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Abstract: On-line optimisation provides a means for maintaining a process around
its optimum operating range. An important component of optimisation relies in
data reconciliation which is used for obtaining consistent data. On a mathematical
point of view, the formulation is generally based on the assumption that the
measurement errors have Gaussian probability density function (pdf) with zero
mean. Unfortunately, in the presence of gross errors, all of the adjustments
are greatly affected by such biases and would not be considered as reliable
indicators of the state of the process. This paper proposes a data reconciliation
strategy that deals with the presence of such gross errors. Application to total
flowrate and concentration data in a petroleum network transportation is provided
Copyright c©2005 IFAC.
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1. INTRODUCTION

The problem of obtaining reliable estimates of the
state of a process is a fundamental objective, these
estimates being used to understand the process
behaviour. For that purpose, a wide variety of
techniques has been developed to perform what
is currently known as data reconciliation (Mah, et

al., 1976), (Maquin, et al., 1991). Data reconcilia-
tion, which is sometimes referred too as mass and
energy balance equilibration, is the adjustment
of a set of data so the quantities derived from
the data obey physical laws such as material and
energy conservation. Since the pionner works de-
voted to the so-called data rectification (Himmel-
blau, 1978), the scope of research has expanded

to cover other fields such as data redundancy
analysis, system observability, optimal sensor po-
sitionning, sensor reliability, error characteriza-
tion, measurement variance estimation. Many ap-
plications are related in scientific papers involv-
ing various fields in process engineering (Dhurjati
and Cauvin, 1999), (Heyen, 1999), (Singh, et al.,
2001), (Yi, et al., 2002).

Unfortunately, the measurement collected on the
process may be unknowingly corrupted by gross
errors. As a result, the data reconciliation proce-
dure can give rise to absurd results and, in par-
ticular, the estimated variables will be corrupted
by this bias. Several schemes have been suggested



to cope with the corruption of normal assumption
of the errors, for static systems (Narasimhan and
Mah, 1989), (Kim, et al., 1997), (Arora, 2001)
and also for dynamic systems (Abu-el-zeet, et

al., 2001). Methods to include bounds in process
variables to improve gross error detection have
been developed. One major disadvantage of these
methods is that they give rise to situations that
it may impossible to estimate all the variable by
using only a subset of the remaining free gross
errors measurements. Alternative approach using
constraints both on the estimates and the balance
residual equations has been developped for linear
system (Ragot, et al., 1999), (Maquin and Ragot,
2004). There is also an important class of robust
estimators whose influence function are bounded
allowing to reject outliers (Huber, 1981), (Ham-
pel, et al., 1986). Another approach is to take
into account the non ideality of the measurement
error distribution by using an objective function
constructed on contaminated error distribution.
In the following, we adopt and develop this idea
for the data reconciliation problem.

Section 2 will be devoted to recall the background
of data reconciliation. Robust data reconciliation
based on the use of a contaminated error distri-
bution is firstly developed in section 3, for the
linear case, and extended to the bilinear case in
the following section. Finally, in section 5, the
proposed method is implemented on a fictitious
but realistic petroleum network transportation.

2. DATA RECONCILIATION BACKGROUND

The classical general data reconciliation prob-
lem (Mah, et al., 1976), (Hodouin and Flament,
1989), (Crowe, 1996), deals with a weighted least
squares minimisation of the measurement adjust-
ments subject to the model constraints. Here, the
process model equations are taken as linear for
sake of simplicity:

Ax = 0, A ∈ IRn.v, x ∈ IRv (1)

where x, with components xi is the state of
the process. The measurement devices give the
information:

x̃ = x + ε, p(ε) ∝ N(0, V ) (2)

where ε ∈ IRn is a vector of random errors
characterised by a variance matrix V and p is the
normal probability distribution (pdf). For each
component xi of x, the following pdf is defined:

pi(x̃i | xi, σi) =
1√

2πσi

exp

(

−1

2

(

xi − x̃i

σi

)2
)

(3)
where σ2

i are the diagonal elements of V . From
(3) one derives the likelihood function of the ob-

servation with the hypothesis of independant real-
isations. Maximisation of the likelihood function
leads to the estimate x̂ = (I−V AT (AV AT )−1A)x
(Maquin, et al., 1991). In fact, the method doesn’t
work in any situation, the main drawback being
the contamination of all estimated values by the
outliers. For that reason robust estimators could
be preferred, robustness being the ability to ig-
nore the contribution of extreme data such as
gross errors. There are two approaches to deal
with outliers. The first one consists to sequentially
detect, localise and suppress the data which are
contaminated and after to reconcile the remaining
data. The second approach is global and reconcile
the data without a preliminary classification; in
fact, weights in the reconciliation procedure are
automatically adjusted in order to minimise the
influence of the abnormal data. The method pre-
sented in this paper is only focused on this last
strategy.

3. ROBUST DATA VALIDATION. THE
LINEAR CASE.

3.1 Robust estimation

If the measurements contain random outliers, then
a single pdf described as in (3) cannot account for
the high variance of the outliers. To overcome this
problem let us assume that measurement noise is
sampled from two pdf, one having a small variance
representing regular noise and the other having
a large variance representing outliers (Wang and
Romagnoli, 2002), (Ghosh and Schafer, 2003). In a
first approach, each measurement x̃i is assumed to
have the same normal σ1 and abnormal σ2 stan-
dard deviations; this hypothesis will be released
later on. Thus, for each observation x̃i, we define
the two following pdf (j = 1, 2):

pj,i(x̃i | xi, σj) =
1√

2πσj

exp

(

−1

2

(

xi − x̃i

σj

)2
)

(4)
The so-called contaminated pdf is then obtained
using a combination of these two pdf:

p(x̃i | xi, θ) = wp1,i +(1−w)p2,i 0 ≤ w ≤ 1 (5)

where the vector θ collects the standard deviations
σ1 and σ2. The quantity (1−w) can be seen as an
a priori probability of the occurrence of outliers.
Assuming the independence of the measurements,
the log-likelihood function of the measurement set
is then written as:

Φ = ln

v
∏

i=1

p(x̃i | xi, θ) (6)

As previously said, the best estimate x̂ (in the
maximum likelihood sense) of the state vector
x is obtained by maximizing the log-likelihood



function with respect to x subject to the model
constraints:

x̂ = arg max
x

ln

v
∏

i=1

p(x̃i | xi, θ) (7a)

subject to Ax = 0 (7b)

Using the classical Lagrange method leads to the
following estimate x̂:

x̂ = (I − Wx̂AT (AWx̂AT )−1A)x̃ (8a)

W−1
x̂ = diag

i=1..v

( w
σ2
1
p̂1,i + 1−w

σ2
2

p̂2,i

wp̂1,i + (1 − w)p̂2,i

)

(8b)

p̂j,i =
1√

2πσj

exp

(

−1

2

(

x̂i − x̃i

σj

)2
)

(8c)

where the diag operator allows one to define a
diagonal matrix from the elements (pointed by i)
of a vector. Thus system (8) is clearly non linear
and we suggest to solve it using the following
direct iterative scheme:

k = 0, x(k) = x̃ (9a)

p̂
(k)
j,i =

1√
2πσj

exp



−1

2

(

x̂
(k)
i − x̃i

σj

)2


 (9b)

(W
(k)
x̂ )−1 = diag

i=1..v





w
σ2
1
p̂
(k)
1,i + 1−w

σ2
2

p̂
(k)
2,i

wp̂
(k)
1,i + (1 − w)p̂

(k)
2,i



 (9c)

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

x̃ (9d)

A stopping criterion must be chosen for imple-
menting the algorithm. For sake of simplicity, the
proof for the local convergence of the algorithm is
omitted and the reader is invited to refer to the
specialized literature for obtaining more details
about fixed point theory (Border, 1985).

3.2 Weigthing function

In order to appreciate how the weights in W ,
which should be compared to an influence func-
tion as explained in (Hampel, et al., 1986), are
able to reject the data contaminated by gross
errors, figure 1 shows the graph of the function:

g(u) =

w
σ2
1
p1 + 1−w

σ2
2

p2

wp1 + (1 − w)p2

p1 =
1√

2πσ1

exp

(

−1

2

(

u

σ1

)2
)

p2 =
1√

2πσ2

exp

(

−1

2

(

u

σ2

)2
)

with σ1 = 0.5 and σ2 = {1, 4} and where w takes
the indicated values. For a better comparison,
the graphs have been normalized, i.e. we have
represented g(u) = g(u)/g(0). For w = 1, we
naturally obtain a constant weight; thus all the
data are equally weighted and, in particular, the

optimisation criterion will be sensitive to large
magnitude of data, i.e. to outliers. Taking w =
0.02 reduces the influence of outliers. For example,
with σ2 = 4, the weight decreases from 1 for
data around the origin to 0.1 for data with large
magnitude.
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Fig. 1. Influence function

4. EXTENSION TO BILINEAR SYSTEMS

We consider now the case of a process charac-
terised by two types of variables such as flowrates
x and concentrations y. As for the linear case,
measurement noise is sampled from two pdf, one
having a small variance representing regular noise
and the other having a large variance representing
outliers. In order to simplify the presentation,
each measurement xi (resp. yi) is assumed to have
the same normal σx,1 (resp. σy,1) and abnormal
σx,2 (resp. σy,2) standard-deviation. This hypoth-
esis will be withdrawn later on. Thus, for each
observation x̃i and ỹi, we define the following pdf:

p(x̃i|xi, σx,j) =
1√

2πσx,j

exp

(

−1

2

(

xi − x̃i

σx,j

)2
)

(10a)

p(ỹi|yi, σy,j) =
1√

2πσy,j

exp

(

−1

2

(

yi − ỹi

σy,j

)2
)

(10b)

with j = 1, 2, i = 1..v. In the rest of the paper,
px,j,i and py,j,i respectively are shortening no-
tations for p(x̃i|xi, σx,j), and p(ỹi|yi, σy,j) where
indexes i and j are respectively used to point the
number of data and the number of the distribu-
tion. As for the linear case, the contaminated pdf
of the two types of measurements are defined:

px,i = wpx,1,i + (1 − w)px,2,i i = 1..v (11a)

py,i = wpy,1,i + (1 − w)py,2,i i = 1..v (11b)



In order to simplify the presentation, one used
here the same mixture coefficient w for the two
xi and yi distributions. Assuming independence
of the measurements allows the definition of the
global log-likelihood function:

Φ = ln

v
∏

i=1

px,ipy,i (12)

Mass balance constraints for total flowrates and
partial flowrates are written using the operator ⊗
to perform the element by element product of two
vectors:

Ax = 0 (13)

A(x ⊗ yc) = 0 (14)

Let us now define the optimisation problem con-
sisting in estimating the process variables x and
y. For that, consider the Lagrange function:

L = Φ + λT Ax + µT A(x ⊗ y) (15)

Constraints are taken into account through the
introduction of the Lagrange parameters λ and
µ. A sequence of very elementary matrix algebra
leads to the stationarity conditions of (15) (the
estimates are now noted x̂ and ŷc):

W−1
x̂ (x̂ − x̃) + AT λ + (A ⊗ ŷ)T µ = 0 (16a)

Wŷ
−1(ŷ − ỹ) + (A ⊗ x̂)T µ = 0 (16b)

Ax̂ = 0 (16c)

A(x̂ ⊗ ŷ) = 0 (16d)

where the weighting matrices Wx̂ and Wŷ are
defined by:

W−1
x̂ = diag

i=1..v





wpx̂,1,i

σ2
x,1

+
(1−w)px̂,2,i

σ2
x,2

wpx̂,1,i + (1 − w)px̂,2,i



 (17a)

W−1
ŷ = diag

i=1..v





wpŷ,1,i

σ2
y,1

+
(1−w)pŷ,2,i

σ2
y,2

wpŷ,1,i + (1 − w)pŷ,2,i



 (17b)

Notice that if each measurement xi (resp. yi) has
a particular standard-deviation, formulas (17a)
and (17b) still hold by replacing the parameters
σx,1 and σx,2 (resp. σy,1 and σy,2) by σx,1,i and
σx,2,i (resp. σy,1,i and σy,2,i ). System (16) may
be directly solved and the solution is expressed
as:

x̂ = (I − Wx̂AT (AWx̂AT )−1A)...

...(x̃ − Wx̂AT
ŷ (Ax̂WŷAT

x̂ )−1Ax̂ỹ) (18a)

ŷ = (I − WŷAT
x̂ (Ax̂WŷAT

x̂ )−1Ax̂)ỹ (18b)

where the shortening notations Ax and Ay respec-
tively stand for A diag(x) and A diag(y). System
(18) is clearly non linear with regard to the un-
known x̂ and ŷ, the weights Wx̂ and Wŷ depending
on the pdf (10) which themselves depend on the x̂
and ŷ estimations (18). In fact (18) is an implicit
system in respect to the estimates x̂ and ŷ for
which we suggest the following iterative scheme:

Step 1: initialisation

k = 0
x̂(k) = x̃ ŷ(k) = ỹc

Choose w
Adjust σx,1 and σy,1 from an a priori knowledge
about the noise distribution
Adjust σx,2 and σy,2 from an a priori knowledge
about the gross error distribution.

Step 2: estimation

Compute the quantities (for j = 1, 2, i = 1..v )

p
(k)
x̂,j,i =

1√
2πσxj

exp



−1

2

(

x̂
(k)
i − x̃i

σxj

)2




p
(k)
ŷ,j,i =

1√
2πσyj

exp



−1

2

(

ŷ
(k)
i − ỹi

σyj

)2




W−1
x̂ = diag

i=1..v







wp
(k)

x̂,1,i

σ2
x1

+
(1−w)p

(k)

x̂,2,i

σ2
x2

wp
(k)
x̂,1,i + (1 − w)p

(k)
x̂,2,i







W−1
ŷ = diag

i=1..v







wp
(k)

ŷ,1,i

σ2
y1

+
(1−w)p

(k)

ŷ,2,i

σ2
y2

wp
(k)
ŷ,1,i + (1 − w)p

(k)
ŷ,2,i







A
(k)
x̂ = A diag(x̂(k)) A

(k)
ŷ = A diag(ŷ(k))

Update the estimation of x and y

x̂(k+1) =
(

I − W
(k)
x̂ AT (AW

(k)
x̂ AT )−1A

)

...

...
(

x̃ − W
(k)
x̂ A

(k)T
ŷ (A

(k)
x̂ W

(k)
ŷ A

(k)T
x̂ )−1A

(k)
x̂ ỹc

)

ŷ(k+1) = (I−W
(k)
ŷ A

(k)T
x̂ (A

(k)
x̂ W

(k)
ŷc

A
(k)T
x̂ )−1A

(k)
x̂ )ỹ

Step 3: convergence test

Compute an appropriate norm of the corrective

terms: τ
(k+1)
x = ‖x̂(k+1) − x̃‖ and τ

(k+1)
y =

‖ŷ(k+1) − ỹ‖. If the variations τ
(k+1)
x − τ

(k+1)
x and

τ
(k+1)
y −τ

(k+1)
y are less than a given threshold then

stop, else k = k + 1 and go to step 2.

Remark : for non linear systems, the initialisation
remains a difficult task, convergence of the algo-
rithm being generally sensitive to that choice. In
our situation, measurements are a natural choice
for initializing the estimates (step 1 of the algo-
rithm). The solution given by classical least square
approach would also provide an acceptable initial-
ization although its sensitivity to gross errors may
be sometimes important; the reader should verify
that this solution may be obtained by redefining
the distributions (11) with w = 1.

5. EXAMPLE AND DISCUSSION

The method described in section 4 is applied
to the system (a part of a petroleum network



transportation) depicted by figure 2, for which 11
streams are considered; each stream is character-
ized by total flowrate (oil plus water) and water
percentage (ratio water/oil). Random errors were
added to the 11 variables but the gross errors were
added only on some of them.

1 5 7 9 10

2
3 4

6 8 11

Fig. 2. Flowsheet

The performance results are given when two gross
errors of magnitudes 8 affect the measurements
3 and 7, and simultaneously, two gross errors
of magnitude 10 affect the measurements of the
concentration for streams 1 and 9. Comparison of
the proposed robust least square algorithm (RLS)
with the classical least square (LS) algorithm is
now provided in table 2.

Table 1. Measurements and estimations

Measurement RLS estimate LS estimate
x y x̂ ŷ x̂ ŷ

1 16.9 19.9 17.06 14.41 16.61 12.89

2 13.6 9.5 13.54 8.20 14.97 8.29
3 19.6 25.8 16.49 24.98 15.26 31.64
4 3.0 100 2.98 100.52 0.33 46.86
5 30.7 9.7 30.63 11.39 31.76 11.24
6 3.8 7.6 3.84 7.41 3.55 7.51
7 38.2 9.5 34.49 10.81 35.27 10.80
8 5.9 32.9 5.87 32.49 6.12 33.27
9 40.4 22.9 40.36 13.92 41.28 14.72

10 36.4 2.2 36.32 2.70 33.57 2.26
11 3.9 112.0 4.04 113.77 7.71 128.82

Columns 2 and 3 relate the row measures, columns
4 and 5 show the estimations obtained with RLS
and columns 6 and 7 the estimations obtained
with LS. Analysing the RLS estimation errors
clearly allows to suspect variables 3 and 7 for
being contaminated by a gross error. Such conclu-
sion is more difficult to express with LS estimator.
Indeed, stream 4 for x variable has a measurement
of 3.0 and respective RLS and LS estimates are
2.98 and 0.33; it means that LS corrects data
which are not a priori corrupted by errors. The
same effect may be seen on several other streams
such as stream 11 for variable y for which LS also
proposes a important correction of a free gross
error variable.

For another data set, figure 3 visualizes more
clearly the estimation errors (x̂ − x̃ and ŷc − ỹc)
both for RLS (upper part) and LS (lower part).
On each graph, horizontal and vertical axes are
respectively scaled with the number of the data
and the magnitude of the absolute estimation
error; the dashed horizontal line is the thresh-
old chosen to detect abnormal corrective terms.

Analysing figure 3 shows two advantages of RLS
upon LS approach: first, the corrective terms are
more precisely estimated, second, the scattering
of the gross errors is less (the corrective terms
mainly affect the measurements corrupted by the
gross errors and not the others). Figure 4 shows
mean values of the corrective terms obtained from
100 runs.
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Fig. 3. Corrective terms
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Fig. 4. Mean corrective terms (100 runs)

Performances of the proposed approach can be
also analysed when using a great number of data.
For that purpose, the same process has been used
with different additive random noise on the data,
the gross errors being superposed to the same data
as previously. 10000 runs have been performed,
allowing the enumeration of the cases where the
gross errors have been correctly detected and
isolated, both for RLS and LS methods. Results,
expressed in percentage of correct fault detection,
are shown in table 2. Roughly speaking, for the
given example, the ability of gross error detection
for RLS is twice of those of LS. This has been
confirmed by many other runs involving various
distributions of the measurement errors.

Table 2. Correct fault detection in %

RLS gross error LS gross error

detection detection

Var. x y x y

w=0.10 92.5 95.3 41.4 56.6



Of course, the choice of the tuning parameters
w, σx,i and σy,i of the contaminated distribution
affects the detection and the estimation of outliers
and therefore requires special attention. In fact,
due to the structure of the function defining the
weight, we can reduce these parameters to w,
σx,1/σx2 and σy,1/σy,2. Therefore, it is relatively
easy to adjust manually the parameters of the
method and a “large” range of acceptable values
may be found. However, it is also possible to use
an adaptive algorithm for this adjusting.

6. CONCLUSION

To deal with the issues of gross errors influence
on data estimation, the paper has presented a
robust reconciliation approach. For that purpose,
a cost function which is less sensitive to the out-
lying observations than that of least squares was
introduced. The algorithm can handle multiple
biaises or outliers at a time and for the given
example, 4 outliers have been correctly detected
on 22 variables.

The results of reconciliation clearly depend not
only on the data, but also on the model of the
process itself. As a perspective of development of
robust reconciliation strategies, there is a need for
taking into account the model uncertainties and
optimise the balancing parameter w. Moreover,
for process with unknown parameter, it should be
important to jointly estimate the reconciled data
and the process parameters.
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