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Abstract: This paper provides alternative approaches to solve iterative learning
control (ILC) of robotic manipulators by introducing hybrid adaptation schemes
and extended versions of those, that is, 2-dimensional adaptive control. The 2-
dimensional adaptive control strategies contain 2 types of adaptation processes,
off-line tuning and on-line tuning, simultaneously, and provide more skillful
learning properties where adaptive processes themselves are improved adaptively.
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1. INTRODUCTION

Iterative learning control (ILC) schemes have been
one of the useful methods to achieve tracking
control for uncertain processes with less prior in-
formation. Those generate desired control inputs
for tracking through repetitions of the same tasks
on the finite time interval, and have been applied
to the control of processes which execute the same
operations over and over again. The researches
of ILC began with the original work (Arimoto
et al., 1984), and then there have been many
investigations in those fields (for example, (Moore
and Xu, 2000)). In the conventional ILC schemes,
there are problems that the reference signals to
be tracked should be identical in all iterations,
and additionally, that the finite time interval on
which each operation is defined, has the same
length in all iterations. Those features of ILC are
owing to the fact that ILC scheme is one of the
servo-compensator which involves internal models
of delayed-signals.

In order to relax those restrictions of ILC, alter-
native approaches to solve ILC of robotic manip-

ulators by introducing hybrid adaptation schemes
were provided (Miyasato, 2003). The hybrid adap-
tation schemes are adaptive control structures in-
volving continuous-time control of processes and
discrete-time updates of tuning parameters si-
multaneously (Ioannou and Sun, 1996). In the
proposed methodology, the discrete-time updates
of tuning parameters and the stabilizing control
signals which are derived from certain H∞ control
problem, assure the boundedness of the overall
control system, and attain convergence of tracking
errors through the repetition of the operations on
the finite time interval. The main advantage is
that the reference signals and the time intervals
of each operations, are not necessarily identical to
the ones in the other operations.

In the present paper, an extended version of those
results by applying 2-dimensional adaptive control
strategy is provided, which was originally pro-
posed in adaptive control of 2-dimensional sys-
tems (Miyasato and Oshima, 1989). It contains
2 types of adaptation processes simultaneously,
and one of those adaptation processes is improved



adaptively by the other adaptation one. In ILC
problems, those 2 types of adaptation processes
are allocated appropriately into the hybrid adap-
tation schemes, and the convergence of both pro-
cesses are assured, and one of those is improved by
the other one. Therefore, the proposed composite
adaptive systems provide more skillful learning
properties where adaptive processes themselves
are improved adaptively.

2. ROBOTIC MANIPULATORS AND
TRACKING CONTROL

Basic preliminaries of robotic manipulators and
tracking control of manipulators are summarized
(Shen and Tamura, 1999), (Miyasato, 2002).

Consider a robotic manipulator with n degrees of
freedom described by the following equation:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ, (1)

where θ ∈ Rn is a vector of joint angles, M(θ) ∈
Rn×n is a matrix of inertia, C(θ, θ̇) ∈ Rn×n is a
matrix of Coriolis and centrifugal forces, G(θ) ∈
Rn is a vector of gravitational torques, and τ
is a vector of input torques (control input). It
is assumed that the system parameters in M(θ),
C(θ, θ̇), and G(θ) are unknown. Robotic manip-
ulators with rotational joints have the following
properties (Spong and Vidyasagar, 1989).

Properties of Robotic Manipulators

(1) M(θ) is a bounded, positive definite, and
symmetric matrix.

(2) Ṁ(θ)− 2C(θ, θ̇) is a skew symmetric matrix.
(3) The left-hand side of (1) can be written into

the following form,

M(θ)a + C(θ, θ̇)b + G(θ) = Ω(θ, θ̇, a, b)T Φ, (2)

where Ω(θ, θ̇, a, b) is a known function of θ, θ̇,
a, b, and Φ is an unknown system parameter.

The control objective is to determine a suitable
control input τ such that the joint angle θ follows
the desired reference angle θd (tracking control).

The basic structure of the tracking control for
robotic manipulators is given as follows:

τ = Ω(θ, θ̇, a, b)T Φ̂− e + v, (3)

a≡ θ̈d + λ2e− λs, b ≡ θ̇d − λe, (4)

e≡ θ − θd, s ≡ ė + λe, (λ > 0), (5)

where Φ̂ is an estimate of the unknown parameter
Φ, and v is a stabilizing signal. Here, define a
positive function V (energy function) by

V =
1
2
sT M(θ)s +

1
2
‖e‖2, (6)

and take the time derivative of it along the tra-
jectory of s, e, and θ.

V̇ =−λ‖e‖2 + sT v + sT Ω(θ, θ̇, a, b)T Φ̃, (7)

Φ̃≡ Φ̂− Φ. (8)

Hereafter, a and b are defined by (4).

In order to stabilize robotic manipulaors, the
stabilizing control signal v in (3) is derived as
a solution of certain H∞ control problem, where
the parameter error Φ̃ is regarded as an external
disturbance to the process. For that purpose, the
following virtual process is introduced.

ẋ = f(x) + g1(x)Φ̃ + g2v, (9)

x =
[

e
s

]
, f(x) =

[ −λe
−M−1Cs

]
,

g1(x) =
[

0
M−1Ω(a,b)T

]
, g2(x) =

[
0

M−1

]
, (10)

Ω(a,b) = Ω(θ, θ̇, a, b). (11)

It should be noted that the time derivative of
V (6) along the trajectory of the virtual system
(9), (10), is the same as (7). That system (9),
(10) is to be stabilized by utilizing H∞ control
strategy, where Φ̃ is regarded as an external dis-
turbance. For that, consider the next Hamilton-
Jacobi-Isaacs equation (HJI equation), where the
solution V is given by (6).

∂V

∂t
+ LfV +

1
4

{‖Lg1V ‖2
γ2

− Lg2V R−1(Lg2V )T

}

+q(x) = 0. (12)

The positive function q(x) and positive definite
symmetric matrix R are to be obtained from
(12) based on inverse optimality, for the given
solution V (6) and the positive constant γ. The
substitution of V (6) into HJI equation (12) yields

−λ‖e‖2 +
sT Ω(a,b)T Ω(a,b)s

4γ2

−1
4
sT R−1s + q(x) = 0. (13)

Then q(x) and R are given by

q = λ‖e‖2 +
1
4
sT K̄s, (14)

R =
(

1
γ2

Ω(a,b)T Ω(a,b) + K̄

)−1

,

(K̄ = K̄T > 0), (15)

and the input signal (stabilizing control signal) v
is obtained as a solution of the corresponding H∞
control problem in the following way:

v =−1
2
R−1(Lg2V )T = −1

2
R−1s

=−1
2

(
1
γ2

Ω(a,b)T Ω(a,b) + K̄

)
s. (16)

The next theorem is derived for the original
robotic manipulators (1) (Miyasato, 2002).



Theorem 1 The nonlinear control system of
robotic manipulators (1) defined by (3), (4), (16)
is uniformly bounded for arbitrary bounded Φ̂.
Additionally, v (16) is an optimal control signal
which minimizes the following cost functional J .

J = sup
Φ̃∈L2





t∫

0

(q + vT Rv)dτ + V (t)

−γ2

t∫

0

‖Φ̃‖2dτ



 . (17)

Furthermore, the next inequality holds.
t∫

0

(q + vT Rv)dτ + V (t)

≤ γ2

t∫

0

‖Φ̃‖2dτ + V (0). (18)

3. ITERATIVE LEARNING CONTROL BY
HYBRID ADAPTATION SCHEMES

The control task and the desired reference signals
are defined on the finite time interval [0, T ]. The
operation is repeated on [0, T ]. Hereafter, denote
the signal x(t) (t ∈ [0, T ]) at the k-th iteration by
xk(t). Then, ILC generates desired control inputs
τk(t) (0 ≤ t ≤ T ), (k = 1, 2, 3, · · ·), and at-
tains desired control performance limk→∞ ek(t) =
limk→∞ sk(t) = 0 (t ∈ [0, T ]) through repeti-
tions of the operation on [0, T ]. It is assumed
that sk(0) = ek(0) = 0, which is a conventional
assumption of many ILC schemes.

By considering (3), (16), the control at the k-th
iteration τk(t) is determined as follows:

τk(t) = Ω(a,b)
k (t)T Φ̂(k)− ek(t) + vk(t), (19)

where ak and bk are defined by (4), and

Ω(a,b)
k (t) ≡ Ω(θk(t), θ̇k(t), ak(t), bk(t)). (20)

vk(t) is a stabilizing signal given by

vk(t) =−
(
K + α · Ω(a,b)

k (t)T Ω(a,b)
k (t)

)
sk(t),

(K = KT > 0, α > 0). (21)

Φ̂(k) is a current estimate of Φ obtained from the
operation in the (k − 1)-th iteration.

In order to derive the update law of Φ̂(k), for the
manipulator dynamics described by

M(θk)θ̈k + C(θk, θ̇k)θ̇k + G(θk)

= τk = Ω(θk, θ̇k, θ̈k, θ̇k)T Φ, (22)

the next identification model τ̂k is introduced.

τ̂k = Ω(θk, θ̇k, θ̈k, θ̇k)T Φ̂(k). (23)

Similarly to Ω(a,b)
k (t), denote

Ω(θ̈,θ̇)
k (t)≡Ω(θk(t), θ̇k(t), θ̈k(t), θ̇k(t)). (24)

The update law of Φ̂(k) is obtained as the hybrid
adaptation scheme (least squares law).

Φ̂(k) = Φ̂(k − 1)

−


Γ(k − 1)−1 +

T∫

0

Ω(θ̈,θ̇)
k−1 (t)Ω(θ̈,θ̇)

k−1 (t)T dt





−1

·

·
T∫

0

Ω(θ̈,θ̇)
k−1 (t)εk−1(t)dt, (25)

Γ(k)−1 = λ1(k)Γ(k − 1)−1

+λ2(k)

T∫

0

Ω(θ̈,θ̇)
k−1 (t)Ω(θ̈,θ̇)

k−1 (t)T dt, (26)

εk(t) = τ̂k(t)− τk(t), (27)

0 < λ1(k) ≤ 1, 0 ≤ λ2(k) < 2. (28)

Γ(k)−1 corresponds to an inverse of the covariance
matrix in the conventional least squares estimates.

For stability analysis, a posterior identification
error is introduced.

ε̄k(t) = Φ̃(k + 1)T Ω(θ̈,θ̇)
k (t). (29)

Define W (k) by

W (k) = Φ̃(k)T Γ(k)−1Φ̃(k), (30)

and obtain the following relation.

∆W (k) ≡ W (k)−W (k − 1)

= −{2− λ2(k)}
T∫

0

ε̄k−1(t)2dt

−{1− λ1(k)}Φ̃(k)T Γ(k − 1)−1Φ̃(k)

−∆Φ̂(k)T Γ(k − 1)−1∆Φ̂(k) ≤ 0, (31)

∆Φ̂(k) = Φ̂(k)− Φ̂(k − 1). (32)

Since W (k) ≥ 0, W (k) is uniformly bounded, and
∆W (k) → 0 as k → ∞. Hereafter, λ1(k) and
λ2(k) are chosen such that Γ(k)−1 ≥ δI > 0 (δ >
0) holds (for example, this relation is satisfied, if
λ1(k) = λ2(k) = 1, and Γ(0)−1 > 0). Then, Φ̂(k)
is uniformly bounded, and

lim
k→∞

T∫

0

ε̄k(t)2dt = lim
k→∞

∆Φ̂(k) = 0. (33)

By considering Theorem 1 and the stabilizing
control signal vk(t), it is shown that Ω(a,b)

k (t) and

Ω(θ̈,θ̇)
k (t) are uniformly bounded, and

lim
k→∞

ε̄k(t) = 0, (0 ≤ t ≤ T ). (34)

As for εk(t), the next relation is derived.



ε(k) = τ̂k(t)− τk(t) = Ω(θ̈,θ̇)
k (t)T Φ̃(k)

= ε̄k(t)− Ω(θ̈,θ̇)
k (t)T ∆Φ̂(k). (35)

Since ε̄k(t) and ∆Φ̂(k) converge to zero, and

Ω(θ̈,θ̇)
k (t) is bounded (Theorem 1)，it follows that

lim
k→∞

εk(t) = lim
k→∞

ε̄k(t) = 0, (0 ≤ t ≤ T ). (36)

Next, the tracking errors sk(t), ek(t) are analyzed.
From τk(t) and τ̂k(t), it follows that

M̂(k, θk)ṡk(t) + Ĉ(k, θk, θ̇k)sk(t) + ek(t)

+
(
K + α · Ω(a,b)

k (t)T Ω(a,b)
k (t)

)
sk(t)

= τ̂k(t)− τk(t) = εk(t). (37)

For that manipulator dynamics, define V̂k(t) by

V̂k(t) =
1
2
sk(t)T M̂(k, θk)sk(t) +

1
2
‖ek(t)‖2. (38)

Here, consider that Φ̂(k) is constant on the inter-
val of the k-th iteration, and that M̂(k, θk) and
Ĉ(k, θk, θ̇k) have the same structures as M(θk)
and C(θk, θ̇k) respectively. Then, take the time
derivative of Vk(t) along the trajectory of sk and
ek at the k-th iteration, and obtain

˙̂
V k(t) =−sk(t)T Ksk(t)− α‖Ω(a,b)

k (t)sk(t)‖2
−λ‖ek(t)‖2 + εk(t)T sk(t)

≤−1
2
λmin(K)‖sk(t)‖2 − λ‖ek(t)‖2

+
1

2λmin(K)
‖εk(t)‖2. (39)

From (39), it follows that

V̂k(t) +
1
2
λmin(K)

t∫

0

‖sk(τ)‖2dτ

+λ

t∫

0

‖ek(τ)‖2dτ

≤ V̂k(0) +
1

2λmin(K)

t∫

0

‖εk(τ)‖2dτ. (40)

It is assumed that M̂(k, θk) > 0, then the next
relation is derived, since

∫ T

0
‖εk(t)‖2dt → 0.

lim
k→∞

‖sk(t)‖ = lim
k→∞

‖ek(t)‖ = 0, (0 ≤ t ≤ T ), (41)

where the boundedness of tuning parameters and
states is considered, and the assumption V̂k(0) = 0
(ek(0) = sk(0) = 0) is also considered.

Theorem 2 It is assumed that M̂(k, θk) > 0 and
V̂k(0) = 0 (ek(0) = sk(0) = 0). Then, the iterative
learning control schemes composed of the least
squares hybrid adaptation laws (25), (26), (27),
control inputs τk(t) (19), and stabilizing control
signals vk(t) (21), are uniformly bounded, and
the tracking error converges to zero asymptotically

through the repetition of the operation on the finite
time interval [0, T ] (41).

Remark 1. Contrary to the conventional ILC
schemes, it is seen that the desired trajectory θd

does not need to be identical in all iterations,
and additionally, the finite time interval in each
operations does not need to have the same length.
Even for such case, there need no major changes
in the stability analysis.

2. The following hybrid adaptation laws can be
also utilized to update Φ̂(k) (Miyasato, 2003).

Φ̂(k) = Φ̂(k − 1)− g(k)

∫ T

0
Ω(θ̈,θ̇)

k−1 (t)εk−1(t)dt

1 +
∫ T

0
‖Ω(θ̈,θ̇)

k−1 (t)‖2dt
,

(0 < g(k) < 2). (42)

3. In order to assure M̂(k, θk) > 0, the projection
algorithm can be utilized.

4. θ̈k−1(t) is needed in the computation of Φ(k).
However, θ̈k−1(t) can be removed by introducing
τ̂fk−1 for τfk−1 of the following form (λf > 0)

τfk−1(t) ≡ 1
s + λf

τk−1(t) = Ω(θ̇,θ)
fk−1(t)

T Φ, (43)

where θ̈k−1(t) is not included in Ω(θ̇,θ)
fk−1(t).

4. 2-DIMENSIONAL ADAPTIVE CONTROL

In the hybrid adaptation schemes, Φ̂(k) is updated
at the end of each operation, and is constant
during each operation (off-line tuning).

In the present section, the 2-dimensional adap-
tive control scheme is applied to ILC with hybrid
adatation. The proposed control scheme contains
two type of adaptation laws, that is, off-line tuning
and on-line tuning of control parameters, simulta-
neously, and the adaptation process during each
operation is improved adaptively by the other
adaptation scheme.

By adding time-varying φ̂k(t), the control τk(t) at
the k-th iteration is determined as follows:
τk(t) = Ω(a,b)

k (t)T {Φ̂(k) + φ̂k(t)} − ek(t) + vk(t),

(44)
˙̂
φk(t) =−GkΩ(a,b)

k (t)sk(t), (45)

(φ̂k(0) = 0, Gk = GT
k > 0),

where vk(t) is defined by (21), and Φ̂(k) is ob-
tained by each of the hybrid adaptation laws (25),
(26), (27), or (42). φ̂k(t) is reset to zero at the
beginning of each operations (φ̂k(0) = 0). Then,
for Wk(t) defined by

Wk(t) = Vk(t)

+
1
2
{φ̂k(t)− φk}T G−1

k {φ̂k(t)− φk}, (46)

φk = Φ− Φ̂(k), (47)



(where Vk(t) is V (t) (6) at the k-th iteration), the
time derivative of Wk(t) is evaluated as follows:

Ẇk(t) =−λ‖ek(t)‖2

−sk(t)T
(
K + α · Ω(a,b)

k (t)T Ω(a,b)
k (t)

)
sk(t)

≤ 0 (48)

Therefore, it follows that φ̂k(t) is uniformly
bounded (‖φ̂k(t)‖ is bounded from above which
does not depend on the time interval T ) and that
the control errors sk(t), ek(t) converge to zero
along the direction of time t at each operation.

lim
t→∞

sk(t) = lim
t→∞

ek(t) = 0 (49)

(That means that ‖sk(T )‖ and ‖ek(T )‖ can be
made arbitrary small for sufficiently large T .) On
the other hand, it is assured that εk(t) → 0
(0 ≤ t ≤ T ) as k → ∞, and that Φ̂(k) is uni-
formly bonded, because of the hybrid adaptation
schemes of Φ̂(k). Based on those properties, the
converge of the output errors sk(t), ek(t) along the
direction of repeated operations k (k = 0, 1, · · ·) is
investigated. For V̂k(t) defined by (38), the next
inequality is deduced, similarly to (40).

V̂k(t) +
1
2
λmin(K)

t∫

0

‖sk(τ)‖2dτ

+λ

t∫

0

‖ek(τ)‖2dτ

+
1
2

∥∥∥∥∥∥
G

1
2
k

t∫

0

Ω(a,b)
k (τ)sk(τ)dτ

∥∥∥∥∥∥

2

≤ V̂k(0) +
1

2λmin(K)

t∫

0

‖εk(τ)‖2dτ. (50)

Since limk→∞
∫ T

0
‖εk(t)‖2dt = 0, the following

relation is derived,

lim
k→∞

‖sk(t)‖ = lim
k→∞

‖ek(t)‖ = 0, (0 ≤ t ≤ T ), (51)

where the boundedness of tuning parameters
and states is considered, and it is assumed that
V̂k(0) = 0 (ek(0) = sk(0) = 0), and M̂(k, θk) > 0.

Theorem 3 It is assumed that M̂(k, θk) > 0
and V̂k(0) = 0 (ek(0) = sk(0) = 0). Then,
the 2-dimensional adaptive control strategy ((44),
(45), (19), (21), (25), (26), (27), or (42)) makes
the overall adaptive system uniformly bounded.
Furthermore, the tracking errors converge to zero
asymptotically, along the directions of both time t
and repeated operations k ((49), (51)).

Remark 1. In the 2-dimensional adaptive con-
trol scheme, the true value φk = Φ − Φ̂(k) which
φ̂k(t) should estimate at each operation, is chang-
ing as the repeated operations go on. If internal

signals are sufficiently rich, and Φ̂(k) → Φ (as
k →∞), then φk → 0, and the necessity of tuning
of φ̂k(t) is made less and less. Even if Φ̂(k) does
not converge to its true value Φ, from the relation
(50), it follows that

lim
k→∞

∥∥∥∥∥∥
G

1
2
k

t∫

0

Ω(a,b)
k (τ)sk(τ)dτ

∥∥∥∥∥∥

2

= 0, (52)

and the next equation holds.

lim
k→∞

∥∥∥φ̂k(t)
∥∥∥

2

= 0. (53)

Therefore, anyway, the contribution of the term
φ̂k(t) in τk(t), decreases as k →∞, and the main
part of τk(t) becomes

τk(t) → Ω(a,b)
k (t)T Φ̂(k)− ek(t) + vk(t).

Thus, as the repeated operations go on, the main
part of the control input τk(t) shifts from the
portion of on-line tuning (φ̂k(t)) to the portion
of off-line tuning (Φ̂(k)), and the contribution of
φ̂k(t) decreases (or the contribution of φ̂k(t) is
temporary). Hence, it is seen that the necessity
of the tuning of φ̂k(t) grows less and less, and this
means that the control situation itself is improved
adaptively. As a result, the control performance
such as convergence and transient property, is
expected to be improved compared with the con-
ventional adaptive control strategy. This property
is also seen by comparing (50) with (40). Owing to

the term 1
2

∥∥∥G
1
2
k

∫ t

0
Ω(a,b)

k (τ)sk(τ)dτ
∥∥∥

2

in (50), the
convergence of sk(t) and ek(t) in (50) is expected
to be much better than those in (40).

2. It should be also noted that the two adaptation
processes are driven by the different error signals;
that is, the tuning of Φ̂(k) along the direction of k
is driven by the identification error εk(t), and the
tuning of φ̂k(t) along the direction of t is driven by
the output error sk(t). Hence, the on-line tuning
of φ̂k(t) is affected by the off-line tuning of Φ̂(k),
but Φ̂(k) is not affected by φ̂k(t) directly.

5. SIMULATION STUDIES

Numerical simulation studies are performed. A
SICE-DD arm (the standard manipulator model
in SICE) with two-degree of freedom is considered.
Physical parameters are written in Table 1.

Table 1 Physical parameters.

Link (i) 1 2
mi (kg) 12.27 2.083
Ii (kg · m2) 0.1149 0.0144
li (m) 0.2 0.2
ri (m) 0.063 0.080

The desired trajectory is given by



θd1(t) =
π

2
· 6
125

·
(

5
2
t2 − 1

3
t3

)
,

θd2(t) = π − 2θd1(t), (0 ≤ t ≤ 5).

The time interval in each iteration is [0, 5] (T =
5). The hybrid adaptation scheme (Case 1: The-
orem 2) and the 2-dimensional adaptive control
scheme (Case 2: Theorem 3) are applied. The
design parameters are chosen as follows:
Case 1 : hybrid adaptation scheme

λ1(k) = λ2(k) = 1, K = I, α = 1.

Case 2 : 2− dimensional adaptive control

Same as Case 1, and Gk = 1000I.

The simulation results are shown, where ‖ek‖2 ≡∫ 5

0
‖ek(t)‖2dt, and IPR(k) (parameter ratio) is

IPR(k) ≡ ‖φ̂k(T )‖2(
‖φ̂k(T )‖2 + ‖Φ̂(k)‖2

) . (54)

IPR(k) indicates the contribution of φ̂k(t), and
IPR(k)→ 0 in the 2-dimensional adaptive control
(Case 2). In the simulation, Case 2 has much
better convergence property than Case 1.

0 2 4 6 8 1 0

1 0-7

1 0-6

1 0-5

1 0-4

1 0-3

1 0-2

Fig. 1. Case 1 : ‖ek‖2 vs. k.
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Fig. 2. Case 2 : ‖ek‖2 vs. k.

0 2 4 6 8 1 0
0.0

1.0

Fig. 3. Case 2 : IPR(k) vs. k.

6. CONCLUSION

Alternative approaches to solve iterative learning
control (ILC) of robotic manipulators by introduc-
ing hybrid adaptation scheme and the extended
version of those by applying 2-dimensional adap-
tive control strategy, are given. The 2-dimensional
control schemes have composite adaptation struc-
tures, and those provide more skillful learning
properties where adaptive processes themselves
are improved adaptively. The same strategy can
be applied to various adaptive control problems
where repeated operations are involved.
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