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Abstract: A class of optimal hybrid control problems involving model and state
jump systems is considered. The calculation of optimal switching times amounts
to minimizing a cost function. A continuous representation of these problems –
based on convergence results – is introduced. This representation simplifies the
study of the initial problem as it is shown, while applying variational formalism
to determine the expression of the gradients of the cost function with respect to
the switching times. An application example is presented and the implementation
of a descent method confirms the validity of the continuous representation.
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1. INTRODUCTION

The study of optimal hybrid control problems
must take into account the discontinuities occur-
ring in the hybrid systems (see for instance Bran-
icky, 1998 and Sussmann, 1999). On a practical
point of view, these discontinuities raise difficul-
ties in solving optimal control problems efficiently
(Shaikh and Caines, 2003; Egerstedt et al., 2003;
Xu and Antsaklis, 2004). For example, while using
the formalism of the calculus of variations (Bryson
and Ho, 1968), discontinuities in the adjoint state
of the hybrid system may occur (Cébron et al.,
1999).

The hybrid systems involved here are controlled –
model and state – jump systems. Given an initial
state, the problem consists in finding switching
times that enable to best approximate a desired
state at the final time. The calculation of the

optimal switching times is set as a minimization
problem of a cost function.

This paper introduces a representation of this
class of optimal hybrid control problems by con-
tinuous optimal control problems. The interest of
this representation – based on convergence the-
orems – lies in the possibility to solve hybrid
problems avoiding difficulties generated by the
discontinuities.

The class of studied optimal hybrid control prob-
lems is introduced in Section 2. The associated
continuous problems are presented and conver-
gence results are given (Section 3). Variational
formalism is then applied to both problems, and
expressions of the gradients with respect to the
switching times are established (Section 4). Fi-
nally, an application example for an optimal hy-
brid control problem with two switching times
and nonlinear subsystems is given. The optimal



switching times are obtained by use of the gra-
dients and of a descent method. This numerical
application shows the practical validity of the
continuous representation (Section 5).

2. HYBRID PROBLEM PRESENTATION

2.1 Studied Systems

The type of systems considered is the following































ẋ(t) = f1
(

t,x(t)
)

if t ∈ [t0, τ1[
x(t0) = x0

ẋ(t) = f2
(

t,x(t)
)

if t ∈ [τ1, τ2[
x(τ1) = x(τ−

1 ) + δ1

ẋ(t) = f1
(

t,x(t)
)

if t ∈ [τ2, tf ]
x(τ2) = x(τ−

2 ) + δ2

(1)

where f1 and f2 are functions defined over [t0, tf ]×
R

d, d ≥ 1, with values in R
d, that are supposed

to be Lipschitzian with respect to their second
variable and continuous. Values t0 and tf are given
in R

+ and jumps δ1, δ2 and initial state x0 are
given in R

d.

System (1) admits a global unique solution defined
over [t0, tf ]. This solution will be denoted x.

Remark 1. It is possible to consider a finite num-
ber of switching times τi and of functions fi, ex-
cept for the complexity of writing. Furthermore,
the results presented here would be valid even if
a control u is introduced in functions fi.

2.2 Cost Function

The problem amounts to finding switching times
τ1 and τ2 that allow the final state x(tf) to be the
closest possible to a desired state xd fixed in R

d.
It is set as a minimization of the cost function J

defined as follows

∀(τ1, τ2) ∈ T J(τ1, τ2) =
1

2
‖x(tf) − xd‖

2
, (2)

where ‖.‖ is the Euclidean norm of R
d and

T =
{

(τ1, τ2) ∈ [t0, tf ] × [t0, tf ], τ1
<− τ2

}

.

The problem then amounts to finding (τ?
1 , τ?

2 )
belonging to T such that

∀(τ1, τ2) ∈ T J(τ?
1 , τ?

2 ) <− J(τ1, τ2) .

3. CONTINUOUS REPRESENTATION AND
CONVERGENCE RESULTS

3.1 Continuous Systems

Let us consider functions f1 and f2 from system
(1). Since it is always possible to define the con-
tinuous function f̃ over [t0, tf ] × R

d × [1, 2] by

∀(t,x, ν) ∈ [t0, tf ] × R
d × [1, 2]

f̃(t,x, ν) = (2 − ν)f1(t,x) + (ν − 1)f2(t,x) ,

assume that there exists an interval [ν1, ν2] and a
continuous function f̃ defined over [t0, tf ] × R

d ×
[ν1, ν2] verifying

f̃(t,x, ν1) = f1(t,x)

and

f̃(t,x, ν2) = f2(t,x) .

System (1) is therefore equivalent to























































ν(t) = ν1 if t ∈ [t0, τ1[
ν(t) = ν(τ−

1 ) + ν2 − ν1 if t ∈ [τ1, τ2[
ν(t) = ν(τ−

2 ) + ν1 − ν2 if t ∈ [τ2, tf ]

ẋ(t) = f̃
(

t,x(t), ν(t)
)

if t ∈ [t0, τ1[
x(t0) = x0

ẋ(t) = f̃
(

t,x(t), ν(t)
)

if t ∈ [τ1, τ2[
x(τ1) = x(τ−

1 ) + δ1

ẋ(t) = f̃
(

t,x(t), ν(t)
)

if t ∈ [τ2, tf ]
x(τ2) = x(τ−

2 ) + δ2 .

(3)

By setting X = (x, ν) and F = (f̃ , 0), system (3)
yields































Ẋ(t) = F
(

t,X(t)
)

if t ∈ [t0, τ1[
X(t0) = X0

Ẋ(t) = F
(

t,X(t)
)

if t ∈ [τ1, τ2[
X(τ1) = X(τ−

1 ) + µ1

Ẋ(t) = F
(

t,X(t)
)

if t ∈ [τ2, tf ]
X(τ2) = X(τ−

2 ) + µ2

where µ1 = (δ1, ν2 − ν1), µ2 = (δ2, ν1 − ν2) and
X0 = (x0, ν1). Associated continuous system can
be defined by (see (Gapaillard, 2004) and Section
3.3)















Ẋ(t) = F
(

t,X(t)
)

+ Ḣn(t − τ1)µ1

+Ḣn(t − τ2)µ2, t ∈ [t0, tf ]
X(t0) = X0 + Hn(t0 − τ1)µ1

+Hn(t0 − τ2)µ2

(4)

where n is a positive integer and Hn is a regular
approximation of the Heaviside function, defined
by

∀t ∈ R Hn(t) =
1

1 + exp(−nt)
.

The global unique solution of system (4), defined
over [t0, tf ], will be denoted Xn .



3.2 Cost Function

The continuous problem – associated to the hy-
brid problem introduced in Section 2 – is set as a
minimization of the cost function Jn defined by

∀(τ1, τ2) ∈ T

Jn(τ1, τ2) =
1

2
‖Xn(tf) −Xd‖

2
(5)

where Xd = (xd, ν1).
The problem amounts here to finding (τ?

1,n; τ?
2,n)

belonging to T such that

∀(τ1, τ2) ∈ T Jn(τ?
1,n; τ?

2,n) <− Jn(τ1, τ2) .

3.3 Convergence Results

System (4) is considered as the continuous rep-
resentation of system (1). This representation is
based on the following convergence theorem.

Theorem 1. Let xn be the first component, with
values in R

d, of Xn.
1. When n tends to infinity, xn(t) converges to-
wards x(t) for all t ∈ [t0, tf ] \ {τ1, τ2} ;
2. When n tends to infinity, the sequence (xn)n>0

converges towards x in Lp
(

]t0, tf [
)

, p ≥ 1 .

Proof. This theorem is a generalization of results
given in (Gapaillard, 2004) and could be proved
the same way.

The cost functions J and Jn defined by (2) and (5)
are continuous over T (Gapaillard, 2003). There-
fore, they reach their minimum values at (τ ?

1 , τ?
2 )

and (τ?
1,n, τ?

2,n) respectively.
Now, since the sequence (τ?

1,n, τ?
2,n)n>1 is bounded,

there exists a subsequence – which we do not
relabel – that converges towards (τ̄1, τ̄2) in T .

In the following, we suppose that τ?
2 < tf and

τ̄2 < tf .

Proposition 1. The sequence
(

Jn(τ?
1,n, τ?

2,n)
)

n>0

tends to J(τ̄1, τ̄2) .

Proof. The same mathematical tools as in (Gapail-
lard, 2004) could be used here to prove this result
(see this reference for technical details).

Theorem 2. If (τ?
1 , τ?

2 ) is supposed to be unique,
then the pairs (τ?

1 , τ?
2 ) and (τ̄1, τ̄2) coincide.

Proof. Let n > 0 . Definition of (τ?
1,n, τ?

2,n) allows
to write

∀(τ1, τ2) ∈ T Jn(τ?
1,n, τ?

2,n) <− Jn(τ1, τ2) . (6)

Point 1 of theorem 1 leads to

∀(τ1 , τ2) ∈ T τ2 6= tf ⇒ {Jn(τ1, τ2) −−−−−→
n→+∞

J(τ1, τ2)} .

According to proposition 1, equation (6) implies
therefore

∀(τ1, τ2) ∈ T , τ2 6= tf , J(τ̄1, τ̄2) <− J(τ1, τ2) ,

and assumptions τ?
2 < tf and τ̄2 < tf allow to

write
(τ?

1 , τ?
2 ) = (τ̄1, τ̄2) ,

since (τ?
1 , τ?

2 ) is supposed to be unique.
The claim is confirmed.

4. CALCULUS OF VARIATIONS

In this section, the formalism of the calculus of
variations is applied to both hybrid and continu-
ous problems. This enables to obtain the expres-
sions of the gradients of J and Jn with respect
to τ1 and τ2. These expressions allow to use a
descent method to minimize the cost functions
(see Section 5).

4.1 Applied to the Hybrid Problem

Consider the solution x of system (1). Terms
x(τ−

i ) and x(τi), i = 1, 2, verify the following
equations

ψi

(

x(τ−
i ),x(τi)

)

= 0, (7)

where functions ψi, i = 1, 2, are defined by

∀(x−,x) ∈ R
d × R

d ψi(x
−,x) = x− x− − δi.

Consider the cost function J introduced in Section
2 and adjoin to J the state equations given in (1)
with multiplier function λ, and the constraints (7)
with multipliers ηi, i = 1, 2.
Then define a function J̃ by

∀(τ1 , τ2) ∈ T J̃(τ1, τ2) = 1
2
‖x(tf ) − xd‖

2

+
∫

τ1

t0

�
>(t)

[

ẋ(t) − f1

(

t,x(t)
)]

dt + � >
1

�
1

(

x(τ−

1 ),x(τ1)
)

+
∫

τ2

τ1

�
>(t)

[

ẋ(t) − f2

(

t,x(t)
)]

dt + � >
2

�
2

(

x(τ−

2 ),x(τ2)
)

+
∫

tf

τ2

�
>(t)

[

ẋ(t) − f1

(

t,x(t)
)]

dt .

Introduce now Hamiltonians Hi, i = 1, 2, defined
as follows

∀(t,x,λ) ∈ [t0, tf ] × R
d × R

d

Hi(t,x,λ) = λ>fi(t,x).

In order to simplify the following equations, Hi(t)
will be used instead of Hi

(

t,x(t),λ(t)
)

, i = 1, 2.
It results

∀(τ1 , τ2) ∈ T J̃(τ1, τ2) = 1
2
‖x(tf ) − xd‖

2

+
∫

τ1

t0

[ �
>(t)ẋ(t) −H1(t)

]

dt + � >
1

�
1

(

x(τ−

1
),x(τ1)

)

+
∫

τ2

τ1

[ �
>(t)ẋ(t) −H2(t)

]

dt + � >
2

�
2

(

x(τ−

2 ),x(τ2)
)

+
∫

tf

τ2

[ �
>(t)ẋ(t) −H1(t)

]

dt .



The variation of J̃ is given by (see Bryson and Ho,
1968; Cébron, 2000)

δJ̃ =
(

x(tf ) − xd

)>
δx(tf )

+
∫

τ1

t0

[ �
>(t) ˙δx(t) − ∂H1

∂x
(t)δx(t)

]

dt −H1(τ
−

1 )δτ1

+ � >
1

∂

�
1

∂x
−

(

x(τ−

1 ),x(τ1)
)

δx(τ−

1 )

+ � >
1

∂

�
1

∂x
(x

(

τ−

1 ),x(τ1)
)

δx(τ1)

+
∫

τ2

τ1

[ �
>(t) ˙δx(t) − ∂H2

∂x
(t)δx(t)

]

dt + H2(τ1)δτ1

−H2(τ
−

2
)δτ2 + � >

2

∂

�
2

∂x
−

(

x(τ−

2
),x(τ2)

)

δx(τ−

2
)

+ � >
2

∂

�
2

∂x
(x

(

τ−

2
),x(τ2)

)

δx(τ2)

+
∫

tf

τ2

[ �
>(t) ˙δx(t) − ∂H1

∂x
(t)δx(t)

]

dt + H1(τ2)δτ2 .

By integrating terms λ> ˙δx by parts, it follows

δJ̃ =

[

(

x(tf ) − xd

)>
+

�
>(tf )

]

δx(tf )

+

[ �
>(τ−

1
) + � >

1

∂

�
1

∂x
−

(

x(τ−

1
),x(τ1)

)

]

δx(τ−

1
)

+

[

−
�
>(τ1) + � >

1

∂

�
1

∂x

(

x(τ−

1 ),x(τ1)
)

]

δx(τ1)

+

[ �
>(τ−

2
) + � >

2

∂

�
2

∂x
−

(

x(τ−

2
),x(τ2)

)

]

δx(τ−

2
)

+

[

−
�
>(τ2) + � >

2

∂

�
2

∂x

(

x(τ−

2 ),x(τ2)
)

]

δx(τ2)

−
∫

τ1

t0

[

˙� >
(t) + ∂H1

∂x
(t)

]

δx(t) dt

−
∫

τ2

τ1

[

˙� >
(t) + ∂H2

∂x
(t)

]

δx(t) dt

−
∫

tf

τ2

[

˙� T
(t) + ∂H1

∂x
(t)

]

δx(t) dt

+
[

H2(τ1) −H1(τ−

1
)
]

δτ1 +
[

H1(τ2) −H2(τ−

2
)
]

δτ2 .

The multipliers λ and ηi are chosen to cause the
coefficients of δx to vanish.
From

∂ψi

∂x−

(

x(τ−
i ),x(τi)

)

= −1, i = 1, 2,

and
∂ψi

∂x
(x

(

τ−
i ),x(τi)

)

= 1, i = 1, 2,

it results

ηi = λ(τ−
i ) = λ(τi), i = 1, 2.

The following adjoint system is therefore given by







































˙�
(t) = −

∂H1

∂x

>
(

t,x(t),
�
(t)

)

if t ∈ [τ2, tf ]�
(tf ) = xd − x(tf )

˙�
(t) = −

∂H2

∂x

>
(

t,x(t),
�
(t)

)

if t ∈ [τ1, τ2[
�
(τ−

2 ) =
�
(τ2)

˙�
(t) = −

∂H1

∂x

>
(

t,x(t),
�
(t)

)

if t ∈ [t0, τ1[
�
(τ−

1
) =

�
(τ1),

(8)

and the gradients of the cost function J with
respect to the switching times τi, i = 1, 2, are

∇Jτ1
= H2

(

τ1,x(τ1),
�

(τ1)
)

−H1

(

τ−

1
,x(τ−

1
),

�
(τ−

1
)
)

;

∇Jτ2
= H1

(

τ2,x(τ2),
�

(τ2)
)

−H2

(

τ−

2 ,x(τ−

2 ),
�
(τ−

2 )
)

.

4.2 Applied to the Continuous Problem

Consider the cost function Jn defined by (5).
Adjoin to Jn the state equation (4) with multiplier
function λ and define a function J̃n by

∀(τ1, τ2) ∈ T J̃n(τ1, τ2) =
1

2
‖Xn(tf) −Xd‖

2

+

∫ tf

t0

λ>(t)Ẋn(t) dt

−

∫ tf

t0

λ>(t)
[

F
(

t,Xn(t)
)

+ Ḣn(t − τ1)µ1

+ Ḣn(t − τ2)µ2

]

dt .

The variation of J̃n is given by

δJ̃n = [Xn(tf) −Xd]
>

δXn(tf)

+

∫ tf

t0

[

λ>(t)δẊn(t) −
∂Hn

∂X
(t)δXn(t)

]

dt

−

∫ tf

t0

[

dHn

dτ1

(t)δτ1 +
dHn

dτ2

(t)δτ2

]

dt

where the Hamiltonian Hn is defined by

∀(t,X,λ) ∈ [t0, tf ] × R
d+1 × R

d+1

Hn(t,X,λ) = λ>
[

F(t,X) + Ḣn(t − τ1)µ1

+ Ḣn(t − τ2)µ2

]

and where the notation Hn(t) was used instead of
Hn

(

t,Xn(t),λ(t)
)

.

Integrating λ>δẊn by parts implies

δJ̃n = [Xn(tf) −Xd + λ(tf)]
>

δXn(tf)

−

∫ tf

t0

[

λ̇
>

(t) +
∂Hn

∂X
(t)

]

δXn(t) dt

−

∫ tf

t0

[

dHn

dτ1

(t)δτ1 +
dHn

dτ2

(t)δτ2

]

dt .

The multiplier λ is chosen to cause the coefficients
of δXn to vanish. It leads to the following adjoint
system

{

˙�
(t) = −

∂Hn

∂X

>
(

t,Xn(t),
�
(t)

)

, t ∈ [t0, tf ]�
(tf ) = Xd −Xn(tf ) .

(9)

The gradients of the cost function Jn with respect
to the switching times τi, i = 1, 2, are defined by

∇(Jn)τ1
=−

∫ tf

t0

dHn

dτ1

(

t,Xn(t),λ(t)
)

dt ;

∇(Jn)τ2
=−

∫ tf

t0

dHn

dτ2

(

t,Xn(t),λ(t)
)

dt .

This section showed, on a theoretical perspective,
the simplification introduced by the continuous
representation exposed in Section 2. The varia-
tional formalism applied to the hybrid problem
indeed involves heavy calculation and leads to



a switched adjoint system. On the other hand,
the variation of J̃n is easier to establish and the
adjoint system does not include model switchings.

5. APPLICATION EXAMPLE

It remains to be verified that continuous represen-
tation does not lead to numerical difficulties. The
following example answers this question.

5.1 Optimal Hybrid Control Problem

In order to define a system of type (1), consider
here the following differential equation which de-
scribes the movement of a pendulum with friction

ẍ = − sin x − εẋ, ε > 0.

Replace this equation by a first order differential
system and define functions fi of system (1), i =
1, 2, by

∀(t,x) ∈ [t0, tf ] × R
2

f i(t,x) =

(

− sinx2 − εi x1

x1

)

, i = 1, 2 ,

where x = (x1, x2) and εi > 0, i = 1, 2.

Given a desired state xd in R
2, the problem to

be solved is the one described in Section 2.2. In
order to minimize the cost function J , it will be
useful to have expressions of the gradients of J

with respect to the switching times.
Hamiltonians Hi, i = 1, 2, are here defined as
follows

∀(t, x,
�
) ∈ [t0, tf ] × R

2
× R

2

Hi(t,x,
�
) = −λ1 sinx2 − λ1εix1 + λ2x1, i = 1, 2,

where λ = (λ1, λ2) and x = (x1, x2).
Adjoint system (8) is therefore defined by























































λ̇(t) =

(

λ1(t)ε1 − λ2(t)
λ1(t) cos x2(t)

)

if t ∈ [τ2, tf ]

λ(tf) = xd − x(tf)

λ̇(t) =

(

λ1(t)ε2 − λ2(t)
λ1(t) cos x2(t)

)

if t ∈ [τ1, τ2[

λ(τ−
2 ) = λ(τ2)

λ̇(t) =

(

λ1(t)ε1 − λ2(t)
λ1(t) cos x2(t)

)

if t ∈ [t0, τ1[

λ(τ−
1 ) = λ(τ1)

where x(t) = (x1(t), x2(t)) and λ(t) = (λ1(t),
λ2(t)).
The gradients of the cost function J – defined
by (2) – with respect to the switching times τi,
i = 1, 2, are

∇Jτ1
=

�
>(τ1)

[

f2

(

τ1,x(τ−

1
) + � 1

)

− f1

(

τ1,x(τ−

1
)
)]

;

∇Jτ2
=

�
>(τ2)

[

f1

(

τ2,x(τ−

2

)

+ � 2

)

− f2

(

τ2,x(τ−

2 )
)]

.

5.2 Associated Continuous Problem

Suppose ε2 > ε1 and define function f̃ from system
(3) by

∀(t,x, ν) ∈ [t0, tf ] × R
2 × [ε1, ε2]

f̃ (t,x, ν) =

(

− sinx2 − ν x1

x1

)

,

where x = (x1, x2).
The continuous system of type (4) considered here
is defined by















































Ẋ(t) =

(

f̃

(

t,X(t)
)

0

)

+ Ḣn(t − τ1)

(

� 1

ε2 − ε1

)

+Ḣn(t − τ2)

(

� 2

ε1 − ε2

)

, t ∈ [t0, tf ]

X(t0) =

(

x0

ε1

)

+ Hn(t0 − τ1)

(

� 1

ε2 − ε1

)

+Hn(t0 − τ2)

(

� 2

ε1 − ε2

)

where X = (x, ν).
The problem consists in minimizing the cost func-
tion Jn, defined by (5), and – as done for the
hybrid problem – the expressions of the gradients
of Jn with respect to τ1 and τ2 will be given.
Definition of Hamiltonian Hn leads to

∀(t,X,
�

) ∈ [t0, tf ] × R
3
× R

3

Hn(t,X,
�
) = −λ1 sinx2 − λ1x3x1 + λ2x1

+Ḣn(t − τ1)
�
>

(

� 1

ε2 − ε1

)

+ Ḣn(t − τ2)
�
>

(

� 2

ε1 − ε2

)

where λ = (λ1, λ2, λ3) and X = (x1, x2, x3).
It allows to write the adjoint system given by (9)
as follows























λ̇(t) =





λ1(t)x3(t) − λ2(t)
λ1(t) cosx2(t)

λ1(t)x1(t)



 , t ∈ [t0, tf ]

λ(tf) =

(

xd

ε1

)

−Xn(tf) ,

where Xn(t) = (x1(t), x2(t), x3(t)) and λ(t) =
(λ1(t), λ2(t), λ3(t)).
The gradients of Jn with respect to τ1 and τ2 are

∇(Jn)τ1
=

∫ tf

t0

Ḧn(t − τ1)λ
>(t)

(

δ1

ε2 − ε1

)

dt ;

∇(Jn)τ2
=

∫ tf

t0

Ḧn(t − τ2)λ
>(t)

(

δ2

ε1 − ε2

)

dt .

5.3 Numerical Application

Let us consider both optimal hybrid and contin-
uous problems described above. In order to find
the values of optimal switching times τ?

1 and τ?
2

that achieve the minimum of J , both functions
J and Jn are minimized by use of the function



Table 1. Values used for the application

Parameters Values

ε1 0.1
ε2 0.4
t0 0
tf 20
x0 (0, π

4
)

xd (−0.0640, 0.0216)
δ1 (−0.2, 0)

δ2 (0.1, 0)

Table 2. Minimization of J

Number
τ?

1 τ?

2 of
Iterations

Without
Gradients 10.3432 15.9307 14

With
Gradients 7.9998 15.0001 7

Table 3. Minimization of J100

Number
τ?
1;100 τ?

2;100 of

Iterations

Without
Gradients 7.0003 14.6001 14

With
Gradients 7.9918 14.9976 7

fminunc of Matlab. With the Broyden-Fletcher-
Goldfarb-Shanno algorithm, selected here, func-
tion fminunc allows us to supply the expressions
of the gradients of cost functions with respect to
τ1 and τ2. The results given by function fminunc

with and without the expressions of the gradients
have been compared.
The values used for the application are given in
Table 1. In order to test the convergence of the
algorithm (with or without gradients), the desired
state xd is chosen to be the output of the system
of type (1) described in Section 5.1, where τ1 and
τ2 are set to 8 and 15 respectively. Minimizations
are then initialized by taking τ1 = 7 and τ2 = 13.
The values obtained with the minimization of J

are given in Table 2.
To get good approximations of τ?

1 and τ?
2 , func-

tion Jn with n = 100 is considered. The values
obtained with the minimization of J100 are given
in Table 3.
The minimizations of the cost functions, which do
not take into account the expressions of the gra-
dients, give values that correspond to local mini-
mum of J or Jn. In order to obtain approximations
of the optimal switching times, it is necessary here
to supply the gradients to the function fminunc.
The results given by the minimization of J100,
which are close to those obtained by minimizing
J , confirms the interest of reducing the study of
an optimal hybrid control problem to the study of
its continuous representation.

6. CONCLUDING REMARKS

This paper presented a continuous representation
for a class of optimal hybrid control problems.
Such a problem can be studied via an associated
continuous problem. This approach is justified by
convergence results. The continuous representa-
tion enables to solve with less difficulties the initial
hybrid problem. An illustration of this reduction
was given here by applying the formalism of the
calculus of variations in order to determine opti-
mal switching times. A numerical implementation
confirmed the interest of this simplification.

A continuous control can be considered and the
expression of the gradient of a cost function with
respect to this control could be obtained via
the calculus of variations applied to the contin-
uous representation. It is also conceivable to use
other typical results for continuous optimal con-
trol problems (see Vinter, 2000).
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Cébron, B. (2000). Commande de systèmes
dynamiques hybrides. Thesis, Université
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