs. Monotony reduced this to 18
proofs which were proven automatically by SMV
in a few minutes.

5. RELATED WORK

There exist some other methods of formally ver-
ifying dependencies between component failures
and system failure modes. One such technique
is formal FTA [Thums (2004)]. Formal FTA re-
quires, that all inner nodes of a fault tree are
formalized. This can be very time consuming and
difficult (see the example in Sect. 4). A second
problem with formal FTA is, that it relies on uni-
versal theorems. But, proof obligations for gates
must be universal, since only universal properties
can transitively lead to properties for the whole
system. DCCA uses existential proof obligations.
This allows to distinguish whether an (failure)
event is a necessary or sufficient condition. Please
note, that it is not the goal of DCCA to actually
“find/discover” failure modes. Failure modes are
assumed to be known. This is not a restriction
in practical application, as failure modes must
be explicitly integrated into the formal model.
There also exist complementary methods – like
failure-sensitive specification [Ortmeier and Reif
(2004a)] – which allow to systematically find pos-
sible failure modes of components. Another re-
lated approach has been developed in the ESACS
project [Bieber et al. (2002)]. Here again model
checking and FTA is used as basis. The ESACS
approach does not require inner nodes of the fault
tree to be formalized. However, the approach still
relies on linear temporal logics and thus universal
theorems.

6. CONCLUSION

We presented a general formal safety analysis
technique: DCCA. DCCA is a generalization of
the most widely spread safety analysis techniques:
FMEA and FTA. In the formal world, verifica-
tion of functional correctness, formal FMEA and
formal FTA may be found as special cases of
DCCA. So DCCA may be used to verify different
types of safety analysis techniques in a standard-
ized way. The proof obligations of DCCA may be
constructed automatically and the proofs can be
done - for finite state systems - by model checking.
DCCA formalization is strictly more precise than
other formal formal safety analysis techniques like
formal FTA. Theoretically, the effort for DCCA
grows exponentially. But we have not found this
case to happen in real world applications. The
costs are more likely to grow linear (for non re-
dundant systems) or polynomial by n (for systems
with n-times redundancy), if monotony is used.
We showed the application of DCCA to a real
world case study: the Elbe-Tunnel in Hamburg.
DCCA has shown a design error and has rig-
orously proven which sets of failure modes are
critical for a hazard and which are not.

References

P. Bieber, C. Castel, and C. Seguin. Combina-
tion of fault tree analysis and model check-
ing for safety assessment of complex systems.
In Dependable Computing EDCC-4: 4th Euro-
pean Dependable Computing Conference, vol-
ume 2485 of LNCS, Springer-Verlag.

ECSS. Failure modes, effects and criticality anal-
ysis (FMECA). In European Cooperation for
Space Standardization, editor, Space Product
Assurance. ESA Publications, 2001.

E. A. Emerson. Temporal and modal logic. In
J. van Leeuwen, editor, Handbook of Theoret-
ical Computer Science, pages 996–1072. Else-
vier Science Publishers B.V.: Amsterdam, The
Netherlands, 1990.

IEC. IEC 61508-7 - Functional safety of elec-
trical/electronic/programmable electronic safety
systems - Part 7: Overview of techniques and
measures. International Electrotechnical Com-
mission, 1998.

T. A. Kletz. Hazop and HAZAN notes on the
identification and assessment of hazards. Tech-
nical report, The Institution of Chemical Engi-
neers, Rugby, England, 1986.

Robin E. McDermott, Raymond J. Mikulak, and
Michael R. Beauregard. The Basics of FMEA.
Quality Resources, 1996.

K. L. McMillan. Symbolic Model Checking.
Kluwer Academic Publishers, 1990.

F. Ortmeier and W. Reif. Failure-sensitive spec-
ification: A formal method for finding failure
modes. Technical Report 3, Institut für Infor-
matik, Universität Augsburg, 2004a.

F. Ortmeier and W. Reif. Safety optimization: A
combination of fault tree analysis and optimiza-
tion techniques. Technical Report 5, Institut für
Informatik, Universität Augsburg, 2004b.

F. Ortmeier, W. Reif, G. Schellhorn, A. Thums,
B. Hering, and H. Trappschuh. Safety analysis
of the height control system for the Elbtunnel.
Reliability Engineering and System Safety, 81
(3):259–268, 2003.

G. Schellhorn, A. Thums, and W. Reif. Formal
fault tree semantics. In Proceedings of The
Sixth World Conference on Integrated Design
& Process Technology, Pasadena, CA, 2002.

A. Thums. Formale Fehlerbaumanalyse. PhD the-
sis, Universität Augsburg, Augsburg, Germany,
2004. (in German).

A. Thums and G. Schellhorn. Model checking
FTA. In K. Araki, S. Gnesi, and D. Mandrioli,
editors, FME 2003: Formal Methods, LNCS
2805, pages 739–757. Springer-Verlag, 2003.

Dr. W. Vesley, Dr. Joanne Dugan, J. Fragole,
J. Minarik II, and J. Railsback. Fault Tree
Handbook with Aerospace Applications. NASA
Office of Safety and Mission Assurance, Wash-
ington DC 20546, August 2002.

