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Abstract: Vibration-free positioning is a basic objective in industrial high-speed
systems, i.e. systems for which axes are submitted to significant dynamical
demands. The focus of this paper is on the pragmatic formalisation of the influence
of some jerk-controlled movement laws on the residual vibrations. Analysis of
limited-jerk, harmonic-jerk and minimum-jerk laws is conducted on a simplified
axis drive model that accounts for axis control parameters and for predominant
mode effects. Experimental measurements performed on industrial test-setups
demonstrate the effectiveness of the proposed approach in estimating the evolution
of the vibration level according to each movement law. Copyright c©2005 IFAC
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1. INTRODUCTION

One simple way to inhibit vibrations for industrial
robots and CNC machine-tools is to employ me-
chanical components with high rigidity, but this
is likely to increase the mass, with a resultant
impairment of dynamic performances (Benning et
al., 1997). Another method, investigated in this
paper, consists in acting directly on the movement
law of each axis in order to take into account
the estimated effects related to the dominating
flexibilities.

The traditional movement laws with piecewise
constant acceleration have discontinuities that
regulators cannot follow, whatever the perfor-
mances of the actuators. These discontinuities
excite the structure in transitory stages and are
responsible for a great part of the degradation of

the dynamic behaviour. From the available para-
meters in modern CNCs, it is known that the max-
imum jerk value (per axis) can limit the oscillatory
behaviour of the load (Bearee et al., 2004). The
jerk value represents the rate of change of accel-
eration, and for this reason it becomes possible to
act on the smoothness degree of the movement.
Thus, the use of a trajectory planning with piece-
wise constant jerk makes it possible to limit the
level of the system oscillations, but on the other
hand the theoretical movement time is inevitably
increases (Yamamoto et al., 1996). Confronted
with this compromise, numerous works, mainly
within the framework of robotics but also in the
machine-tool field, deal with the optimisation of
jerk-controlled trajectory (Jeon and Ha, 2000; Lee
and Lin, 1998), and in particular deal with the
realisation of minimum-jerk profiles (Hindle and



Fig. 1. Left: 3-axis Cartesian robot (max feedrate:
120 m.min−1, max acceleration: 4 m.s−2) ;
Right: High dynamic machine-tool prototype
(max feedrate: 100 m.min−1, max accelera-
tion: 20 m.s−2, actuators: permanent magnet
linear synchronous motors).

Singh, 2000; Piazzi and Visioli, 2000) supposed to
reduce mechanical stresses and vibrations because
of their similarity with the movement of human
articulations (Harris, 2004).

The aim of this paper consists in concretely
analysing the influence of some jerk-controlled
movement laws on the vibratory behaviour of in-
dustrial positioning systems. The present study
is limited to the case of Cartesian machines, for
which movements are not coupled and can be
carried out independently. After developing a sim-
plified model of the axis vibratory error, the par-
ticular effects on residual vibrations of, respec-
tively, limited-jerk, harmonic-jerk and minimum-
jerk movement laws are derived and experimen-
tal validations are conducted on industrial test-
setups.

2. DYNAMICAL AXIS DRIVE MODEL

2.1 Test-setup overview

The experimental validations are carried out on
two test-setup machines equipped with different
architectures and dynamical feedforwarded. The
robot was equipped with a real-time dSPACE
1103 control card. The available measurements
come from the actuator encoders of axis and a
laser sensor directly measures the load position
(the end-effector). The second test-setup is a pro-
totype of high-speed machine (figure 1) whose
structure is similar to that of a machine-tool. It is
made of two orthogonal axes, driven by synchro-
nous linear actuators and controlled by a Num
1050 CNC unit.

2.2 Simplified dynamical error model

This study aims at estimating the influence of the
jerk profile on the dominating modes of vibration.
Very often it is the fundamental mode that pre-
dominates. The dominating flexibility classically

m b

m c 1
F

x c 1

x b

K b

m b

K t

m c 2m c 1
F

x c 1 x c 2

m t

P r e - a c t u a t o r  m o d e P o s t - a c t u a t o r  m o d e

Fig. 2. Generic lumped constant models of pre-
actuator and post-actuator modes.

originates from devices constituting mechanical
transmission such as ball-screw or belt-pulley. The
structural modes, which could reasonably be ne-
glect before, sometimes become very sensitive.
The influence of the structural modes is even fur-
ther reinforced in the case of the linear actuators,
since the parasitic signals are directly transmitted
to the structure. Further, two families of domi-
nating flexibilities are to be distinguished, (a) the
mechanical drive mode (or post-actuator mode)
and (b) the structural mode (or pre-actuator).
Our aim is not to derive a complex mathematical
model for close description of a particular system;
instead one can achieve a much simpler, linear,
physically explicable and generic model by follow-
ing physical modelling techniques, as detailed in
(Ellis, 2000; Bopearatchy and Hatanwala, 1990).
This kind of model, described in figure 2 for the
two families of modes, is very often sufficient to de-
scribe the influence of vibratory modes. Without
loss of generalities, we only focus in this paper
on the case of a predominant post-actuator mode,
but the methodology, as well as the main results
obtained, are extensible to the case of a base
mode. According to the figure 2 notations, the
equations of motion derived for the post-actuator
mode lead to the following transfer functions ex-
pressed in continuous time domain
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with mtot = mc1 + mc2, r = mc2/mc1, ωn =√
Kt/mc2, ζn = µt/(2

√
Ktmc2).

An industrial control is classically made up of a
cascaded current, speed and position loops, regu-
lated by PI controllers, as depicted in figure 3. A
speed feeforward acts directly on the speed loops
to compensate for the tracking error in permanent
speed stages. In the following, one considers ideal
speed and current loops, i.e. the load velocity is
assumed to be the same as the reference velocity
at all times. Posing xref the reference movement
and xc2 the effective load displacement, the posi-
tion transfer function between the expected and
effective load positions takes the following form
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Fig. 3. Simplified structure model of an industrial
axis drive control.
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with kv and kfv the position and feedforward
gains respectively.

The presence of discontinuities in the movement
planning will tend to excite the flexible modes
of the system and, consequently, will degrade the
dynamical precision. The effective load displace-
ment then differs from the ideal movement. The
dynamical error of the movement is defined as

ε(t) = xref (t)− xc2(t) (3)

Two types of errors constituting the dynamical
error can be distinguished:

• Aperiodical terms representing the variations
related to the tracking characteristics of the
control structure, which are noted εap(t),

• oscillatory periodical terms related to the
oscillating behaviour of the system, which are
noted εvib(t).

According to equation 2, the transfer functions
governing the dynamical error evolution of the
preceding axis model is given by
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In the next development, we are interested in
the maximum vibratory error evolution related
to the movement law used. Since our goal is not
to calculate the amplitude of oscillation precisely,
but to describe its parametric evolution according
to the control and profile parameters, the damping
of the predominating mode will be assumed to be
null.

3. LIMITED-JERK MOVEMENT LAW

The limited-jerk movement law described in figure
4(b) is a succession of jerk steps. Posing J =
[J,−J,−J, J,−J, J, J,−J ] the vector of jerk step
amplitude and T = [0, Tj , Ta, Tj , Tv, Tj , Ta, Tj ]
the vector of each jerk step time, the Laplace
transform of the limited-jerk profile can be written
as
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Fig. 4. Classical movement laws: (a) Limited-
acceleration,(b) Limited-jerk, (c) Harmonic-
jerk and (d) Minimum-jerk.

where Ji, Ti denote the ith element of J and T
vectors respectively, n represents the jerk step
considered (n ≤ 8). The succession of jerk steps
leads to linear and constant acceleration stages.
These two types of movement stages will have a
different influence on vibratory dynamics of the
system. In previous works (Barre et al., 2004) it
has been demonstrated that the maximum vibra-
tory error is mainly concerned with the constant
acceleration stage. This error can be calculated by
applying the constant-jerk profile (equation (5))
to the axis drive model described by equation (2).
The resulting maximum amplitude of the vibra-
tory error during the first constant acceleration
stage (n = 1) can be expressed as
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with sinc(x) = sin(x)/x. Thus, in the particular
case where Tj is a multiple integer of the pre-
dominant mode period, there will be no resid-
ual vibration in the constant acceleration stage.
Apart from these particular points, one finds, in-
cidentally, that the higher the position loop gain,
the more significant the vibratory error; and the
maximum error for a given jerk is obtained in the
case of a totally feedforwarded axis. It will also
be noted that the maximum vibratory error is
obtained while making Tj tend towards nullity,
which is the same as considering the case of the
limited-acceleration law (figure 4(a)).

At the end of movement, the residual vibrations
still follow the previously described evolution;
only the error amplitude differs. According to the
various phase times and damping factor, the error
obtained with equation (6) can be weighted by a
factor 8. Figure 5 shows the experimental results
obtained on the two test-setups compared with
the theoretical evolution. The results confirm the
expected parametric evolution of the maximum



Fig. 5. Maximum residual vibration according to
Tj , kv and kfv as compared to the predicted
evolution.

residual vibration. Industrially, the maximum jerk
value is tuned on each axis in an iterative man-
ner in order to obtain an acceptable dynamic
behaviour during a point-to-point movement type.
Equation (6) shows that it is from now on possible
to quantify a priori the maximum jerk value. The
constant jerk stage times leading to an expected
residual oscillation criterion can result from one
simple measurement of the oscillation level of the
concerned axis (see figure 5).

4. HARMONIC-JERK MOVEMENT LAW

Because of their easiness of implementation, the
movement laws containing trigonometric func-
tions are relatively widespread in the numerical
control units; in particular the square sine har-
monic laws, which make it possible to manage
a smooth velocity profile. Within the framework
of this article, based on the influence of the jerk
profile, we want to compare the influence of the
preceding constant-jerk profile with a jerk law of
square sine type (figure 4(c)).

Noting J = [J,−J,−J, J ] the vector of maximum
jerk amplitude and T = [0, Tj+Ta, Tj+Tv, Tj+Ta]
the vector of each jerk stage time, the resulting
profile can be defined in the laplace domain as
follows
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with n representing the jerk stage considered (n ≤
4). Following the same methodology as described
in the previous section, the maximum vibratory
error during the first jerk stage (n = 1) noted
[max|εvib(t)|]HJ is expressed as

[max|εvib(t)|]HJ =
4π

|4π2 − T 2
j ω2

n|
[max|εvib(t)|]LJ

(8)
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Fig. 6. Residual vibrations evolution for harmonic
law according to α.

where [max|εvib(t)|]LJ represented the maximum
error for the Limited-Jerk profile described in
equation (6).

As in the limited-jerk case, if we calculate the
residual vibrations (n = 4 in equation (7)), we
find that the remaining oscillations still follow
the evolution rule described by equation (8), but
obviously the effective amplitudes are pondered
by the neglected damping and by the different
stage times. Figure 6 presents the evolution of the
residual vibration, according to the ratio α of the
jerk stage time and the natural pulsation of the
system (α = 2πωn/Tj). The reference amplitude
of 100% corresponds to the constant-acceleration
law case. As confirmed by the experimental points
obtained on the Cartesian robot, it is particularly
notable that for the harmonic-jerk law, the jerk
time cancelling the oscillations is at least twice the
natural period of the dominating mode (see figure
7). If the frequency associated with the natural
mode does not evolve during the movement, this
kind of movement law unnecessarily lengthens the
execution time, cancelling the residual oscillations
as compared to the constant-jerk law. The main
interest of this harmonic law lies in the strong at-
tenuation of the amplitudes of residual oscillations
obtained for the jerk times higher than twice the
natural period (see figure 6). Thus, the trajectory
planning will be less sensitive to the parametric
variations, to the bias in the estimated dominating
frequency or to the neglected modes.

5. MINIMUM-JERK MOVEMENT LAW

In the robotic field, the optimisation of the jerk
profile is a widespread solution to reduce the
effect of the natural modes. The minimum-jerk
movement is the most used because it is known
to provide a trajectory that is very similar to the
motion of the human articulations. The minimum-
jerk problem is then formulated as: find the func-
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tion xref (t) that minimises the performance index
which is a square time integral of the jerk

J(xref (t)) =
1
2

∫ T

0

...
x 2

ref (t) (9)

where T is the specified execution time.

This optimisation procedure leads to a quintic
polynomial, which is depicted in figure 4(d). The
optimal movement law is generally associated
with a pre-filter, which leads to better tracking
performances. The pre-filter design is a prob-
lem addressed by several researchers. In concrete
terms, it corresponds to the inverse of the system
dynamic (for minimal phase systems). But, in
our study based on movement law influence, the
minimum-jerk profile is directly applied without
pre-filtering.

Figure 8(a) shows the residual oscillations of the
Cartesian robot load for the previous analysed
laws. The limited-jerk and harmonic-jerk profile
are tuned to cancel vibration, i.e. the estimated
natural pulsation verifies ω̃n = ωn (α = 1 and
α = 2 respectively). It is particularly notable that
the three jerk-controlled laws lead to the same
level of residual vibration. Table 1 summarises
the results obtained for the different laws; they

confirm that these laws are equally able to reduce
the vibrations.

Table 1 Performances according to the movement
law (Pref = 1 meter).

Movement Residual

time [s] vibration [mm]

Limited-

acceleration 1,1 5,3 (100%)

Limited-jerk 1,215 (+10,45%) 0,46 (8,6%)

Harmonic-jerk 1,226 (+11,45%) 0,45 (8,5%)

Minimum-jerk 1,236 (+12,36%) 0,45 (8,5%)

The results reveal moderate difference in execu-
tion time between the three laws, but for little
displacement, the effects of the transitory stage
times will be more significant. The limited-jerk
and harmonic-jerk profiles require an increase of
execution time of one or two natural periods
as compared to the reference limited-acceleration
profile. For the minimum-jerk law the theoreti-
cal movement time is generally limited by the
maximum acceleration capability. In this case, the
corresponding execution time for a displacement
of Pref is

TMJ =

√
10Pref√

3A
(10)

The most frequently encountered movements in
industrial systems are the intermediate move-
ments, i.e. the maximum acceleration is reached,
the maximum velocity not. For a limited accel-
eration profile, the corresponding movement time
is

TLA = 2

√
Pref

A
(11)

Therefore, equations (10) and (11) lead to the fact
that for intermediate displacement the minimum-
jerk movement will theoretically be longer by 20%
than the limited-acceleration one.

In many cases, the modal frequencies evolve with
the various configurations of the axes. Figure 8(b)
shows the residual oscillations for an ω̃n error
of 25%. The limited-jerk or harmonic-jerk solu-
tions suffer from a serious limitation, which is the
sensitivity to frequency inaccuracy. Confronted to
these problem, it is preferable to choose a jerk
time for which the specified level of oscillation is
respected in spite of parameter variations, i.e. one
use the multiples of the period of the cardinal
sine function to stay under a maximum oscil-
lation limit. This procedure inevitably increases
the rise time. On the other hand, the minimum-
jerk law is considerably less sensitive to parameter
variations, thanks to the polynomial smoothness.
The comparative effects of error in the estimated
natural period, for minimum-jerk and limited-jerk
law are given in figure 9.
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Finally, the movement law with minimal jerk
seems to carry out an interesting compromise
between reduction of the residual vibrations, the
increase of movement time and the sensitivity to
parametric variations of the dominating mode. It
must be remarked that the minimum-jerk pro-
file is computationally more expensive, but the
resulting quintic polynomial could be efficiently
replaced by cubic-splines, which are available in
modern numerical control units, as demonstrated
in (Brun-Picard, 2004).

6. CONCLUDING REMARKS

This paper has presented the influence analysis of
some jerk profiles on the vibratory error of indus-
trial machines. The following points underline the
pragmatic aspects of the study

(1) The formulation developed in this paper al-
lows for a better understanding of the effects
of the jerk profile on the vibration.

(2) Numerical results confirm that for a limited-
jerk law, the residual vibrations are cancelled
for a Tj being an integral multiple of the
predominating period. For an harmonic-jerk
law, the cancellation of vibrations require
a Tj at least equal to twice the considered
modal period. Although the execution time is
longer than in the case of limited-jerk profile,
the sensitivity to parameters variation and
neglected modes is improved.

(3) The minimum-jerk profile leads to the same
residual vibrations than the correctly tuned
limited-jerk and harmonic-jerk profiles. But,
it is considerably less sensitive to the varia-
tions of the dominating modal frequency. The
only apparent limitation for high-speed sys-
tems is that the movement time is inevitably
longer (at least +20% in comparison to a
limited-acceleration law).
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