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Abstract: This paper proposes a new strategy for control of open irrigation canals based 
on fractional order controllers. A methodology is developed to design PI fractional 
controllers combined with Smith predictors which are robust to changes in the time delay. 
This method is applied to solve the effective control problem of an open irrigation canal. 
Simulated results of a standard PI controller, PI plus Smith predictor controller, and the 
controller developed in this paper are compared when applied to the dynamical model of 
a real irrigation canal pool. Copyright 2005 IFAC.  
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I. INTRODUCTION 
 
At present a lot of water is wasted in most irrigation 
canals because of lack of efficient control. In this 
context automatic control is considered as a powerful 
tool for improving efficiency in water distribution 
irrigation systems.  
 
Irrigation canals are systems distributed over long 
distances, with significant time delays and dynamics 
that change with the operating conditions (Malaterre, 
1998). A typical irrigation canal consists of several 
pools separated by gates that are used for regulating 
the water distribution from one pool to the next one 
(see Fig. 1).  
 
The physical dynamics of an open canal has 
traditionally been modelled by the Saint-Venant 

equations, which are nonlinear hyperbolic partial 
differential equations (Saint-Venant, 1891). 
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Fig. 1. Scheme of an open irrigation main canal with 

                 gates. 

Different methods exist for the solution of Saint-
Venant's equations, all of them exhibiting large 
mathematical complexities. These equations are also 
very difficult to use for prediction and control. Often, 
an equivalent first order system plus a delay is used 
to model the canal dynamic behavior (Weyer, 2001). 
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This model has the strong drawback that its 
parameters may experience large changes when the 
discharge regime varies.  Then any controller to be 
designed for canals has to be robust to variations in 
some parameters of the linearized model.  
 
Different strategies have been used for canal control. 
The most popular one is based on the classical PID 
controller. Many studies have shown that these 
controllers seem to be unsuitable to solve the 
problem of effective water distribution control in 
canals, due to the difficult dynamical behavior that 
characterizes these systems. 
 
Fractional operators have been often applied in the 
last years by different authors, e.g. Podlubny, 1999, 
to model and control difficult dynamical behavior 
processes. An interesting feature of fractional-order 
controllers is that they exhibit some advantages when 
designing robust control systems in the frequency 
domain for processes whose parameters vary in a 
large range. These characteristics are explored in 
order to design robust controllers to solve the 
problem of effective water distribution control in 
irrigation canals whose dynamic parameters vary in a 
wide range. In particular this paper is focused on the 
design of a fractional controller combined with a 
Smith predictor, which shows to be very robust to 
changes in the time delay. The time delay is the 
parameter more determinant of the stability of the 
closed loop control of irrigation canals. 
 
This paper is organized as follows. A model for the 
irrigation canal to be controlled is proposed in 
Section II. Section III develops the method for 
designing the PI fractional controller with the Smith 
predictor. Section IV compares the designed 
controller with other standard ones. Finally some 
conclusions are drawn in Section V.    
 

II. IRRIGATION CANAL DYNAMIC MODEL 
 
A linear model with concentrated parameters and a 
time delay can adequately characterize the dynamical 
behavior of irrigation canals in mensuration points 
(Rivas Perez et al., 2002). Experiments based on the 
response to a step like input were carried out in order 
to obtain a mathematical model that describes the 
dynamic behavior of a single canal pool. The 
experimental response of an irrigation canal pool to a 
step command is drawn in Fig. 2. Such response 
shows that the dynamic behavior of a single canal 
pool can be represented by expression: 
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where K  is the static gain;  are time constants; 
and 

21,TT
τ  is the time delay. Our canal model also 

includes disturbances D(s) caused by off-take 
discharges (see Fig. 3). 
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Fig. 2. Step response of an irrigation canal pool. 
 

Fig. 3. Standard control scheme. 
 
Experiments reported in previous works (Weyer, 
2001, e.g.) showed that all these parameters exhibit 
strong variations. In our particular canal, we consider 
only variations in the time delay, max0 ττ ≤≤ . We 
denote as 201000 ,,, TTK τ  the nominal values of the 
model. We consider that  is the dominant time 
constant (the larger one associated to the dynamics of 
the water), while  is the smaller time constant that 
represents the motor + gate dynamics, which is much 
faster than the dynamics of the canal, and it is nearly 
invariant respecting to flow regimes. 
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III. PI FRACTIONAL CONTROLLER WITH 

SMITH PREDICTOR 
 
Assume we want to design a controller for the system 
(1) with the next specifications: a)  phase margin 
(φm), b) crossover frequency (ωc), and c) zero steady 
state error. The last specification implies that the 
controller must include an integral term. Moreover 
the controller needs two parameters to be tuned in 
order to fulfill specifications a) and b). All this 
suggests that these three specifications can be 
attained by a PI controller of the form: 
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arranged according to the standard scheme of Fig. 3. 
The parameters of this controller can be obtained as 
follows. 
 
Express model (2) as , where ωτωω jejGjG −= )(')(



)(' ωjG  is the rational part of the model. Consider a 
general controller R(s) whose frequency 
characteristic is decomposed in the form 

 where  and  are real 
functions. In the particular case of the PI controller 
(3) these functions are: 
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Then specifications a) and b) are accomplished if the 
following conditions are verified:   
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which can be expressed as: 
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Particularizing  and  by expressions (3), 
equations (6)-(7) are expressed in a compact form as: 
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 (8) 
and the vector X of controller parameters is given by 

BAX 1−−= . 
 
The robustness of this controller to changes in the 
delay (maximum deviation of the delay from the 
nominal value that keeps stable the closed loop 
system) can be easily obtained: 
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It has to be noticed that any controller R(s) of Fig. 3 
that fulfills specifications a) and b) will exhibit the 
same time delay stability margin (9), independently 
of its particular form. 
 
Then a different control structure has to be used in 
order to improve the robustness to changes in the 
delay. Next a structure based on the Smith predictor 
is proposed, which is shown in Fig.4. In this case the 
closed loop transfer function is: 
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Let us assume that now a fractional controller is used 
of the form: 
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where 10 ≤≤α . The Final value theorem guarantees 
that the steady state error of the control system of 
Fig. 4 is zero if α≤0 . Again parameters and  
are designed in order to achieve specifications a) and 
b). We denote (13) as the fractional PI controller, and 
the standard PI controller is obtained from this one 
by making 

pK iT

1=α . The parameters of this controller 
can be obtained as follows. 

 
Fig. 4. Smith predictor based control scheme. 

 
Denote , and 
decompose the frequency characteristics of  R(s) in 
the form 
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In this case conditions (4) and (5) yield to: 
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 (15) 
and the vector X of controller parameters is given 
again by: BAX 1−−= . In this case is not easy to obtain 
an analytical expression of the stability margin for 
the time delay but the next Section will demonstrate 
that, for processes like the one considered in this 
paper, this margin grows as fractional exponent α 
decreases. 

 

 
IV. COMPARISON OF CONTROLLERS 

 
In this Section we compare the robustness to changes 
in the time delay of different control schemes. Three 
control laws will be studied a) PI standard controller 
of Fig. 3, b) PI standard controller with Smith 
predictor (Fig. 4), c) Fractional PI controller with 
Smith predictor (Fig. 4). All these controllers are 
designed in order to exhibit the same dynamic 



behaviour (the same ωc and φm) when the parameters 
of the canal take their nominal values. 
 
Consider the canal described in Fig. 2, whose 
transfer function is (2). Its nominal parameters are K0 

= 1.25, T10 = 300 s, T20 = 60 s, and τ0 = 600 s. 
Typically the time delay may experience variations in 
the range τmin= τ0/2 ≤ τ ≤ 2τ0 = τmax. But we will 
consider also that, under some special cases, the 
delay may be up to 4τ0 = τMAX. We compare the 
control systems from two points of view: a) 
maximum deviation of the time delay that makes the 
closed loop system unstable (in order to fulfill the 
limit case τMAX), b) degradation of the dynamic 
response in the range of normal work defined above 
[τmin , τmax]. 
 
a) Design specifications 
 
A crossover frequency ωc = 0.0011 rad/s is chosen. 
This implies a settling time of about 3600 s for the 
closed loop system (the settling time is 
approximately 

cst ω/4≈ ), which is considered 
adequate for this canal. A phase margin °= 75mφ  is 
chosen. Then from expression (9) we get that 

0max 3ˆ ττ = . 
 
b) Standard PI controller 
 
Expression (8) leads to a controller of the form: 
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Fig. 5 shows the responses of this controller to unity 
step commands for different values of the time delay 
in the working range [τmin , τmax]. Moreover notice 
that , exhibiting thus this controller 
an unstable behavior in the before mentioned limit 
case. 

MAXτττ << maxmax ˆ
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Fig. 5. Step response with a PI controller. 

 
c) Standard PI controller with Smith predictor 
 
Expression (15) particularized to α = 1 leads to a PI 
controller of the form: 
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Fig. 6 shows the responses of this controller to unity 
step commands for different values of the time delay 
in the working range. The maximum stable process 
delay allowed by this controller is 

. This stability limit for the delay 
is better than the one achieved with the previous 
controller, but it still needs some improvement in 
order to cope with the robustness condition τ

MAXτττ <= 0max 767.3ˆ

MAX. 

 
Fig. 6. Step response with a PI controller plus a 

                     Smith predictor. 
 
d) Fractional PI controller with Smith predictor 
 
Fig. 7 shows the maximum delay that the control 
system (13) with the Smith predictor can stabilize in 
function of the fractional parameter α. This plot has 
been determined by calculating (for a given value of 
α) the phase margin for different delay values. The 
maximum delay allowable in the case of the 
controller of Subsection IV.c is given by α = 1 in 
Fig. 7: . Moreover we observe in this 
figure a maximum delay stability margin for α ≈ 
0.55. Notice that the stability margin diminishes 
abruptly for values of  α close but smaller than the 
optimum.  

s5.2260ˆmax =τ

 
Fig. 7. Stability limit for the delay in function of α. 

 
Taking into account that fractional controllers are 
approximated by difference equations (see Vinagre et 
al, 2000, e.g.), then a conservative election is to 
choose a value of α slightly larger than the optimum. 
This α would exhibit a stability margin close to the 
optimum, and large changes in the stability margin 
caused by the numerical errors produced by the 
discretization of the fractional operator would be 
prevented. Then we choose a value of α = 0.6 for 
controller (13). From condition (15) we get now: 
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The responses to step inputs of our canal with this 
controller are shown in Fig. 8. In this figure and the 
next ones the response is negative at the beginning, 
which shows a non-minimum phase behavior. We 
mention that the output can take negative values 
because the considered dynamics of the plant is a 
linearization around a steady state of the canal (given 
by the water flow). Then variables are incremental.  
 
In this case we get that (see Fig. 7): 

0max 7.4ˆ τττ =<MAX
, which fulfills the robustness 

specifications. But the settling time of the fractional 
controller with Smith predictor is much larger than 
the PI controller with Smith predictor. This is 
because the integral term of the fractional controller 
is of order α = 0.6. The Final Value Theorem (Ogata, 
1993, e.g.) states that the fractional controller 
exhibits null steady state error if α > 0, but the fact of 
being  α < 1 makes the output converge to its final 
value, in the case of the fractional controller, more 
slowly than in the case of a PI controller. 

 
Fig.8. Step response with a PI fractional controller 

                  (α=0.6)  plus a Smith predictor. 
 
e) Design of a prefilter in order to speed up the 
output response 
 
We propose in this Subsection the use of a prefilter 
in order to speed up the response of the process 
controlled by the fractional controller (18), and to 
reduce the settling time. Consider expression (11) 
and that a unity step command is applied. Then the 
output is of the form: 
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Assume that R(s) is of the form (13). If we neglect 
the fast dynamics components of response (19), we 
have that the remaining dynamics that dominate the 
output response at large times is given by: 
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This suggests that in order to compensate this long-
time dynamics (which is the responsible of the slow 
convergence of the output to its final value shown in 
Fig. 8) the step command C(s) can be passed through 
a filter of the form: 
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This filter is the unity transfer function in the case of 
the PI controller (α=1) and β=1; in any other case: 
(α<1) and/or β>1 this is a phase lag filter that 
smoothes the step reference. Responses in this last 
case with α=0.6 and β=18.86 are shown in Fig. 9. 
The modified reference formed by passing the step 
command through filter (21) is also shown. It can be 
observed that, compared to responses of the PI 
controller given in Fig. 6, the settling time of this 
controller is slightly smaller for values τ ≤ τ0, while 
is slightly larger for values τ > τ0. Overshooting is 
slightly larger in this controller than with the PI 
controller. Fig. 10 and 11 show the control signal for 
the two Smith predictor based control schemes, with 
PI controller and with fractional PI controller plus 
prefilter, respectively.  Fig. 12 shows the temporal 
responses of the three control schemes when an off-
take discharge is produced (approximately modeled 
by a step input in D(s)). Finally Fig. 13 shows the 
responses of the canal with controllers (17) and (18) 
and the prefilter, for delays out of the working range 
but smaller than the robustness requisite τMAX.  

 
Fig. 9. Step response with a PI fractional controller 

                  (α=0.6) plus a Smith predictor and the 
                  preshaping filter (21). 
 

V. CONCLUSIONS 
 
• A methodology to design fractional PI controllers 

combined with Smith predictors for canals robust 



to changes in the time delay was proposed. 
• Simulations show that this fractional PI controller 

behaves approximately the same as an standard 
PI controller in the working range of delays, but 
enlarges the stability range of the delays. 

• A new command shaping fractional filter in order 
to achieve an acceptable settling time for the 
fractional PI controllers was proposed. 

• Simulations showed also some drawbacks of our 
fractional controller: a) it exhibits a non-
minimum phase behavior, b) compensates the 
effects of off-take discharges more slowly than 
the other considered control schemes. 

• The response of our controller to off-take 
discharges becomes too slow for values α < 0.5. 
Then practical values of α belong to the interval 
[0.5-1] considered in Fig. 7. 

• Finally we mention that a canal is a process of 
distributed nature, and a linear dynamic model 
with fractional derivatives could be more accurate 
that the standard model used in this paper. We are 
now studying this possibility. In this case, our 
control scheme would remain valid with the 
proper tuning.  

 

 
Fig. 10. Shape of the control signal with the 

                          PI controller plus Smith predictor. 

 
Fig. 11. Shape of the control signal with the PI 

                       fractional controller plus Smith predictor. 
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Fig. 12. Disturbance step response with the 

                          three control schemes. 

 
Fig. 13. Step responses with standard PI controller 

                     and PI fractional controller (α=0.6) plus a 
                 Smith predictor and the preshaping filter. 
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