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Abstract: This paper proposes a new method for prediction of chaotic time series based on 
Parallel Multi-Layer Perceptron (PMLP) net and dynamics reconstruction technique. The 
PMLP contains a number of multi-layer perceptron (MLP) subnets connected in parallel. 
Each MLP subnet predicts the future data independently with a different embedding 
dimension. The PMLP determines the final predicted result according to the weighted 
average of all sub-outputs. Simulation results show the effectiveness of the method.  
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1. INTRUCTION 

 
The problem of nonlinear and chaotic time series 
prediction amounts to making predictions of future 
values of given chaotic data. It is one of the 
fundamental problems in science and engineering as 
well as in other disciplines. Since many signals 
generated from practical systems show chaotic 
behaviours, it has been widely applied in various 
areas, such as the heart beat research, the earthquake 
and the sunspot investigation, weather and power 
load forecasting and so on. 
 
As an important way to study the characteristics of 
complicated systems, the interests in chaotic time 
series prediction have been increased over the past 
few years. There are many forecasting methods such 
as local-region method (Lv and Zhang, 2002a), 
neural network-based forecasting method and so on. 
Most methods are based on dynamics reconstruction 
to obtain information on the data characteristics. 
Among them, Camastra and Colla (1999) proposed a 
multi-layer perceptron (MLP) method for prediction 
using reconstruction techniques. 
 
This paper presents a parallel multi-layer perceptron 
(PMLP) net for prediction of chaotic time series 
based on Camastra’s approach (Camastra and Colla, 
1999). The proposed method can reduce the error 

accumulation effect and improve prediction stability 
of the MLP. In Section 2, the method of dynamics 
reconstruction to obtain the estimated value of 
correlation dimension is first introduced. Section 3 
proposes a new method for chaotic time series 
prediction based on the PMLP net structure. 
Simulation results using the data of Chen’s attractor 
are given in Section 4. In Section 5, some 
conclusions are drawn. 
 
 

2. RECONSTRUCTION OF CHAOTIC TIME 
SERIES  

 
This section will briefly review the idea of phase 
space reconstruction of chaotic time series (Camastra 
and Colla, 1999). The idea stems from the 
embedding theorem developed by Takens (1981) and 
Sauer, et al. (1991). The theorem regards a one-
dimensional chaotic time series as the compressed 
information of higher dimension. Then, the time 
series ( ), 1, 2, 3, ...,x t t N=  can be represented as a 
series of points ( )X t in a d-dimensional space 
 

( ) ( ( ), ( 1),..., ( ( 2)), ( ( 1)))X t x t x t x t d x t d= − − − − −   (1) 
 
where d  is called embedding dimension of the 
system. According to Takens’ embedding theorem 



 

     

(Takens, 1981), in order to obtain an available 
reconstruction of the dynamics system, the 
embedding dimension d  must satisfy.  
 

2 1d D≥ + ,                            (2) 
 
where D  is the dimension of the attractor, which is 
the key point to obtain correct embedding dimension. 
Once the time series is reconstructed and the 
minimum embedding dimension is estimated, the 
result will be used by PMLP. 
 
Grassberger-Procaccia algorithm (Grassberger and 
Procaccia, 1983) is one of the popular methods for 
determining the so-called correlation dimension Dm , 
which is an estimation of the dimension of the 
attractor D . If the correlation integral ( )C rd is 
defined as 
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where H is the Heaviside function and d  is the 
embedding dimension. It is shown (Lv, et al., 2002b) 
that for r sufficiently small, and the number of 
observed values N sufficiently large 
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The algorithm plots ln ( )C rd against ln( )r curves 

through increasing the value of d until the slope of 
the curve’s linear part is almost an invariable. Then, 
through   regressing correlation dimension based on 
least squares (Zhao, et al., 1999), the correlation 
dimension estimation Dm can be attained.  
 
 

3. CHAOTIC TIME SERIES PREDICTION 
 
How to predict chaotic time data with higher 
accuracy is the key of this paper. In practice, since 
most of the chaotic data is mixed with noise, it is 
rather difficult to get the exact estimation value of 
the minimum embedding dimension. Further, since 
the single MLP method (Camastra and Colla, 1999) 
uses the estimation value of the minimum embedding 
dimension as the number of inputs, it often gets 
inaccurate results due to the inaccurate estimation of 
the embedding dimension. So in this paper, a PMLP 
system consisting of multiple MLP is proposed to 
enhance system performance and reduce system error. 
 
 
3.1 The Structure of PMLP. 
 
The PMLP is composed of multiple MLP nets 
connected in parallel for predicting the time series 
whose structure is shown in Figure 1. The PMLP 

contains n MLP subnets, which are denoted 
by sub MLPi− , 1, 2, ...,i n= , respectively. Each 

sub MLP−  net produces the predicted estimation 
independently at the same instant 1t +  and the 
output of  sub MLPi−   is denoted as  yi  . With 

proper combination of yi , the PMLP outputs the final 
predicted value y . 

 
Fig. 1. The structure of PMLP. 
 
 
3.2 Predict with a Single MLP. 
 

In Figure 1, each multi-layer perceptron sub MLPi−  
has the same structure as that used in Camastra’s 
method (Camastra and Colla, 1999), which takes a 
standard feedfoward topology with only one hidden 
layer and full connection between adjacent, and uses 
mean square error (MSE) as the cost function. The 
numbers of hidden nodes are selected by 
optimization based on simple exhaustive search. The 
sub MLPi−  is a multiple input single output (MISO) 

net with Ini  inputs ( ), ( 1), ...... ( 1)x t x t x t mi− − +  

and an output variable yi .The equation can be 
expressed as 
 

( 1) [ ( ), ( 1), ( 2),......, ( 1)]x t F x t x t x t x t mi i+ = − − − +      (5) 
 

where the output ( 1)y x ti i= + is the one-step 

prediction of ( 1)x t + at instant t . After the training 
of MLP by the historical data set, the one-step 
prediction value ( 1)x ti + can be achieved. 
 
 
3.3 The Input Nodes of Each Subnet. 
 
In Camastra’s method (Camastra and Colla, 1999), 
the estimated minimum embedding dimension is 
used as the number of inputs of the single MLP. In 
this paper, the same estimation value is taken as the 
number of inputs of the central subnet, and the other 
subnets take different input numbers calculated based 
on that value. 



 

     

 
In practice, the minimum embedding dimension is 
chosen according to the estimated correlation 
dimension value Dm . Once the correlation 

dimension Dm is regressed by least squares through 
Grassberger-Procaccia algorithm, the number of 
input nodes of center subnet [ /2]sub MLPn−  can be 

determined as 
 
                             [ / 2] 2 1n mIn D= +                          (6) 
 

where [ ] ,   1 ( , )x a a x a a Z x R= ≤ < + ∈ ∈ . n is the 

total subnet number of PMLP. Ini  is the number of 

input nodes of the subnet MLPi . When [ / 2]i n= , 

the sub MLPi−  net is called center subnet. Then the 
number of input nodes of each subnet can be set as 
 

( [ / 2])[ /2]In In i ni n= + −                 (7) 

 
where 1, 2, ......,i n= .  
 
 
3.4 The Computation of Weighted Factor. 
 
Since each MLP subnet has different influence to the 
whole system, the employment of weighted factor ω  
is necessary. In this paper, the weighted value of the 
each subnet is determined according to the minimum 
predicted absolute percent error (APE) of yi at each 
instant. Then, through the multiple linear regression 
method, the weighted parameters of each subnet can 
be obtained.  
 
The overall output of the PMLP net is the weighted 
combination of the each individual MLP subnet and 
the final predicted result can be represented by the 
following equation. 
 

( 1) ( 1)
1

n
x t x ti ii

ω+ = × +∑
=

              (8) 

 

where ( 1)x ti +  is the output of i th subnet yi , 

( 1)x t + is the output of y . 
 
 

4. EXPERIMENTAL RESULTS 
 
In this section, the simulation results of the Chen’s 
attractor data are given to test the performance of the 
proposed method. 
 
 
4.1 Time Series Data. 
 
In the following, the chaotic time series based on the 
Chen’s attractor data is used to test the proposed 

method. Equation (9) generates the Chen’s time 
series data (Lv, et al., 2002b). 
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where the parameters are set with the values a=35, 
b=3, c=28, and integral time step is 0.0001. The 4-
order Runge-Kutta algorithm with the initial 
values (0) 0x = , (0) 1y = , (0) 0z =  generates the 
time series. Fig 2 shows the construction of Chen’s 
attractor and Fig 3 shows 400 points of x-component 
normalized Chen’s time series data and noisy chaotic 
time series used in the prediction respectively. The 
noisy time series are produced by Chen’s time series 
mixed with Gauss white noise. 

 
Fig. 2. Chen’s attractor.  
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Fig. 3. Chen’s time series data (x-component). 
 
According to Grassberger-Procaccia method, the 
ln ( )C rd against ln( )r curves are plotted with the 

increase of the embedding dimension d  (see Figure 
4, Figure5). 



 

     

 
Fig. 4. Plot of ln ( )C rd against ln( )r  of Chen’s time 

series without noise. 
 

Fig. 5. Plot of ln ( )C rd against ln( )r  of Chen’s time 
series with noise. 

 
From the figure 5, it can be seen that the curves is 
divergent and the slope of the Chen’s noisy time 
series curve’s linear part can not reach an invariable. 
So the accurate estimation of correlation dimension 
with noisy time series is rather difficult. The MLP 
doesn’t fit this case. 
 

Table 1 reports the computed result using the method 
of regression correlation dimension by least squares 
(Zhao, et al., 1999). So the input nodes of the center 
subnet can be calculated. 
 
Table 1: The Estimation of the Minimum Dimension 
 

Data set Correlation dimension 
Chen’s time series 2.4235 
Chen’s noisy time series 3.4715 
  

 
 
4.2 Prediction Time Series with MLP and PMLP. 
 
As a whole, 1,250 normalized Chen’s time series 
data without noise were generated for the using of 
prediction. The data were divided into two training 
sets and one testing. The first 1000 samples are used 
for MLP net training. The next 100 samples are 
employed to decide the optimal value of weighted 
factorω . The last 150 samples are used for test of 
the predicted accuracy of MLP and PMLP. 
 
The tests were performed by a three-layer MLP and 
the PMLP net. The input nodes of MLP and the 
center subnet of PMLP are 6, which is the estimated 
value of the minimum embedding dimension. The net 
was tried on the test set. After the presentation of 
each training sample, the weights and biases are 
updated. Compared with MLP, a PMLP net was also 
tried. The parameters of PMLP are 
 

6[ /2]In n = ; [4, 5, 6, 7,8]Iin = ;

[0.25, 0.18, 0.40, 0.10, 0.07]ω =                      (10) 
 
Figure6 shows the one-step predicted results using 
the PMLP net. Figure 7 presents the APE errors of 
the two methods. The error curves indicate that the 
prediction stability of the PMLP system is better than 
the MLP net. 

 
 
Fig. 6. One-step prediction by PMLP. 



 

     

 
Fig. 7. Error contrast between MLP and PMLP. 
 
Table 2 shows the percentage analysis according to 
APE error between MLP and PMLP. From the table, 
the predicted errors of the PMLP net are less than 
2.5%.What’s more, the ratio of the predicted error 
below 1.5% can reach 98%. But for the MLP, some 
of the predicted errors are larger than 2.5%. Also, the 
results are measured in terms of the max APE, mean 
absolute percent error (MAPE) and root mean 
square (RMS) reported in Table 3. 
 
Table 2: The error percentage analysis of MLP and 

PMLP 
 

APE. % Error MLP PMLP 
> 2. 5 2.6667 % 0.0000 % 
1. 5~2. 5 3.3333 % 2.0000 % 
< 1. 5 94.0000 % 98.0000 % 

 
 

Table 3: The error comparison between MLP and 
PMLP 

 

Method MLP PMLP 
MAX. % 4.1240 2.4865 
MAPE. % 0.5794 0.5174 
RMS 7.4077e-005 4.6192e-005 

 
 
4.3 Noisy Chaotic Time Series Prediction. 
 
In this part, a 1,250 normalized Chen’s time series 
data with Gauss white noise were generated. The 
data also were divided into two training sets and one 
testing as above. The MLP and the PMLP net were 
performed on normalized Chen’s noisy data set. The 

input nodes of MPL is 8 and the PMLP net 
parameters are 
 

8[ /2]( )In n noise = ; [6, 7,8, 9,10]( )Iin noise = ; 

[0.25, 0.14, 0.24, 0.20, 0.17]( )noiseω =          (11) 

 
Figure 8 shows the one-step predicted result of the 
noisy time series by the PMLP net. Figure 9 presents 
the noisy data’s APE error contrast between MLP 
and PMLP. 
 

 
 
Fig. 8. One-step prediction by PMLP (with noisy 

data). 
 

 
Fig. 9. Error contrast between MLP and PMLP (with 

noise data). 



 

     

Also, Table 4 presents percentage analysis of the 
error of MLP and PMLP. Table 5 shows the 
predicted result measured according to the max APE, 
MAPE and RMS. 
 
Table 2 and Table 4 indicate that the prediction 
performance of the PMLP net is obviously better 
than the MLP. And the max APE, MAPE and RMS 
of the PMLP net is also less than the MLP according 
to Table 3 and Table 5, especially for the predicted 
result of Chen’s noisy time series. 
 
 
Table 4: The error percentage analysis of MLP and 

PMLP (with noisy data) 
 

APE. % Error MLP PMLP 
> 25 5.3333 % 0.6667 % 
15~25 10.6667 % 5.3333 % 
< 15 84.0000 % 94.0000 % 
   

 
 

Table 5: The error comparison between MLP and 
PMLP (with noisy data) 

 

Method MLP PMLP 
MAX. % 55.0054 27.5234 
MAPE. % 9.6015 6.2038 
RMS 0.0165 0.0062 
   

 
From the predictive result of above, the PMLP is 
obviously efficient than the MLP net for the case 
with noise present in the data. The coefficients in 
equation (11) shows the importance of the subnets 
other than the central subnet corresponding to the 
minimum embedding dimension (i.e. 8 in this 
example) and further demonstrates the necessity of 
introducing the multiple MLP nets. 
 
 

5. CONCLUSIONS 
 
This paper proposes to use the parallel multi-layer 
perceptron (PMLP) net to predict chaotic and noisy 
chaotic time series. The method is based on 
dynamics reconstruction technique. The PMLP 
contains multiple numbers of MLP nets connected by 
parallel. Each MLP subnet predicts the future value 
of the same instant independently with different 
embedding dimension. The PMLP determines the 
final value estimated by weighted average of every 
sub-output.  
 
The experimental results show that compared with 
MLP, the PMLP can not only reduce the effect of 
error accumulation, but also heighten the prediction 
stability of the system. In particular, for the noisy 
chaotic time series the PMLP has a more available 
result than the MLP net. If properly applied, the 

theory is an available tool for prediction and analysis 
of chaotic data. 
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