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1. INTRODUCTION

Recently, control of grasp and manipulation of an
object by a multi-fingered robot hand has been
studied by many researchers. In the control of
grasp and manipulation, the contact points be-
tween the fingers and the object can be changed
simultaneously by utilizing the nonholonomy of
rolling. However, since the system equations con-
sist of the contact coordinates for the contact
points as well as the generalized coordinates, the
simultaneous control of the grasp/manipulation
and the contact coordinates is somewhat involved.
The control problem has been studied from two
separated viewpoints. On the one hand, for the
dynamical model of the robot hand and the ob-
ject, the tracking control of the object motion and
the internal force has been considered (Cole et
al., 1989; Sarkar and Yun, 1997). On the other
hand, for the simple kinematic model of the con-
tact coordinates, the regulation of the contact
coordinates has been considered (Li and Canny,
1990; Bicchi and Marigo, 2002). To achieve the si-
multaneous control of the object motion/internal
force and the contact coordinates, more detailed
analysis of the relationship between the general-
ized coordinates and the contact coordinates is
required.

In this paper, for the simultaneous control by
a two-fingered robot hand with the pure rolling
contact, we provide an entire treatment of the
system equations, which consist of the general-
ized coordinates and the contact coordinates. In

contrast to the most previous studies (Cole et
al., 1989; Sarkar and Yun, 1997) which consider
specified degrees of freedom (DOF) of the fingers,
we provide a general treatment of the system for
any DOF of the fingers. Utilizing the results, a
control design method which achieves the simul-
taneous control is proposed.

2. MODELING

2.1 System Configuration

In this paper, we consider two fingertips grasping
an object shown in Fig. 1. The pair of two
fingertips is a simplified model of a two-fingered
robot hand, each finger of which has mi DOF
(0 ≤ mi ≤ 6). The contact point between each
finger and the object is single. In the following,
the number of the fingers and the contact points
is described by i = 1, 2. Arguments of vectors and
matrices are described explicitly only when they
appear first time, and will be omitted in the sequel
for notational simplicity. In this study, we make
the following assumptions.
Assumption 1. The surfaces of each finger and
the object are the regular surfaces (Murray et al.,
1994). Therefore, contact points on the surfaces
of each finger and the object can be described
by c(α) ∈ R3, where c(·) : R2 7→ R3 is a local
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orthogonal chart and α ∈ R2 is local coordinates.

Assumption 2. The frictional forces at each
contact point follow the Coulomb’s law. The con-
tact force applied to the object by each finger is
composed of translational forces and a moment
about the contact normal.
Assumption 3. The constraint at each contact
point is described by the pure rolling contact. The
forces generated by the constraint do not work on
the system (d’Alembert’s principle).

In Fig. 1, ΣB is the reference coordinate frame.
ΣFi and ΣO are the coordinate frames fixed to
the ith finger and the object, respectively. The
configuration of ΣFi relative to ΣB is represented
by the position vector BpFi

(θFi) ∈ R3 and the
rotation matrix RBFi(θFi) ∈ R3×3 where θFi ∈
Rmi represents the generalized coordinates of the
ith finger, and θF := [ θT

F1
θT

F2
]T ∈ Rm,

m := m1 + m2. Similarly, the configuration of
ΣO relative to ΣB is represented by BpO ∈ R3

and RBO(BφO) ∈ R3×3 where BφO represents
the local parameterization of RBO and xO :=
[ BpT

O
BφT

O ]T ∈ R6. Note that the DOF of the
generalized coordinates is (m + 6). In the dashed
area, ΣCFi

and ΣCOi
are the coordinate frames

attached on the surfaces of the ith finger and the
object with the origins at the ith contact point.
The zfi- and zoi-axes of the frames are outward
and normal to the surfaces of the ith finger and
the object, respectively. The configuration of ΣCFi

relative to ΣFi is represented by the position
vector FipCFi

∈ R3 and the rotation matrix
RFiCFi

∈ R3×3. Similarly, the configuration of
ΣCOi

relative to ΣO is represented by OpCOi
∈ R3

and ROCOi
∈ R3×3.

Figure 2 shows the neighborhood of the ith
contact point, where the ith finger and the ob-
ject are depicted separately. ΣLFi

(t) and ΣLOi
(t)

are the local frames fixed relative to ΣFi
and

ΣO, respectively, which coincide at time t with
ΣCFi

and ΣCOi
. From Assumption 1, FipCFi

and
OpCOi

in Fig.1 can be described as FipCFi
:=

cfi(αfi) and OpCOi
:= coi(αoi) respectively,

where cfi(·), coi(·) : R2 7→ R3 are local orthogonal
charts and αfi ∈ R2, αoi ∈ R2 are local coor-
dinates. In addition, let ψi be the angle between
the x- axes of ΣCFi

and ΣCOi
as shown in Fig.

2, then the configuration of the contact points
is described by η := [ ηT

1 ηT
2 ]T ∈ R10, where

ηi := [ αT
fi

αT
oi

ψi]T ∈ R5 is called the contact co-
ordinates for the contact point (Montana, 1988).

τ := [ τT
1 τT

2 ]T ∈ Rm describes the input to
the fingers, where τ i ∈ Rmi is the force/torque
applied to θFi

. From Assumption 2, the contact
force is described by CF C := [ CF T

C1
CF T

C2
]T ∈

R8, where CF Ci ∈ R4 is the contact force applied
to the object by the ith finger.

2.2 Contact Kinematics

At the ith contact point, the following equations
hold (Murray and Sastry, 1990):

BpFi
+ RBFi

FipCFi
= BpO + RBO

OpCOi
(1)

RBFiRFiCFi
= RBOROCOi

RCOi
CFi

. (2)

Eq. (1) requires that the position vectors of the
contact frames ΣCFi

and ΣCOi
with respect to

the reference frame ΣB coincide with each other.
Eq. (2) requires that the contact normals and the
tangent planes at the origins of ΣCFi

and ΣCOi

coincide with each other. Eqs. (1) and (2) relate
the contact coordinates ηi to the generalized
coordinates (θFi ,xO).

Let V Ci := [ vCxi vCyi vCzi ωCxi ωCyi ωCzi ]T ∈
R6 be the velocity of ΣLFi

relative to ΣLOi
seen

from ΣLFi
. Differentiating (1) and (2) with respect

to time t yields the motion of the contact coordi-
nates η̇i as a function of the relative motion V Ci

(Murray and Sastry, 1990; Montana, 1988):

η̇i = Hi(ηi)V Ci (3)

0 = vCzi , (4)
where

Hi:=
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Ri

E 0
M−1
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E
1




(5)
KRi := Kgfi + K̃goi , K̃goi := RψiKgoiRψi (6)

E :=
[ 0 −1
1 0

]
,Rψi :=

[ cosψi − sin ψi− sin ψi − cosψi

]
. (7)

Mgfi , Mgoi ∈ R2×2, Kgfi , Kgoi ∈ R2×2 and
T gfi , T goi ∈ R1×2 are the geometric parameters
defined by using cfi and coi . KRi ∈ R2×2 is
called the relative curvature form. Rψi ∈ R2×2 is



the rotation matrix of the x- and y-axes of ΣCFi

relative to the x- and y-axes of ΣCOi
. In addition,

V Ci is given by

V Ci = DJFi
(θFi , ηi)θ̇Fi −DTOi

(xO,ηi)ẋO, (8)

where

DJFi
:= DFiJFi(θFi), DTOi

:= DOiT O(xO) (9)

DFi :=

[
RT

BCFi
−RT

BCFi
(RBFi

FipCFi
)∧

03×3 RT
BCFi

]
(10)

DOi
:=

[
RT

BCFi
−RT

BCFi
(RBO

OpCOi
)∧

03×3 RT
BCFi

]
. (11)

RBCFi
is the rotation matrix of ΣCFi

relative to
ΣB . (·)∧ stands for the skew-symmetric matrix
equivalent to a vector product. JFi

(θFi
) ∈ R6×mi

and T O(xO) ∈ R6×6 are the transformation ma-
trix from θ̇Fi

to [ BṗT
Fi

BωT
Fi

]T and the one
from ẋO to [ BṗT

O
BωT

O ]T respectively, where
BωFi

∈ R3 and BωO ∈ R3 are the rotational ve-
locities of ΣFi

and ΣO relative to ΣB respectively.
In this study, we assume that JFi

and T O are full
column rank and nonsingular respectively. Note
that JFi is determined by the link mechanics of
the ith finger.

Combining (8) and (3), we get

η̇i = Hi(DJFi
θ̇Fi −DTOi

ẋO). (12)

Eq. (12) relates the velocities of the contact coor-
dinates η̇i to those of the generalized coordinates
(θ̇Fi , ẋO).

2.3 Dynamical Equations

Since the constraint at the ith contact point is
the pure rolling contact from Assumption 3, the
constraint is expressed by (Murray et al., 1994;
Montana, 1988)

BT
CV Ci = 0, BC :=

[
I3 03×1

03×3 e

]
, (13)

where e := [0 0 1]T. Therefore, substituting (8)
into (13) yields the motion constraint on the
generalized coordinates described by
Motion Constraint

AF (θF ,η)θ̇F −AO(xO,η)ẋO = 0, (14)
where

AF :=
[

BT
CDJF1

04×m2

04×m1 BT
CDJF2

]
, AO :=

[
BT

CDTO1

BT
CDTO2

]
.

(15)
The motion constraint (14) will be realized by ap-
plying appropriate contact forces. The condition
is characterized as follows:
Constraint on Contact Force

CF C ∈ FC, FC := FC1 × FC2 ⊂ R8, (16)
where FCi describes the set of forces which lies in
the friction cone at ith contact point (Murray et
al., 1994).

From Assumption 3, the equations of motion of
the fingers and the object are derived from the

Lagrange equations with the constraint (14) as
follows:
Equations of Motion

MF (θF )θ̈F + CF (θF , θ̇F )θ̇F + NF (θF )

= τ −AT
F (θF , η)CF C (17)

MO(xO)ẍO + CO(xO, ẋO)ẋO + NO(xO)

= BF O = AT
O(xO, η)CF C , (18)

where MF > 0 ∈ Rm×m, MO > 0 ∈ R6×6 are the
generalized inertia matrices, CF ∈ Rm×m, CO ∈
R6×6 are the Coriolis matrices, and NF ∈ Rm,
NO ∈ R6 are the gravity terms. Note that the
contact force CF C plays the role of the Lagrange
multipliers, and BF O(:= AT

O
CF C) is the resul-

tant force applied to ΣO by CF C .

3. SYSTEM ANALYSIS

3.1 Properties of Motion Constraint

In this subsection, we clarify properties of the mo-
tion constraint on the generalized coordinates (14)
by associating it with constraints on the contact
coordinates. Consider the following conditions:

Aηi(ηi)η̇i = 0, Aηi ∈ R3×5 (i = 1, 2) (19)

bT
C(DJFi

θ̇Fi −DTOi
ẋO) = 0 (i = 1, 2), (20)

where

Aηi :=


 −Mgfi RψiMgoi

0
0

− T gfiMgfi −T goiMgoi 1


 (21)

bC := [ 0 0 1 0 0 0 ]T. (22)
The following theorem holds.

Theorem 1.
(i) Suppose (12) holds. The motion constraint (14)
is equivalent to (19) and (20).
(ii) Suppose KRi defined by (6) is full rank and
cfi is not the specular image (Marigo and Bic-
chi, 2000) of coi . The constraints on the contact
coordinates (19) are the maximal nonholonomic
constraints and the constraints on the generalized
coordinates (20) are the holonomic constraints.

Proof: (i) Eq. (14) is represented as

BT
C(DJFi

θ̇Fi −DTOi
ẋO) = 0. (23)

Substituting (12) into (19) and combining the
resultant equation with (20) lead to

B̃
T

C(DJFi
θ̇Fi −DTOi

ẋO) = 0, B̃
T

C :=
[

AηiHi

bT
C

]
.

(24)
Therefore, in order to clarify that (23) and (24)
are equivalent, it is enough to show that a nonsin-
gular matrix E4 ∈ R4×4 exists such that E4B̃

T

C =
BT

C . This is immediate since by using (21), (5), (6)
and Rψ = RT

ψ = R−1
ψ , we get

B̃
T

C =

[ 1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

]
. (25)



(ii) Since cfi is not the specular image of coi ,
(19) are the maximal nonholonomic constraints
(Marigo and Bicchi, 2000). Consider the con-
straint hCzi(θFi , xO, ηi) = 0 where

hCzi
:= eTRT

BCFi

[
BpFi

+ RBFi

FipCFi

−(BpO + RBO
OpCOi

)
]
. (26)

We can show that the differential of (26) is equiv-
alent to the left-hand of (20) by using the facts:
the contact condition (1); the property of the rota-
tion matrix ṘBO

OpCOi
= −(RBO

OpCOi
)∧BωO

and ṘBFi
FipCFi

= −(RBFi
FipCFi

)∧BωFi ; third
elements of RT

FiCFi

Fi ṗCFi
and RT

OCOi

OṗCOi
are

zero (Murray et al., 1994). Therefore, (20) is the
holonomic constraints.

From Theorem 1, the system has 6 nonholonomic
constraints and 2 holonomic constraints. There-
fore, the position of the DOF of the system can
be (m + 4) under a certain condition, which is
shown in the next subsection.

3.2 Degrees of Freedom of System

In this subsection, we clarify the DOF of the
velocity and the position of the system.

Firstly, since the motion constraint (19) consists
of 8 constraint equations of the velocity, the DOF
of the velocity of the system is (m− 2).

Secondly, consider the DOF of the position. A gen-
eral solution of the constraints (19) with respect
to η̇i is given by

η̇i = A⊥
ηi

(ηi)ωCi , AηiA
⊥
ηi

= 0 (i = 1, 2), (27)

where A⊥
ηi
∈ R5×2 consists of the 4th and 5th

columns of Hi of (5) and ωCi := [ ωCxi ωCyi ]T ∈
R2 is the rolling velocity. Therefore, from the
property of the maximal nonholonomic constraints
(19), the DOF of the position depends whether the
rolling velocity ωC := [ ωT

C1
ωT

C2
]T ∈ R4 can be

generated from the (m − 2) DOF of the velocity
or not. The following theorem holds.

Theorem 2. The relation between (θ̇F , ẋO) and
ωC is given by

A(θF , xO, η)
[

θ̇F
ẋO

]
= AωC

ωC , (28)

where

A(θF , xO, η) :=
[
AF −AO

] ∈ R12×(m+6) (29)

AF :=

[
B

T

CDJF1
06×m2

06×m1 B
T

CDJF2

]
, AO :=

[
B

T

CDTO1

B
T

CDTO2

]

(30)

AωC :=

[
B

T

CKBT
C

06×2

06×2 B
T

CKBT
C

]
(31)

BC :=
[
BC KBT

C

]
, KBT

C
:=[02×3 I2 02×1]T.(32)

Furthermore, ωC is generated from (θ̇F , ẋO) iff A
of (29) is full row rank.

Proof: From the definition ωCi := [ ωCxi ωCyi ]T,

ωCi = KT
BT

C
V Ci . (33)

Therefore, by substituting (8) into (33), ωCi is
expressed by (θ̇Fi

, ẋO) as

ωCi
= KT

BT
C
DJFi

θ̇Fi −KT
BT

C
DTOi

ẋO. (34)

Combining (34) and (14), we get (28). For the
proof of the latter part, notice that (28) can be
interpreted as the simultaneous linear equations
with respect to [ θ̇

T

F ẋT
O ]T. Since B

T

CKBT
C

=
[ 02×4 I2 ]T from (32) and (33), AωC

of (31) is
full column rank. Therefore, (28) can be solved
with respect to [ θ̇

T

F ẋT
O ]T for arbitrary ωC iff

A ∈ R12×(m+6) of (28) is full row rank. This fact
proves the claim.

From Theorem 2, ωC ∈ R4 can be generated from
the (m − 2) DOF of the velocity iff the number
of the DOF of the fingers, m, is greater than or
equal to 6 and A is full row rank. In that case, the
contact coordinates η ∈ R10 can be regulated by
ωC under (27). Combining the rest of the DOF of
the velocity except ωC with 10, the DOF of the
position is 10 + (m− 6) = (m + 4).

4. CONTROL DESIGN

In this section, we consider the control design to
achieve the control of the (m + 4) DOF of the
position of the system.
4.1 Control Objectives
Consider the following control objectives:

(A) To make the contact force CF C lie in the
friction cone FC.

(B) To make the rolling velocity ωC ∈ R4 follow
a desired trajectory.

(C) To make the fingers/object motion vN ∈
R(m−6) follow a desired trajectory, where vN
causes no effect on the rolling velocity ωC .

The control objective (A) represents that the fin-
gers do not slip, and (B) and (C) represent the
control of the (m− 2) DOF of the velocity of the
system. Since the contact coordinates η ∈ R10

can be regulated by making ωC follow appropriate
trajectory with nonholonomy of rolling, all of the
(m + 4) DOF of the position of the system can
be controlled. One such trajectory has been pro-
posed by (Nakashima et al., 2002). These control
variables (η, vN ) ∈ R(m+4) can be associated with
12 variables of (θF , xO, η) ∈ R(m+16) except the
control variables since we have 12 equations of (1)
and (2) (i = 1, 2). Note that (2) gives only 3 equa-
tions because it relates the 2 rotation matrices.
Therefore, it can be realized that we control the
control variables such that the 12 variables are
regulated to desired target points.

To realize the control objectives, we make the
following assumptions:
Assumption 4.
(i) AT

O ∈ R6×8 is full row rank.
(ii) There exists an internal force F N ∈ R8 such
that F N ∈ N (AT

O) and F N ∈ Int(FC).



Assumption 5.
(i) AT

F ∈ Rm×8 is maximal full rank.
(ii) N (AT

O) ⊂ R((AT
F )+).

Assumption 6. A is full row rank.

Int(FC) represents the interior of the friction
cone, N (·) represents the kernel, R(·) represents
the range of value and (·)+ represents the pseudo
inverse matrix. Assumption 4 corresponds to the
Force Closure (Murray et al., 1994) in the robotics
literatures. Assumption 5 guarantees that the
internal force can be generated by the inputs τ .
Assumption 6 guarantees that ω can be generated
by the (m− 2) DOF of the velocity.

4.2 Expression of Contact Force

In this subsection, we give an explicit relationship
between the contact force and the internal force,
which is effective to achieve the control objective
(A). Consider a decomposition of CF C as

CF C = (AT
O)+BF O + KAT

O
(xO, η)fN , (35)

where

KAT
O

:= [ k1 k2 ] ∈ R8×2

=




RT
BCF1

Be12 RT
BCF1

(Bp∧CO12
)+τN

0
1

(BpCO12
)TBe1z

RT
BCF2

Be21 −RT
BCF2

(Bp∧CO12
)+τN

0
−1

(BpCO12
)TBe2z



(36)

τN :=
Be1z

(BpCO12
)TBe1z

+
−Be2z

(BpCO12
)TBe2z

(37)

BpCO12
:= RBO(OpCO2

− OpCO1
) (38)

Bezi := RBCFi
e, e := [ 0 0 1 ]T. (39)

Beij ∈ R3(i, j = 1, 2, i 6= j) is the unit vector
from the contact point i to j (Be12 = −Be21). τN
is the moment produced by the moments about
Be1z and Be2z. BpCO12

is the vector from the
contact point 2 to 1 and Beiz ∈ R3 is the unit
vector in direction of zfi -axis of ΣCFi

. Note that
Beij//

BpCO12
. The following lemma holds.

Lemma 1. Consider KAT
O

defined by (36)–(39).
The following equations hold.

(i) : AT
OKAT

O
= 0 (40)

(ii) : kT
1 k2 = 0 (41)

Proof: (i) Combining (11), (15) and (36), and
noting that Bp∧CO12

Be12 = 0 from Be12//
BpCO12

,
we get AT

Ok1 = 0. Similarly, we can easily con-
firm that the upper 3 elements of AT

Ok2 is zero.
With τN defined by (37), the lower 3 elements
of AT

Ok2 result in (I3 − Bp∧CO12
(Bp∧CO12

)+)τN .
Since τT

N
BpCO12

= 0 from (37), τN can be rep-
resented as τN = (Bp∧CO12

)z, z ∈ R3. Noting

Bp∧CO12
(Bp∧CO12

)+Bp∧CO12
= Bp∧CO12

, we can con-
firm that (I3 − Bp∧CO12

(Bp∧CO12
)+)τN = 0.

(ii) Noting that (Bp∧CO12
)+ =

(Bp∧CO12
)T

‖BpCO12
‖2 and

(Be12 − Be21)//BpCO12
, we get kT

1 k2 = 0.

From Lemma 1 and the property of the pseudo
inverse matrix AT

O(AT)+ = I6, we can confirm
that (35) is a general solution of BF O := AT

O
CF C

(See (18)). In addition, fN := [ fN1 fN2 ]T ∈ R2

produces the internal forces k1fN1 and k2fN2
which cause no effect on ΣO, and they are inde-
pendent each other. Physically, from the observa-
tion of the elements of k1 and k2, fN1 represents
the magnitude of the translational forces in the
directions of Be12 and Be21, and fN2 represents
the magnitude of the moments about τN and
−τN . From the property of the friction cone of
the soft-finger contact (Murray et al., 1994), the
control objective (A) is achieved by controlling
fN1 appropriately.

4.3 Expression of Finger and Object Motion

In this subsection, we give an explicit relationship
between the velocity of the generalized coordi-
nates (θ̇F , ẋO) and (ωC ,vN ), which is effective
to achieve the control objectives (B) and (C).
Consider a decomposition of [ θ̇

T

F ẋT
O ]T as

[
θ̇F
ẋO

]
= A−AωC ωC + KA(θF , xO, η)vN , (42)

where

A− := A+ −KAT T
AA+ ∈ R(m+6)×12 (43)

KA := A−1
[
012×(m−6)

I(m−6)

]
∈ R(m+6)×(m−6) (44)

A :=
[ A

T T
A

]
, TA ∈ R(m+6)×(m−6). (45)

TA is an arbitrary matrix, which make A nonsin-
gular. The following lemma holds.

Lemma 2. Consider A− and KA defined by
(43)–(45). Suppose that TA is chosen to make A
of (45) nonsingular. The following equations hold.

(i) : AA− = I12,AKA = 0 (46)

(ii) : vN = T T
A[ θ̇

T

F ẋT
O ]T (47)

Proof: (i) Noting that (43), AA+ = I12 and
A =

[
I12 012×(m−6)

] A from (45), we get (46).

(ii) Premultiplying (42) by A and noting (43)–
(45) and AA+ = I12,

[ A
T T
A

] [
θ̇F
ẋO

]
= AA−AωC ωC +

[
012×(m−6)

I(m−6)

]
vN

=
{[ A

T T
A

]
A+ −

[
012×(m−6)

I(m−6)

]
T T
AA+

}
AωC ωC

+
[
012×(m−6)

I(m−6)

]
vN



=
[

I12
0(m−6)×12

]
AωC

ωC +
[
012×(m−6)

I(m−6)

]
vN . (48)

It is clear that the lower (m−6) rows of (48) means
(47) (The upper 12 rows of (48) corresponds to
(28).).

From Lemma 2, we can confirm that (42) is a
general solution of (28), and vN ∈ R(m−6) can
be related to the velocity of the generalized coor-
dinates (θ̇F , ẋO). If TA is especially chosen as a
constant matrix, from (47),

∫
vNdt can be directly

associated with the position of the generalized
coordinates (θF ,xO). Therefore, the (m−6) DOF
of the position can be directly controlled by spec-
ifying a target point of

∫
vNdt.

4.4 Linearizing Compensator

In this subsection, we propose a linearizing com-
pensator for ωC ∈ R4, vN ∈ Rm−6 and fN ∈
R2. A controller for the linearized system, which
achieves the control objectives (A), (B) and (C),
can be easily designed from the linear control
theory. A linearizing compensator is given by

τ = M̂
[
uωC

uvN

]
+ Ĉ

[
ωC
vN

]
+ N + AT

F KAT
O
ufN

,

(49)
where

M̂ := MS, Ĉ := MṠ + CS (50)

M :=
[
MF AT

F (AT
O)+MO

]
(51)

C :=
[
CF AT

F (AT
O)+CO

]

N := NF + AT
F (AT

O)+NO

S =
[
SF
SO

]
:=

[
A−AωC KA

]
(52)

SF ∈ Rm×(m−2)，SO ∈ R6×(m−2). uωC
∈ R4,

uvN
∈ R(m−6) and ufN

∈ R2 are the new inputs
for ωC , vN and fN respectively. The following
theorem holds.

Theorem 3. Consider the system (17) and (18)
with the motion constraint (14). By the controller
(49), the system is linearized as

ω̇C = uωC
, v̇N = uvN

, fN = ufN
. (53)

Proof: Combining (17), (18), (35) and (42), and
substituting (49) into the resultant equation, we
get the closed loop system given by

M̂
[
ω̇C − uωC

v̇N − uvN

]
+ AT

F KAT
O
(fN − ufN

) = 0.(54)

Noting that (42) is the solution of (14) since (28)
includes (14), we get AF SF = AOSO from (52).
Premultiplying (54) by ST

F and noting that (50),
(51), ST

F AT
F = ST

OAT
O, AT

O(AT
O)+ = I6 and

AT
OKAT

O
= 0, we get

[
ST

F ST
O

][ MF 0m×6
06×m MO

][
SF
SO

][
ω̇C − uωC

v̇N − uvN

]
= 0.

Since the coefficient matrix of the above equation
is nonsingular from MF > 0 and MO > 0,
we get ω̇C − uωC

= 0 and v̇N − uvN
= 0.

Next, substituting these results into (54), we get
AT

F KAT
O
(fN −ufN

) = 0. Note that the following
equation holds (MacLane and Birkoff, 1967):

dim(R(AT
F KAT

O
)) + dim(N (AT

F ) ∩R(KAT
O
))

= dim(R(KAT
O
)), (55)

where dim(·) describe the dimension and dim(R(·))
= rank(·). Since N (AT

O) ⊂ R(
(AT

F )+
)

from
Assumption 5 (ii) and Rm = R(

(AT
F )+

)⊕N (AT
F ),

N (AT
F ) ∩ N (AT

O) = ∅ holds (∅ is the empty
set). Therefore, since dim(N (AT

F )∩R(KAT
O
)) = 0

from R(KAT
O
) = N (AT

O), dim(R(AT
F KAT

O
)) =

dim(R(KAT
O
)) = 2 from (55). Since AT

F KAT
O
∈

Rm×2 is full column rank, we get fN −ufN = 0.

5. CONCLUSION

In this paper, for the simultaneous control of
the object motion/internal force and the contact
coordinates by a two-fingered robot hand with
the pure rolling contact, we provided the entire
treatment of the system equations including the
motion and force constraint, which consist of the
generalized coordinates and the contact coordi-
nates. We considered the general treatment of the
system for any DOF of the fingers. Utilizing the
results, the control design method which achieves
the simultaneous control was proposed.
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