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1. INTRODUCTION

Multimodeling stability, control and filtering prob-
lems have been investigated extensively (see e.g.,
(Khalil and Kokotović, 1978; Khalil and Koko-
tović, 1979; Gajić, 1988; Coumarbatch and Gajic,
2000; Wang et al., 1994)). The popular ap-
proaches to deal with the multiparameter sin-
gularly perturbed systems (MSPS) are the two–
time–scale design method (Khalil and Kokotović,
1978; Khalil and Kokotović, 1979; Gajić, 1988)
and the descriptor technique (Wang et al., 1994).
When the positive parameters εj , j = 1, ... , N
are very small or unknown the previously used
techniques are very efficient. However, when the
parameters εj are not small enough, it is known
from (Coumarbatch and Gajic, 2000) that an
O(||µ||) accuracy is very often not sufficient.

In order to avoid the O(||µ||) accuracy of the cost,
the exact decomposition method has been studied

(Coumarbatch and Gajic, 2000). More recently,
the numerical algorithm which is based on New-
ton’s method for solving the multiparameter alge-
braic Riccati equation (MARE) has been estab-
lished (Mukaidani et al., 2002). However, these ap-
proaches can only be applied to the MSPS which
has two fast subsystems. From the viewpoint of
application of practical systems, it is very im-
portant to study the general MSPS that includes
the numerous fast subsystems. Furthermore, the
numerical algorithm which require smaller com-
putational dimension for solving the generalized
MARE has to be developed.

In this paper, Pareto optimal strategy for the gen-
eral multiparameter singularly perturbed systems
(MSPS) which includes numerous fast subsystems
compared with the previous results (Coumarbatch
and Gajic, 2000; Mukaidani et al., 2002) is inves-
tigated via the numerical computation method.
The main contribution of this paper is to pro-



pose a new numerical algorithm to obtain Pareto
optimal strategy. Our new idea is to combine
Newton’s method with two fixed point algorithms
for solving the generalized multiparameter alge-
braic Riccati equation (GMARE). As a result,
although the general MSPS has numerous fast
subsystems, the required workspace for comput-
ing the solution is dramatically small. As an-
other important feature, it is newly shown that
the proposed strategy achieves the cost functional
J∗

j + O(||µ||2
i

), µ = [ε1 ... εN ].

2. PARETO OPTIMAL STRATEGY

Let us consider a linear time–invariant general
MSPS (Özgüner, 1979; Mukaidani et al., 2003)

ẋ0(t) =
N∑

j=0

A0jxj(t) +
N∑

j=1

B0juj(t), (1a)

εj ẋj(t) = Aj0x0(t) + Ajjxj(t) + Bjjuj(t),(1b)

xj(0) = x0
j , j = 0, 1, ... , N,

where xj(t) ∈ Rnj , j = 0, 1, · · · , N are the
state vectors, uj(t) ∈ Rmj , j = 1, · · · , N are
the control inputs. It is assumed that the ratios
of the small positive parameters εj > 0, j =
1, · · · , N are bounded by some positive constants
kij , k̄ij (Khalil and Kokotović, 1978; Khalil and
Kokotović, 1979),

0 < kij ≤ αij ≡ εj

εi
≤ k̄ij < ∞. (2)

Note that the fast state matrices Ajj , j =
1, ... , N may be singular. In Pareto optimal strat-
egy of the above general MSPS (1), the quadratic
cost functionals are given by

Jj =
1
2

∞∫
0

[zT
j (t)zj(t) + uT

j (t)Rjuj(t)]dt, (3)

where zj(t) = Cj0x0(t) + Cjjxj(t) ∈ Rrj , j =
1, ... , N .

Pareto solution is a set (u1, ... , uN) which mini-
mizes

J =
N∑

j=1

γjJj , 0 < γj < 1,

N∑
j=1

γj = 1 (4)

for some γj , j = 1, ... , N . It is well–known that
Pareto optimal strategy is given by

u∗
j(t) = −γ−1

j R−1
j BT

j Px(t), j = 1, ... , N, (5)

where P is the solution of the following GMARE
such that ΦeP is the unique positive semidefinite
stabilizing solution.

AT P + PT A − PT SP + Q = 0, (6)

where

Φe := block diag
(
In0 ε1In1 · · · εNInN

)
,

A :=
[

A00 A0f

Af0 Af

]
, A0f :=

[
A01 · · · A0N

]
,

Af0 :=
[
AT

10 · · · AT
N0

]T
,

Af := block diag
(
A11 · · · ANN

)
,

B1 :=
[
BT

01 BT
11 0 0 · · · 0

]T
, ... ,

BN :=
[
BT

0N 0 0 0 · · · BT
NN

]T
,

C1 :=
[
C10 C11 0 0 · · · 0

]
, ... ,

CN :=
[
CN0 0 0 0 · · · CNN

]
,

S =
N∑

j=1

γ−1
j Sj, Q =

N∑
j=1

γjQj ,

Sj := BjR
−1
j BT

j , Qj := CT
j Cj , j = 1, ... , N,

S :=
[

S00 S0f

ST
0f Sf

]
, S00 :=

N∑
j=1

γ−1
j B0jR

−1
j BT

0j,

S0f :=
[
S01 · · · S0N

]
, S0j :=γ−1

j B0jR
−1
j BT

jj ,

Sf := block diag
(
S11 · · · SNN

)
,

Sjj := γ−1
j BjjR

−1
j BT

jj,

Q :=
[

Q00 Q0f

QT
0f Qf

]
, Q00 :=

N∑
j=0

CT
j0Cj0,

Q0f :=
[
Q01 · · · Q0N

]
, Q0j := CT

j0Cjj,

Qf := block diag
(
Q11 · · · QNN

)
,

Qjj := CT
jjCjj.

In order to avoid the ill–conditioned caused by
ε−1
j , the GMARE is used instead of the ordi-

nary multiparameter algebraic Riccati equation
(MARE). It should be noted that the GMARE
is introduced in (Mukaidani et al., 2003). It is
assumed that the solution P of the GMARE (6)
has the following structure.

P :=
[

P00 PT
f0Πe

Pf0 Pf

]
, P00 = PT

00,

Pf0 :=
[
PT

10 · · · PT
N0

]T
,

Pf

:=




P11 α12P
T
21α13P

T
31 · · ·α1NPT

N1

P21 P22 α23P
T
32 · · ·α2NPT

N2
...

...
...

. . .
...

PN1 PN2 PN3 · · · PNN


 ,

ΠePf = PT
f Πe,

Πe := block diag
(
ε1In1 · · · εNInN

)
.

The near–optimal Pareto strategy for the MSPS
that has two fast subsystems has been proposed in
(Khalil and Kokotović, 1978). However, when the
parameters εj are not small enough, the previous
technique (Khalil and Kokotović, 1978) is very
often not sufficient. To improve the O(||µ||), µ =
[ε1 ... εN ] accuracy of the cost for large parame-



ters εj , a new numerical method which is differ-
ent from the existing method (Coumarbatch and
Gajic, 2000; Mukaidani et al., 2002) for the MSPS
is proposed.

3. ASYMPTOTIC STRUCTURE OF GMARE

Before the design of Pareto strategy, the asymp-
totic structure of the GMARE (6) is investigated.
In the following analysis, some assumptions are
needed. These assumptions play an important role
in proving the results which will be given later.

Assumption 1. The triples (Ajj , Bjj, Cjj), j =
1, ... , N are stabilizable and detectable.

Assumption 2.

rank
[

sIn0 −A00 −A0f B0

−Af0 −Af Bf

]
= n̄, (7a)

rank
[

sIn0 −AT
00 −AT

f0 CT
0

−AT
0f −AT

f CT
f

]
= n̄, (7b)

where ∀s ∈ C, Re[s] ≥ 0 and

n̄ :=
N∑

j=0

nj, B0 :=
[
B01 · · · B0N

]
,

Bf := block diag
(
B11 · · · BNN

)
,

C0 :=
[
CT

10 · · · CT
N0

]T
,

Cf := block diag
(
C11 · · · CNN

)
.

Assumption 3. The Hamiltonian matrices

Tjj :=
[

Ajj −Sjj

−Qjj −AT
jj

]
, j = 1, ... , N

are nonsingular.

Using the existing result (Mukaidani et al., 2003),
it is easy to derive the following useful lemma.

Lemma 4. Under Assumptions 1–3, there exists
a small σ∗ such that for all ||µ|| ∈ (0, σ∗),
the GMARE (6) admits a symmetric positive
semidefinite stabilizing solution ΦeP which can be
written as

P =
[

P̄00 + O(||µ||) [P̄f0 + O(||µ||)]T Πe

P̄f0 + O(||µ||) P̄f + O(||µ||)

]
, (8)

where

P̄00A+ AT P̄00 − P̄00SP̄00 + Q = 0, (9a)

P̄j0 =
[
P̄jj −Inj

]
T−1

jj Tj0

[
In0

P̄00

]
, (9b)

P̄jjAjj + AT
jjP̄jj − P̄jjSjjP̄jj + Qjj = 0, (9c)

with

P̄f0 :=
[
P̄T

10 · · · P̄T
N0

]T
,

P̄f := block diag
(
P̄11 · · · P̄NN

)
,

T :=
[

A −S
−Q −AT

]
= T00 −

N∑
j=1

T0jT
−1
jj Tj0,

T00 :=
[

A00 −S00

−Q00 −AT
00

]
, T0j :=

[
A0j −S0j

−Q0j −AT
j0

]
,

Tj0 :=
[

Aj0 −ST
0j

−QT
0j −AT

0j

]
, j = 1, ... , N.

Proof : Since the proof can be done by using the
implicit function theorem, it is omitted. See detail
in (Mukaidani et al., 2003). �

4. A NEW ITERATIVE ALGORITHM

In order to solve the GMARE (6) without the
ill–conditioned, the following algorithm is estab-
lished.

Lemma 5. Consider the iterative algorithm which
is based on Newton’s method

(A− SP (i))T P (i+1) + P (i+1)T (A − SP (i))

+P (i)T SP (i) + Q = 0, P (0) = P̄ , (10)

i = 0, ... ,

with

P̄ =
[

P̄00 P̄T
f0Πe

P̄f0 P̄f

]
, P (i) =

[
P

(i)
00 P

(i)T
f0 Πe

P
(i)
f0 P

(i)
f

]
.(11)

Under Assumptions 1–3, there exists a small σ̄
such that for all ||µ|| ∈ (0, σ̄), σ̄ ≤ σ∗, the iterative
algorithm (10) converges to the exact solution of
P with the rate of quadratic convergence, where
ΦeP

(i) = P (i)T Φe is the positive semidefinite so-
lution. That is, the following condition is satisfied.

||P (i) − P || = O(||µ||2
i

), i = 0, 1, ... . (12)

Proof : Since the proof of Lemma 5 can be done
by using Newton–Kantorovich theorem similarly
as in (Mukaidani et al., 2001), it is omitted.
For Newton–Kantorovich theorem , see e.g. (Ya-
mamoto, 1986). �

One needs to solve the GMALE (10) with the

dimension n̄ :=
N∑

j=0

nj larger than the dimension

nj , j = 0, ... , N compared with the exact de-
composition technique (Coumarbatch and Gajic,
2000). Thus, in order to reduce the dimension of
the workspace, the new algorithm for solving the
MALE (10) which is based on the fixed point algo-
rithm is established. Let us consider the following
GMALE (13), in a general form.

ΛT Y + Y T Λ + U = 0, (13)



where Y is the solution of the GMALE (13).
Moreover, Y , Λ and U have the following forms,
respectively.

Y :=
[

Y00 Y T
f0Πe

Yf0 Yf

]
, Y00 = Y T

00,

Yf0 :=
[
Y T

10 · · · Y T
N0

]T
,

Yf :=




Y11 α12εE
T
21 α13εE

T
31

εE21 Y22 α23εE
T
32

...
...

...
εE(N−1)1 εE(N−1)2 εE(N−1)3

εEN1 εEN2 εEN3

· · · α1NεET
N1

· · · α2NεET
N2

. . .
...

· · · α(N−1)NεET
N(N−1)

· · · YNN


 ,

ΠeYf = Y T
f Πe, ε := ||µ|| =

√
ε2
1 + · · · + ε2

N ,

Λ :=
[

Λ00 Λ0f

Λf0 Λf

]
, Λ0f :=

[
Λ01 · · · Λ0N

]
,

Λf0 :=
[
ΛT

10 · · · ΛT
N0

]T
,

Λf :=




Λ11 εΛ12 · · · εΛ1N

εΛ21 Λ22 · · · εΛ2N

...
...

. . .
...

εΛN1 εΛN2 · · · ΛNN


 ,

U :=
[

U00 U0f

UT
0f Uf

]
, U0f :=

[
U01 · · · U0N

]
,

Uf :=




U11 εU12 · · · εU1N

εUT
12 U22 · · · εU2N

...
...

. . .
...

εUT
1N εUT

2N · · · UNN


 ,

U00 = UT
00, Uf = UT

f .

It should be noted that

P (i+1) ⇒ Y, A − SP (i) ⇒ Λ,

P (i)T SP (i) + Q ⇒ U

where ⇒ stands for the replacement.

Without loss of generality, the following condition
for the GMALE (13) is assumed.

Assumption 6. Λjj , j = 1, ... , N and

Λ0 := Λ00 −
N∑

j=1

Λ0jΛ−1
jj Λj0 are stable.

The following algorithm (14) for solving the
GMALE (13) is given.

ΛT
f Y

(l+1)
f + Y

(l+1)T
f Λf + (ΛT

0fY
(l)T
f0 Πe

+ΠeY
(l)
f0 Λ0f) + Uf = 0, (14a)

ΛT
0 Y

(l+1)
00 + Y

(l+1)
00 Λ0 −ΛT

f0Λ
−T
f Ξ(l)

f0

−Ξ(l)T
f0 Λ−1

f Λf0 + U00 = 0, (14b)

Y
(l+1)
f0 = −Λ−T

f (ΛT
0fY

(l+1)
00 + Ξ(l)

f0), (14c)

where

Λ0 = Λ00 − Λ0fΛ−1
f Λf0,

Ξ(l)
f0 = ΠeY

(l)
f0 Λ00 + Y

(l+1)
f Λf0 + UT

0f ,

Y
(0)
00 = Ȳ00, Y

(0)
f0 = Ȳf0, Y

(0)
f = Ȳf ,

Λ̄T
0 Ȳ00 + Ȳ00Λ̄0 − ΛT

f0Λ̄
−T
f UT

0f − U0f Λ̄−1
f Λf0

+ΛT
f0Λ̄

−T
f Ūf Λ̄−1

f Λf0 + U00 = 0,

Ȳ T
f0 = −(Ȳ00Λ0f + ΛT

f0Ȳf + U0f )Λ̄−1
f ,

Λ̄0 = Λ00 − Λ0f Λ̄−1
f Λf0,

Ȳf := block diag
(
Ȳ11 · · · ȲNN

)
,

Λ̄f := block diag
(
Λ11 · · · ΛNN

)
,

Ūf := block diag
(
U11 · · · UNN

)
,

ΛT
jjȲjj + ȲjjΛjj + Ujj = 0, j = 1, ... , N.

The following theorem indicates the convergence
of the algorithm (14).

Theorem 7. Under Assumption 6, the fixed point
algorithm (14) converges to the exact solutions
Y00, Yf0 and Yf with the rate of convergence of
O(||µ||l+1), that is

||Y (l)
f − Yf || = O(||µ||l+1), l = 0, 1, ... , (15a)

||Y (l)
00 − Y00|| = O(||µ||l+1), l = 0, 1, ... , (15b)

||Y (l)
f0 − Yf0|| = O(||µ||l+1), l = 0, 1, ... . (15c)

Proof : Since the proof is done by applying the
mathematical induction and the fixed point theo-
rem, it is omitted. �

In order to solve the ALE (14a), not each dimen-
sion ni, i = 1, ... , N but the very large dimension

n̂ :=
N∑

i=1

ni is needed. Thus, the reduction of the

dimension of the computing workspace must be
needed. Therefore, the new algorithm for solving
the ALE (14a) which is based on the fixed point
algorithm is established. Let us consider the fol-
lowing ALE (16), in a general form.

ΨT
e Xe + XT

e Ψe + Ve = 0, (16)

where Xe is the solution of the ALE (16). More-
over, Xe, Ψe and Ve have the following forms,
respectively.



Xe =




X11 α12εX
T
21 α13εX

T
31

εX21 X22 α23εX
T
32

...
...

...
εX(N−1)1 εX(N−1)2 εX(N−1)3

εXN1 εXN2 εXN3

· · · α1NεXT
N1

· · · α2NεXT
N2

. . .
...

· · · α(N−1)NεXT
N(N−1)

· · · XNN


 ,

Ψe :=




Ψ11 εΨ12 · · · εΨ1N

εΨ21 Ψ22 · · · εΨ2N

...
...

. . .
...

εΨN1 εΨN2 · · · ΨNN


 ,

Ve :=




V11 εV12 · · · εV1N

εV T
12 V22 · · · εV2N

...
...

. . .
...

εV T
1N εV T

2N · · · VNN


 .

It should be noted that

Y
(l+1)
f ⇒ Xe, Λf ⇒ Ψe,

ΛT
0fY

(l)T
f0 Πe + ΠeY

(l)
f0 Λ0f + Uf ⇒ Ve

where ⇒ stands for the replacement. Further-
more, the ALE (16) is a part of the ALE (13).

Without loss of generality, the following condition
for the ALE (16) is also assumed.

Assumption 8. Ψ11, ... ,ΨNN are stable.

The following algorithms (17) for solving the ALE
(16) are newly given.

X
(m+1)
11 Ψ11 + ΨT

11X
(m+1)
11

+ε2
N∑

l=2

(X(m)
1l Ψl1 + ΨT

l1X
(m)
l1 ) + V11 = 0, (17a)

...

X
(m+1)
NN ΨNN + ΨT

NNX
(m+1)
NN

+ε2
N−1∑
l=1

(αlNX
(m)
Nl Ψli + αlNΨT

lNX
(m)
lN )

+VNN = 0, (17b)

X
(m+1)
12 Ψ22 + α12ΨT

11X
(m+1)
12

+X
(m+1)
11 Ψ12 + ΨT

21X
(m+1)
22

+ε

N∑
l=3

(X(m)
1l Ψl2 + ΨT

l1X
(m)
l2 ) + V12 = 0, (17c)

...

X
(m+1)
(N−1)NΨNN + α(N−1)NΨT

(N−1)(N−1)X
(m+1)
(N−1)N

+X
(m+1)
(N−1)(N−1)Ψ(N−1)N + ΨT

N(N−1)X
(m+1)
NN

+ε
N−2∑
l=1

(αl(N−1)X
(m)
(N−1)lΨlN

+αlnΨT
l(N−1)X

(m)
lN ) + V(N−1)N = 0, (17d)

m = 0, 1, · · · ,
where

X
(0)
ii = X̄ii, X

(0)
ij = X̄ij , i < j, X̄ij = X̄T

ji,

X̄iiΨii + ΨT
iiX̄ii + Vii = 0,

X̄ijΨjj + ΨT
iiX̄ij + X̄iiΨij + ΨT

jiX̄jj + Vii = 0.

The following theorem indicates the convergence
of the algorithm (17).

Theorem 9. Under Assumption 8, the fixed point
algorithm (17) converges to the exact solution Xij

with the rate of

||X(m)
ii − Xii|| = O(εm+2), m = 1, ... , (18a)

||X(m)
ij − Xij || = O(εm+1), i < j, m = 1, ...(18b)

Proof : The proof of Theorem 9 can be also
done by using mathematical induction and the
fixed point theorem. In order to respect the pages
limitation, it is omitted. �

An algorithm which solves the GMARE (6) with
the small positive parameters εj is given below.

Step 1. Solve the AREs (9) that are given as the
initial conditions of the Newton’s method (10).

Step 2. Partitioning the solution P (i+1) of the
purpose into

P (i+1) =
[

Y00 Y T
f0Πe

Yf0 Yf

]
,

A − SP (i) =
[

Λ00 Λ0f

Λf0 Λf

]
,

P (i)T SP (i) + Q =
[

U00 U0f

UT
0f Uf

]
,

and do the preparation for solving the following
GMALE.

ΛT
f Yf + YfΛf

+(ΛT
0fYf0Πe + ΠeYf0Λ0f) + Uf = 0,(19a)

ΛT
0 Y00 + Y00Λ0 − ΛT

f0Λ
−T
f Ξf0

−Ξf0Λ−1
f Λf0 + U00 = 0, (19b)

ΛT
f Yf0 + ΛT

0fY00 + Ξf0 = 0, (19c)

where Ξf0 = ΠeYf0Λ00 + YfΛf0 + UT
0f .

Step 3. In order to solve the GMALE (19), apply
the new proposed algorithm (14).

Step 4. In order to reduce the dimension of the
workspace for solving the ALE (14a), apply the
new proposed algorithm (17).



Step 5. Solve the solutions Y
(l+1)
f and Y

(l+1)
00

of the ALE (14a) and (14b), respectively and
compute Y

(l+1)
f0 using the relation of (14c). As

a result, the sequence of solution of Newton’s
method (10) is obtained.

Step 6. If the new combined algorithm converges,
go to Step 7. Otherwise, increment i → i+1 and
go to Step 3. ]

Step 7. Calculate the solution P of the GMARE
(6) by using (11).

5. HIGH–ORDER APPROXIMATE PARETO
OPTIMAL STRATEGY

Our attention is focused on the optimal strategy
design. Such a strategy is obtained by using the
iterative solutions (10). The high–order approxi-
mate Pareto optimal strategy is newly given.

uappj = −γ−1
j R−1

j BT
j P (i)x, j = 1, ... , N. (20)

Theorem 10. Under Assumptions 1–3, the use of
the high–order approximate Pareto strategy (20)
results in J

(i)
j satisfying

J
(i)
j = J∗

j + O(||µ||2i

), j = 1, ... , N, (21)

where the value of the actual cost is

J
(i)
j =

1
2
x(0)T ΦeYjx(0) =

1
2
x(0)T Yjex(0)(22)

and Yje is a positive semidefinite solution of
the multiparameter algebraic Lyapunov equation
(MALE)

Yje(Ae − SeP
(i)
e ) + (Ae − SeP

(i)
e )T Yje

+Qj + γ−2
j P (i)

e SjeP
(i)
e = 0, j = 1, ... , N. (23)

Proof : When Pareto optimal strategy (5) is given,
they result in J∗

j = 1
2x(0)T Xjex(0), j = 1, ... , N ,

where Xje is a positive semidefinite solution of
the MALE: Xje(Ae −SePe)+ (Ae −SePe)T Xje +
Qj + γ−2

j PeSjePe = 0, j = 1, ... , N . In order to

calculate the loss of performance J
(i)
j − J∗

j , sub-
tracting these equations, Zje = Yje −Xje satisfies
the MALE: Zje(Ae−SeP

(i)
e )+(Ae−SeP

(i)
e )T Zje+

γ−2
j P

(i)
e SjeP

(i)
e −γ−2

j PeSjePe+XjeSje(Pe−P
(i)
e )+

(Pe − P
(i)
e )T SjeXje = 0, j = 1, ... , N . Using

the result established in (12), it is easy to verify
that ||P (i)

e − Pe|| = O(||µ||2i

). It follows from the
above relation that Zje(Ae − SeP

(i)
e ) + (Ae −

SeP
(i)
e )T Zje + O(||µ||2i

) = 0, j = 1, ... , N . Since
Djj , j = 1, ... , N and D0 are stable, Ae −SeP

(i)
e

is also stable (Mukaidani et al., 2003). Hence,
using (Zhou, 1998), Zje = O(||µ||2i

), j = 1, ... , N ,
results in (21). �

6. CONCLUSION

In this paper, the high–order Pareto approximate
strategy of the genaral MSPS has been studied.
The new iterative algorithm that combined New-
ton’s method with two fixed point algorithms has
been proposed for solving the GMARE. As a
result, the new iterative algorithm has achieved
the quadratic convergence property and has suc-
ceeded in reducing the dimension of the alge-
braic manipulation. Moreover, it has been newly
shown that the O(||µ||2i

) high–order approximate
Pareto strategy achieved the cost functional J∗

j +
O(||µ||2i

).
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