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1. INTRODUCTION

Recently, control of grasp and manipulation of an
object by a multi-fingered robot hand has been
studied by many researchers. In the control of
grasp and manipulation, the contact points be-
tween the fingers and the object can be changed
simultaneously by utilizing the nonholonomy of
rolling. However, since the system equations con-
sist of the contact coordinates for the contact
points as well as the generalized coordinates, the
simultaneous control of the grasp/manipulation
and the contact coordinates is somewhat involved.
The control problem has been studied from two
separated viewpoints. On the one hand, for the
dynamical model of the robot hand and the ob-
ject, the tracking control of the object motion and
the internal force has been considered (Cole et
al., 1989; Sarkar and Yun, 1997). On the other
hand, for the simple kinematic model of the con-
tact coordinates, the regulation of the contact
coordinates has been considered (Li and Canny,
1990; Bicchi and Marigo, 2002). To achieve the si-
multaneous control of the object motion/internal
force and the contact coordinates, more detailed
analysis of the relationship between the general-
ized coordinates and the contact coordinates is
required.

In this paper, for the simultaneous control by
a two-fingered robot hand with the pure rolling
contact, we provide an entire treatment of the
system equations, which consist of the general-
ized coordinates and the contact coordinates. In

contrast to the most previous studies (Cole et
al., 1989; Sarkar and Yun, 1997) which consider
specified degrees of freedom (DOF) of the fingers,
we provide a general treatment of the system for
any DOF of the fingers. Utilizing the results, a
control design method which achieves the simul-
taneous control is proposed.

2. MODELING
2.1 System Configuration

In this paper, we consider two fingertips grasping
an object shown in Fig. 1. The pair of two
fingertips is a simplified model of a two-fingered
robot hand, each finger of which has m; DOF
(0 < m; < 6). The contact point between each
finger and the object is single. In the following,
the number of the fingers and the contact points
is described by i = 1, 2. Arguments of vectors and
matrices are described explicitly only when they
appear first time, and will be omitted in the sequel
for notational simplicity. In this study, we make
the following assumptions.

Assumption 1. The surfaces of each finger and
the object are the regular surfaces (Murray et al.,
1994). Therefore, contact points on the surfaces
of each finger and the object can be described
by c(a) € R?, where ¢(-) : R* — R? is a local
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Fig. 1. Two fingertips grasping an object.
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Fig. 2. Contact coordinates of ith contact point.

orthogonal chart and a € R? is local coordinates.

Assumption 2. The frictional forces at each
contact point follow the Coulomb’s law. The con-
tact force applied to the object by each finger is
composed of translational forces and a moment
about the contact normal.

Assumption 3. The constraint at each contact
point is described by the pure rolling contact. The
forces generated by the constraint do not work on
the system (d’Alembert’s principle).

In Fig. 1, X p is the reference coordinate frame.
Yp, and ¥ are the coordinate frames fixed to
the ith finger and the object, respectively The
configuration of X, relatlve to X p is represented
by the position vector Ppp (8r) € R® and the
rotation matrix Rpp, (8r,) € R**® where 05, €
R™: represents the generahzed coordinates of the
ith finger, and 0r = | 6% BT T e R™,
m = my + meo. Similarly, the conﬁguratlon of
Yo relative to X is represented by Bp, € R3
and Rpo(Poo) € R**? where B¢ represents
the local parameterization of Rpp and xp :=
[ Bpd B¢ |T € RE. Note that the DOF of the
generalized coordinates is (m + 6). In the dashed
area, ECF and ECO are the coordinate frames
attached on the surfaces of the ith finger and the
object with the origins at the ith contact point.
The zy,- and z,,-axes of the frames are outward
and normal to the surfaces of the ith finger and
the object, respectively. The configuration of X¢,,
relative to Y, is represented by the position
vector pC € R® and the rotation matrix

Rr,cp, RéX?’ Similarly, the conﬁguratlon of
Yo, relatlve to Lo is represented by © Pc,, € R3
and ROCO € R3X3,

HiZ:

Figure 2 shows the neighborhood of the ith
contact point, where the ith finger and the ob-
ject are depicted separately. ¥, (t) and X, ()
are the local frames fixed relative to ¥ jo) and
Y0, respectively, which coincide at time t with
Yy, and X¢,, . From Assumption 1, FipCFi and
Opcoi in Fig.1 can be described as F"pCFi =
Cti (afi) and pC'o
where cy,(-), co, (+) : R? R are local orthogonal
charts and oy, € R?, o, € R? are local coor-
dinates. In addition, let 1; be the angle between
the z- axes of X¢,, and X, as shown in Fig.
2, then the conﬁguratlon of ‘the contact points
is descrlbed by n : [ 51 na |7 € R, where
n, = laf og hi]" is called the contact co-
ordinates for the contact point (Montana, 1988).

‘= ¢y, (e,) respectively,

7:=[71] 73 ]T € R™ describes the input to

the fingers, where 7, € R™ is the force/torque
applied to Op,. From Assumption 2, the contact

force is described by *Fo := [ CFf. CF( 1T

R®, where CFg¢, € R* is the contact force apphed
to the object by the ¢th finger.

2.2 Contact Kinematics

At the ith contact point, the following equations
hold (Murray and Sastry, 1990):

BpFi + Rpr, Fichi = Bpo + RBOopCOi (1)
Rpr,Rr,cr, = RpoRoc,, Reo, cr, - (2)

Eq. (1) requires that the position vectors of the
contact frames ¥¢, and Yo, with respect to
the reference frame X g coincide with each other.
Eq. (2) requires that the contact normals and the
tangent planes at the origins of X¢, and X¢,

coincide with each other. Eqgs. (1) and (2) relate
the contact coordinates 7, to the generalized
coordinates (0, o).

Let Vi, := [vce, vy, Voz Wea, Woy, wos, |T €
RS be the velocity of ELF relative to ZLO seen
from g, . Differentiating (1) and (2) with respect
to time ¢ yields the motion of the contact coordi-

nates 1), as a function of the relative motion V¢,
(Murray and Sastry, 1990; Montana, 1988):

n;,=H;(n;)Ve, (3)
0=vcs,, (4)
where
MgﬁK 'Ky, 0 M’IK’IE 0
M, Ry, K; K, 0 M, Rwl K,'E 0
_TgfiK}_%’,i KgOri TgfiKRilE
+T o, Ry, K}Ej Kgp +Tg, Ry, KI_%lE

1

o (5)
Kpg, = Ky, + Ky, Kgo, := Ry, K g0, Ry, (6)
—sin % i| ] (7)

_[0-1 [ cosv;
E = [1 0 }’R‘/’i = [—sinr/}i — oS 15
2%x2 2x2
Mg, My, € R°% Ky, Kgo, € R and
Tz, Tyo, € R'*? are the geometric pararneters

defined by using cy, and c,,. Kg, € R?**? ig
called the relative curvature form. Ry, € R?*2 ig



the rotation matrix of the z- and y-axes of ¥,
relative to the z- and y-axes of X¢,, . In addition,
V¢, is given by

Ve, = DJFi (erni)éFi - DToi (o, 771')5807 (8)

where
DJFv = DFJF1(6F1) DToi = DOiTO(fBO) (9)
RL. —RL. (Rpp" A
Dp = BCF, BCr, ( TBFZ pcpi) (10)
033 Rpc,,
| Rbe,, —Rie,. (Rpopc,, )"
D()1 «-— 0 zRT v . (11)
3x3 BCF,

Rpcy, is the rotation matrix of Y, relative to
Y. ()7 stands for the skew-symmetric matrix
equivalent to a vector product. Jr, (85,) € R®*™
and To(zo) € R°*® are the transformation ma-
trix from O, to | pF BwT ]T and the one
from &o to | Bpg By O & 1T respectively, where
BwF € R? and Bwo € R? are the rotational ve-
locities of Y, and Y relative to X p respectively.
In this study, we assume that Jp, and T are full
column rank and nonsingular respectively. Note
that Jp, is determined by the link mechanics of
the ith finger.

Combining (8) and (3), we get
i, = Hi(D,,, 0r, — D, &0). (12)

Eq. (12) relates the velocities of the contact coor-
dinates 7, to those of the generalized coordinates

2.8 Dynamical Equations

Since the constraint at the ith contact point is
the pure rolling contact from Assumption 3, the
constraint is expressed by (Murray et al., 1994;
Montana, 1988)

I; 0
BgVe, =0, Boi= [03i3 3€X1} (13

where e := [0 0 1]T. Therefore, substituting (8)
into (13) yields the motion constraint on the
generalized coordinates described by

Motion Constraint

Ap(8p,m)0r — Ao(z0,m)20 =0, (14)
where

Ap:= BE'DJFl O4><m2 ]Ao':[BgDT()1:|.

T
04><m1 BCDJF2

The motion constraint (14) will be realized by ap-
plying appropriate contact forces. The condition
is characterized as follows:

Constraint on Contact Force

®Fc € FC, FC:=FC, x FC, CR®,  (16)

where F'C; describes the set of forces which lies in
the friction cone at ith contact point (Murray et
al., 1994).

From Assumption 3, the equations of motion of
the fingers and the object are derived from the

Lagrange equations with the constraint (14) as
follows:
Equations of Motion

Mp(0r)0r +Cr(0r,0r)0r + Np(0r)
= 71— AL(6r,n) Fc (17)
Mo(zo)Zo + Co(zo,xo)to + No(zo)
=PFo = Ab(zo,n)Fe, (18)

where My > 0 € R™ ™, Mo > 0 € R%* are the
generalized inertia matrlces CreR™™ Cp €
RO*C are the Coriolis matrices, and Np € R™,
No € R® are the gravity terms. Note that the
contact force © F¢ plays the role of the Lagrange
multipliers, and P Fo(:= 8CFC) is the resul-
tant force applied to Yo by

3. SYSTEM ANALYSIS
3.1 Properties of Motion Constraint

In this subsection, we clarify properties of the mo-
tion constraint on the generalized coordinates (14)
by associating it with constraints on the contact
coordinates. Consider the following conditions:

A, (n)n; =0, A, eR>™® (i=12) (19)
bo(Dyy., 05, — Dr, #0) =0 (i=1,2), (20)
where
0
—M ¢, Ry, M,,
Am — gfi Vi goq 0 (21)
_Tgfngfl TgolMgOi 1
bczz[O()l()OO]. (22)

The following theorem holds.

Theorem 1.

(i) Suppose (12) holds. The motion constraint (14)
is equivalent to (19) and (20).

(ii) Suppose K g, defined by (6) is full rank and
¢y, is not the specular image (Marigo and Bic-
chi, 2000) of ¢,,. The constraints on the contact
coordinates (195 are the maximal nonholonomic
constraints and the constraints on the generalized
coordinates (20) are the holonomic constraints.

Proof: (i) Eq. (14) is represented as
B&(Dy,, 0r, — Dr, d0) = 0. (23)

Substituting (12) into (19) and combining the
resultant equation with (20) lead to

Bo(D g, 0r, — D1y 20) = 0, Bg i= { b } .

be

(24)
Therefore, in order to clarify that (23) and (24)
are equlvalent it is enough to show that a nonbln—
gular matrix E, € R*** exists such that E4BC =
BZ. This is immediate since by using (21), (5), (6)
and Ry = R! = qul, we get

100
=T 010
BC:[O 0

001

oORrOO

]. 9

oo~ O
[N e NesNen)
[N eNoNe)



(if) Since ¢y, is not the specular image of c,,,
19) are the maximal nonholonomic constraints
Marigo and Bicchi, 2000). Consider the con-
straint hc., (OF,, €o,n;) = 0 where

o _TpT B F;
hes =€ RBCpi[ Dr, + RpF, Pcy,

—(Bpo + RBOOPCOi )} . (26)

We can show that the differential of (26) is equiv-
alent to the left-hand of (20) by using the facts:
the contact condition (1); the property of the rota-
tion matrix Rpo®pe, = —(Rpo®pe, ) Pwo
and RBFiF'ipCF’_ = —(Rpr"ipc, ) Pwp,; third
elements of RE)CF. F’ipCF and ROCO_OpCO,_ are
zero (Murray et al., 1994). Therefore, (20) is the
holonomic constraints. 1

From Theorem 1, the system has 6 nonholonomic
constraints and 2 holonomic constraints. There-
fore, the position of the DOF of the system can
be (m + 4) under a certain condition, which is
shown in the next subsection.

3.2 Degrees of Freedom of System

In this subsection, we clarify the DOF of the
velocity and the position of the system.

Firstly, since the motion constraint (19) consists
of 8 constraint equations of the velocity, the DOF
of the velocity of the system is (m — 2).

Secondly, consider the DOF of the position. A gen-
eral solution of the constraints (19) with respect
to 7, is given by

where A# € R®*? consists of the 4th and 5th
columns of H; of (5) and we, := [wes, wey, |T €
R? is the rolling velocity. Therefore, from the
property of the maximal nonholonomic constraints
(19), the DOF of the position depends whether the
rolling velocity we == [ wl, wi, T € R* can be
generated from the (m — 25 DOF of the velocity
or not. The following theorem holds.

Theorem 2. The relation between (85, o) and
wc is given by

AOrwom) | 08| = Ao, 29)

where

A(Op,mo,n) = [ZF 720] S R12><(m+6) (29)

—T =T
Api= | BPrm S | 4, | DD
06><’ITL1 BCDJF2 BCDTO2
—r (30)
_ B-K 0
ch = ¢ Bg 7T6X2 (31)
06><2 BCKBE

Eciz [BC KBE]’KBE ::[ngg IQ ngl]T.(32)

Furthermore, w¢ is generated from (9 r o) iff A
of (29) is full row rank.

Proof: From the definition we, = [wee, woy, |7,

we, = Kgg Ve,. (33)

Therefore, by substituting (8) into (33), w¢, is
expressed by (0F,, o) as

we, = Kpr Dy, Or, — Kz Dr, &o.  (34)

Combining (34) and (14), we get (28). For the
proof of the latter part, notice that (28) can be
interpreted as the s%multaneous linear equations
with respect to [0, &g |T. Since EEKBE =
[02x4 Io]T from (32) and (33), A, of (31) is
full column rank. Therefore, (28) can be solved

with respect to [0}; @y |7 for arbitrary we iff
A e R12X(Mm+6) of (28) is full row rank. This fact
proves the claim. |

From Theorem 2, we € R* can be generated from
the (m — 2) DOF of the velocity iff the number
of the DOF of the fingers, m, is greater than or
equal to 6 and A is full row rank. In that case, the
contact coordinates n € R® can be regulated by
we under (27). Combining the rest of the DOF of
the velocity except we with 10, the DOF of the
position is 10 4+ (m — 6) = (m + 4).

4. CONTROL DESIGN

In this section, we consider the control design to
achieve the control of the (m + 4) DOF of the
position of the system.

4.1 Control Objectives

Consider the following control objectives:

(A) To make the contact force “F¢ lie in the
friction cone F'C.

(B) To make the rolling velocity wo € R* follow
a desired trajectory.

(C) To make the fingers/object motion vy €

R™6) follow a desired trajectory, where vy
causes no effect on the rolling velocity we.

The control objective (A) represents that the fin-
gers do not slip, and (B) and (C) represent the
control of the (m — 2) DOF of the velocity of the
system. Since the contact coordinates n € R’
can be regulated by making w¢ follow appropriate
trajectory with nonholonomy of rolling, all of the
(m + 4) DOF of the position of the system can
be controlled. One such trajectory has been pro-
posed by (Nakashima et al., 2002). These control
variables (17, vx) € R can be associated with
12 variables of (85, xo,n) € R™T1Y except the
control variables since we have 12 equations of (1)
and (2) (i = 1,2). Note that (2) gives only 3 equa-
tions because it relates the 2 rotation matrices.
Therefore, it can be realized that we control the
control variables such that the 12 variables are
regulated to desired target points.

To realize the control objectives, we make the
following assumptions:

Assumption 4.

(i) Ag e R%*® is full row rank.

(ii) There exists an internal force Fy € R® such
that Fy € N(AQ) and Fy € Int(FC).



Assumption 5.

(i) A}; € R™*® is maximal full rank.
(i) N(A5) C R((AE)T).
Assumption 6. A is full row rank.

Int(FC) represents the interior of the friction
cone, N () represents the kernel, R(-) represents
the range of value and (-)™ represents the pseudo
inverse matrix. Assumption 4 corresponds to the
Force Closure (Murray et al., 1994) in the robotics
literatures. Assumption 5 guarantees that the
internal force can be generated by the inputs 7.
Assumption 6 guarantees that w can be generated
by the (m — 2) DOF of the velocity.

4.2 FEzpression of Contact Force

In this subsection, we give an explicit relationship
between the contact force and the internal force,
which is effective to achieve the control objective
(A). Consider a decomposition of “ F¢ as

“Fc=(A5)"PFo + K g3 (zo,n)fy, (35)
where

KAIC; ::[kl k2]6R8X2

rpT B T B E
RBCF1 €12 RBCFl( pgol2)+TN
1
0
_ Cpeo, ) e | o
- T B T B
RBCF2 €21 _RBCFZ( péom)—i_TN
0 -
_ (Ppey, ) Pes
B B
€1, — €2,

TN (= + (37)
(BpColz)TBelz (Bi)cv()l2 )TBe2Z
cholz = RBO(OPCO2 - Opcol) (38)
Pe.i:= Rpcpe, e:=[00 1], (39)

Be;; € R3(i,j = 1,2,i # j) is the unit vector
from the contact point i to j (Pejs = —Pesr). T
is the moment produced by the moments about
Be,, and Bes,. cho12 is the vector from the

contact point 2 to 1 and Ze;, € R? is the unit
vector in direction of zy-axis of ¥¢,, . Note that

Beij //cho12 . The following lemma holds.

Lemma 1. Consider K 4z defined by (36)—(39).
The following equations hold.

(i) : AgKAg =0 (40)
(ii): kTky =0 (41)

Proof: (i) Combining (11), (15) and (36), and
noting that BpgowBelQ = 0 from Beu//BpCOm,
we get Agkl = 0. Similarly, we can easily con-

firm that the upper 3 elements of Agkg is zero.
With 7y defined by (37), the lower 3 elements

of Ajky result in (I3 — Bp/c\om (Bngu)Jr)TN.
Since 7'%13190012 = 0 from (37), T can be rep-
resented as Ty = (Bp/(}olz)z,z € R®. Noting

B A B A +B A _ B A B
Pcolz( Pcolz) Pco,, = "PCo,,» WE can con

2
firm that (I5 — ®pg,, (%pgo )T)TN = 0.

12

"pe, T
(ii) Noting that (Bpé«om)+ = W and
1
(Peis — Begl)//BpC012, we get kfkg =0. |

From Lemma 1 and the property of the pseudo
inverse matrix A5 (AT)* = Is, we can confirm
that (35) is a general solution of P Fp := AL, F¢
(See (18)). In addition, £y :=[ fn, fn, T € R?
produces the internal forces kifn, and kafn,
which cause no effect on X, and they are inde-
pendent each other. Physically, from the observa-
tion of the elements of k1 and ko, fn, represents
the magnitude of the translational forces in the
directions of Pejs and Peyy, and fy, represents
the magnitude of the moments about 7n and
—7 . From the property of the friction cone of
the soft-finger contact (Murray et al., 1994), the
control objective (A) is achieved by controlling
fn, appropriately.

4.8 Ezpression of Finger and Object Motion

In this subsection, we give an explicit relationship
between the velocity of the generalized coordi-
nates (0, &p) and (we,vy), which is effective
to achieve the control objectives (B) and (C).
T

Consider a decomposition of [ 8 &5 |T as

{zg} =A A, wec+ Kal0p,zo,mvN, (42)
where
A =AY — K THAY e RUMH6)x12 (43)

——1]0
Ki—A 12x<m6>} € RIm+Ox(m=6) (44
A [ Tins) (44)

A::['A

Ta:l 7T.A c R(m+6)><(m76). (45)

T 4 is an arbitrary matrix, which make A nonsin-
gular. The following lemma holds.

Lemma 2. Consider A~ and K 4 defined by
(43)—(45). Suppose that T 4 is chosen to make A
of (45) nonsingular. The following equations hold.

(i): AA- =I5, AK 4 =0 (46)

(i) : oy = TH[ 65 @5 " (47)

Proof. (i) Noting that (43), AA"Y = I» and
A= [ 112 012><(m76) ] A from (45), we get (46)

(ii) Premultiplying (42) by A and noting (43)-
(45) and .AA+ = 112,

Allor] 54—~ (0125 (m—6) |
4)1] s ]

Al ot [01xm—s) | g1 4+ | %
T:El:| A _[ (m—6) T‘AA chwc

" (0125 (m—s) |

I |V




_ I, - 012 (m—6)
- |:0(m6)><12:| Awewo + [ Iy |°N (48)

It is clear that the lower (m—G6) rows of (48) means
(47) (The upper 12 rows of (48) corresponds to
(28).). |
From Lemma 2, we can confirm that (42) is a
general solution of (28), and vy € R™™® can
be related to the velocity of the generalized coor-
dinates (OF, o). If T 4 is especially chosen as a
constant matrix, from (47), [ vndt can be directly
associated with the position of the generalized
coordinates (0, o). Therefore, the (m—6) DOF
of the position can be directly controlled by spec-
ifying a target point of [wvndt.

4.4 Linearizing Compensator

In this subsection, we propose a hnearlzlng com-
pensator for we € RY, vy € R™ % and fn €
R%. A controller for the linearized system, which
achieves the control objectives (A), (B) and (C),
can be easily designed from the linear control
theory. A linearizing compensator is given by

= Tu, ~Tw —
TZM[ C}-i-C[vﬁ]-‘rN-‘rA;KAg’UJfN,

Uy
(49)
where
.=MS, C:=MS+CS (50)
=[Mp AL(A5) Mo ] (51)

= [Cr A}(A5)"Co]
=Np+Ap(A5H)TNo

S -
- [Sg} = [A A, K4] (52
Sp e R™m=20 8, e ROXM=2) 4, e RY,
Uy, € RM9) and usy € R? are the new inputs

for we, vy and f respectively. The following
theorem holds.

w 2 q E\ <)

Theorem 3. Consider the system (17) and (18)
with the motion constraint (14). By the controller
(49), the system is linearized as

We =Uyy, N =Uypy, fy=1ufy. (53)

Proof. Combining (17), (18), (35) and (42), and
substituting (49) into the resultant equation, we
get the closed loop system given by

M |50 70 | + ALK x (fy —ugy) = 0.(54)
Noting that (42) is the solution of (14) since (28)
includes (14), we get ApSr = ApSo from (52).
Premultiplying (54) by ST and noting that (50),
(5 ) SLAL = SHAL, AL(AL)tT = I and
AoKAT =0, we get

T o7 MF Omxe][SF Upo | _
(5% 58] [0 10 ) 55][5% —une] =0
Since the coefficient matrix of the above equation

is nonsingular from Mprp > 0 and Mo > 0,
we get wo — Uy, = 0 and vy — u,, = O.

Next, substituting these results into (54), we get
AIT;KAE (f v —uyy) = 0. Note that the following
equation holds (MacLane and Birkoff, 1967):

dim(R(AFK a1)) + dim(V(AR) N R(K 41))

— dim(R(K 43)), (53)
where dim(-) describe the dimension and dim(R(+))

= rank(:). Since N(A}) C Rrg )T) from
Assumptlon 5 (i) and R™ = R(( )@N(AT)
NAR) NN(AS) = 0 holds (0 is the empty
set). Therefore, since dim(N(AIT;)ﬁR(KAT ))=0
from R(K 1) = N(AD), dim(T\’,(AFKAT)) =
dim(R(KAg)) = 2 from (55). Since AFKAT €
R™*? is full column rank, we get fy —usy = 0.1

5. CONCLUSION

In this paper, for the simultaneous control of
the object motion/internal force and the contact
coordinates by a two-fingered robot hand with
the pure rolling contact, we provided the entire
treatment of the system equations including the
motion and force constraint, which consist of the
generalized coordinates and the contact coordi-
nates. We considered the general treatment of the
system for any DOF of the fingers. Utilizing the
results, the control design method which achieves
the simultaneous control was proposed.
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