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Abstract: A sensor fusion technique is presented and it is shown to achieve good
estimates of the position for a 3 degrees-of-freedom industrial robot model. By using
an accelerometer the estimate of the tool position accuracy can be improved. The
computation of the position is formulated as a Bayesian estimation problem and two
solutions are proposed. One using the extended Kalman filter and one using the particle
filter. Since the aim is to use the positions estimates to improve trajectory tracking
with an iterative learning control method, no computational constraints arise. In an
extensive simulation study the performance is compared to the Cramér-Rao lower bound.
A significant improvement in position accuracy is achieved using the sensor fusion
technique. Copyright c©2005 IFAC.

Keywords: Industrial robots, estimation, extended Kalman filters, estimation algorithms

1. INTRODUCTION

Modern industrial robot control is usually based only
upon measurements from the motor angles of the
manipulator. The ultimate goal however is to make
the tool move according to some predefined path.
In (Gunnarsson et al., 2001) a method for improv-
ing the absolute accuracy of a standard industrial
manipulator is described. The improved accuracy is
achieved through, identification of unknown or uncer-
tain parameters in the robot system, using additional
sensors, and applying the iterative learning control
(ILC) method,(Arimoto et al., 1984; Moore, 1993).
In (Gunnarsson et al., 2001) no specific method to
estimate the position is presented. The aim of this
paper is therefore to evaluate the Bayesian estimation
techniques for sensor fusion. The methods presented
are applied to a realistic flexible robot model and the
configuration of the system with the accelerometer is
depicted in Fig. 1.
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Fig. 1. An ABB IRB1400 robot with a 3-DOF ac-
celerometer mounted at the tool.

During the 1980’s there were several contributions
directed towards control of joint flexible industrial
robots using continuous time observers. One example
is (Nicosia et al., 1988) where an observer for a class
of nonlinear systems is presented. The disturbances
are not utilized in the estimation. In a Bayesian frame-
work estimation problems are traditionally solved us-
ing linearized filters, mainly extended Kalman filters
(EKFs) (Anderson and Moore, 1979). In (Jassemi-



Zargani and Necsulescu, 2002) an EKF is used to
improve the trajectory tracking for a rigid 2 degree-of-
freedom (DOF) robot. The robot dynamics and mea-
surements are highly nonlinear and the measurement
noise is not always Gaussian. Hence, linearized mod-
els may not always be a good approach. The parti-
cle filter (PF),(Doucet et al., 2001), provides a gen-
eral solution to many problems where linearizations
and Gaussian approximations are intractable or would
yield too low performance. The PF method is also
motivated since it provides the possibility design con-
trol laws and perform diagnosis in a much more ad-
vanced way. This paper extends the idea introduced
in (Karlsson and Norrlöf, 2004), where experimental
data was used in an EKF together with tool acceler-
ation measurements. Here, a performance evaluation
in a simulation environment is presented for both the
EKF and the particle filter. Performance is also ana-
lyzed using the Cramér-Rao lower bound (CRLB).

2. MOTIVATIONS

With a highly accurate tool position estimate, the
control of the robot can be improved. However, to
incorporate the estimates in a closed loop real-time
system may not be possible due to the computational
complexity in the estimation methods. This is not a
problem in some practical applications. Consider for
instance iterative learning control (ILC), which is
an off-line method. ILC has over the years become
a standard method for achieving high accuracy in
industrial robot control (Arimoto et al., 1984; Norrlöf,
2002; Norrlöf and Gunnarsson, 2002). It utilizes a
repetitive system dynamics to compensate for errors.
Mathematically an ILC control law can be written as

ut,k+1 = Q(ut,k + Lεt,k), (1)

where ut,k is the ILC input in the kth iteration and
εt,k is the error. The error is defined as εt,k = rt −yt,k

where r is the reference and yt,k the measured output
of the system. Q and L are design parameters for the
control law. In industrial robot systems the measured
output does not correspond to the actual controlled
output. An ILC experiment on the ABB IRB1400 in
(Norrlöf, 2000, Chapter 9) using only motor angle
measurements, i.e., no accelerometer, shows that al-
though the error on the motor-side is reduced the path
on the arm-side does not follow the programmed path.
This is illustrated in Fig. 2.

The idea in this paper is to use an accelerometer on the
tool to get measurements that reflects the actual tool
motion, see Fig. 1. From these measurements and a
model of the robot the position error, ε̂t,k, is estimated
and used in the ILC update equation according to

ut,k+1 = Q(ut,k + Lε̂t,k). (2)

Using the EKF, ε̂t,k represent the mean error, with an
estimate of the covariance from the EKF. Hence, this
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Fig. 2. Results from an ILC experiment on the
ABB IRB1400 robot where ILC is applied using
only motor angle measurements. Programmed
path (left), iteration 0 (middle), and iteration 10
(right).

can be used in the improvement process and an idea
in this direction is presented in (Norrlöf, 2002). The
covariance could be used to change the gain of the
learning operator L in order to reduce the effect of ran-
dom disturbances. In (Gunnarsson and Norrlöf, 2004)
a 1 DOF lab-process is controlled using (2) but the
estimation is simplified compared to the approach sug-
gested in this paper due to the inherent linearity of
the system. For the particle filter the whole proba-
bility density function (pdf) is available. Hence, the
ILC improvement can be done in a more sophisticated
way. The mean estimate or the maximum likelihood
(ML) estimate, or some combination thereof are logi-
cal choices.

3. MODELS

In this section a continuous-time flexible 3 DOF robot
model is presented. The model is simplified and trans-
formed into discrete time where it can be used by the
EKF and particle filter.

3.1 Robot Model

A general estimation problem consists of a nonlinear
state equation and a nonlinear measurement relation
(11) where the process noise, wt, and measurement
noise, et, are non-Gaussian. Often additive noises are
assumed. A common assumption of the dynamics of
the robot is that the transmission can be approximated
by two or three masses connected by springs and
dampers. The coefficients in the resulting model can
be estimated from an identification experiment. Here it
will be assumed that the transmission can be described
by a two mass system and that the manipulator is rigid
and the parameters are from a mid size robot (larger
and more flexible than the IRB1400).

The equation describing the torque balance for the
motor becomes

Mmq̈m = −fmq̇m − rgk(rgqm − qa)

−rgd(rg q̇m − q̇a) + u,
(3)

where Mm is the motor inertia matrix, qm the motor
angle, qa the arm angle, rg the gear ratio, fm, k, and



d are the motor friction, spring constant and damping
respectively. Input to the system is the motor torque
u. The corresponding relation for the arm becomes a
nonlinear equation

Ma(qa)q̈a + C(qa, q̇a)q̇a + g(qa) =

k(rgqm − qa) + d(rg q̇m − q̇a).
(4)

The goal is to estimate the arm position, qa, by mea-
suring the motor angle, qm, and the Cartesian tool
acceleration. The approach is similar to the one sug-
gested in (Gunnarsson and Norrlöf, 2004), but the
results presented here are more general, since a multi
variable nonlinear system is considered.

An industrial robot has, in general, 6 DOF. However,
here we will use only joint 1-3 (not the wrist joints).
The following states are used

xt =
(

qa,t q̇a,t q̈a,t

)T
, (5)

where qa,t =
(

q1
a,t q2

a,t q3
a,t

)T
is the arm angle infor-

mation from the first 3 axes in Fig. 1 and q̇a,t is the
angular velocity and q̈a,t is the angular acceleration at
time t.

3.2 Estimation Model

We use the following simplified state space model in
discrete time

xt+1 = f(xt, ut, wt) = Ftxt +Gu,tut +Gw,twt,
(6a)

yt = h(xt) + et, (6b)

where

Ft =

(

I TI T 2/2I

O I TI
O O I

)

, Gw,t =
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and T is the sampling time. I and O are three by
three unity and null matrices, and ut is the derivative
of the reference acceleration. The probability densities
for the process noise, wt, and measurement noise, et,
are assumed to be Gaussian. The observation relation
is described in Section 3.3.

3.3 Sensor Model

The observation relation is given by

h(xt) =

(

qm,t

ρ̈t

)

, (7)

where qm,t is the measured motor angle and where ρ̈t

is the Cartesian acceleration vector in the accelerom-
eter frame, Fig. 1. The motor angle qm,t is computed
from the arm angle using

qm = r−1
g

(

qa + k−1(Ma(qa)q̈a + g(qa)

+ C(qa, q̇a)q̇a + d(rg q̇m − q̇a)
)

.
(8)

The kinematics (Sciavicco and Siciliano, 2000) of
the robot is described by a nonlinear mapping ρt =
T (qa,t), and its Jacobian is defined as

J(qa) =
∂T (qa)

∂qa

. (9)

The following equation relates the Cartesian accelera-
tion with the state variables

ρ̈t = J(qa,t)q̈a,t +
(

3
∑

i=1

∂J(qa,t)

∂q
(i)
a,t

q̇
(i)
a,t

)

q̇a,t, (10)

where q(i)
a,t is the ith element of qa,t.

For the PF the nonlinear measurement relation can
be applied directly. However, for the EKF it has to
be linearized. In the model we do this symbolically,
using a symbolic language and then auto-generate a
linearized measurement function.

4. BAYESIAN ESTIMATION

Consider the discrete state-space model

xt+1 = f(xt, ut, wt), (11a)

yt = h(xt, et), (11b)

with state variables xt ∈ R
n, input signal ut and

measurements Yt = {yi}
t
i=1, with known probability

density functions (pdfs) for the process noise, pw(w),
and measurement noise pe(e). The nonlinear predic-
tion density p(xt+1|Yt) and filtering density p(xt|Yt)
for the Bayesian inference, (Jazwinski, 1970), is given
by

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt)dxt, (12a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (12b)

These equations are in general not analytically solv-
able. However, for the important special case of linear-
Gaussian dynamics and linear-Gaussian observations
the Kalman filter, (Kalman, 1960), will give the so-
lution. For a general nonlinear or non-Gaussian sys-
tem, approximate methods must be applied. Here we
will consider two different approaches of solving the
Bayesian equations, extended Kalman filter (EKF),
and particle filter (PF).

4.1 The Extended Kalman Filter (EKF)

For the special case of linear dynamics, linear mea-
surements and additive Gaussian noise the Bayesian
recursions in Section 4 have an analytical solution, the
Kalman filter. For many nonlinear problems the noise
assumptions are such that a linearized solution will
be a good approximation. This is the idea behind the
EKF, (Anderson and Moore, 1979), where the model



is linearized around the previous estimate. Here we
only briefly present the time- and measurement update
for the EKF,

{

x̂t+1|t = f(x̂t|t, ut),

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t ,

(13a)











x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 − KtHtPt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1,

(13b)

where we use the linearized matrices

Ft = ∇xf(xt, ut)|xt=x̂t|t−1
, Ht = ∇xh(xt)|xt=x̂t|t−1

.

The noise covariances are given as

Qt = Cov(wt), Rt = Cov(et).

4.2 The Particle Filter (PF)

In this section the presentation of the particle filter
theory is according to (Bergman, 1999; Doucet et al.,
2001; Gordon et al., 1993; Gustafsson et al., 2002).
The particle filter provides an approximate solution to
the discrete time Bayesian estimation problem formu-
lated in (12) by updating an approximate description
of the posterior filtering density. Let xt denote the
state of the observed system and Yt = {y(i)}t

i=1 be
the set of observed measurements until present time.
The particle filter approximates the density p(xt|Yt)

by a large set of N samples (particles), {x
(i)
t }N

i=1,
where each particle has an assigned relative weight,
γ

(i)
t , chosen such that all weights sum to unity. The

location and weight of each particle reflect the value
of the density in the region of the state space, The par-
ticle filter updates the particle location and the corre-
sponding weights recursively with each new observed
measurement. For the common special case of additive
measurement noise, i.e.,

yt = h(xt) + et, (14)

the unnormalized weights are given by

γ
(i)
t = pe(yt − h(x

(i)
t )), i = 1, . . . , N. (15)

Using the samples (particles) and the corresponding
weights the Bayesian equations can be approximately
solved. To avoid divergence a resampling step is intro-
duced. This is referred to as the sampling importance
resampling (SIR), (Gordon et al., 1993), and is sum-
marized in Algorithm 1. As the estimate for each time
we chose the minimum mean square estimate.

4.3 Cramér-Rao Lower Bound (CRLB)

When different estimators are used it is fundamental
to know the best possible achievable performance.
The Cramér-Rao lower bound is such a characteristic
for the second order moment. Here we will only

Algorithm 1 Sampling Importance Resampling

1: Generate N samples {x
(i)
0 }N

i=1 from p(x0).
2: Compute γ

(i)
t = pe(yt − h(x

(i)
t )) and normalize,

i.e., γ̄(i)
t = γ

(i)
t /

∑N

j=1 γ
(j)
t , i = 1, . . . , N .

3: Generate a new set {x
(i?)
t }N

i=1 by resampling with
replacement N times from {x

(i)
t }N

i=1, with proba-
bility γ̄

(j)
t = Pr{x

(i?)
t = x

(j)
t }.

4: x
(i)
t+1 = f(x

(i?)
t , ut, w

(i)
t ), i = 1, . . . , N using

different noise realizations, w(i)
t .

5: Increase t and iterate to step 2.

consider state-space models with additive noise and
present the CRLB. The theoretical posterior CRLB for
a general dynamic system was derived in (Bergman,
1999; Doucet et al., 2001). Hence, we can for the
simulation study evaluate these expressions around
the true trajectory and calculate the covariance by
iterating the Riccati equation (covariance expressions
in (13)) for each time step until a stationary value
is found. This corresponds to a lower bound on the
covariance. Taking the square root of the trace for
relevant states, this limit can be compared with the
RMSE from Monte Carlo simulations.

The true system should be used in the CRLB evalua-
tion, and therefore the discrete system equation must
be calculated. This can be achieved by studying the
continuous-time system from Section 3.1. The system
can be written in state space form as

ẋ =
d

dt





qa

q̇a

q̈a



 =





q̇a

q̈a

α(qa, q̇a, q̈a)



 , (16)

where α(qa, q̇a, q̈a) is given by the time derivative
of q̈a given by (4). The system is too complicated
for a symbolic differentiation. However, a numerical
differentiation can be done around the true trajec-
tory. The desired discrete time system matrix is now
given by first linearization and then discretization,
(Gustafsson, 2000)

Ac = ∇xf(x) =





O I O

O O I
∂α(q, q̇, q̈)

∂q

∂α(q, q̇, q̈)

∂q̇

∂α(q, q̇, q̈)

∂q̈



 ,

F = eAcT .

In Section 5 the CRLB is compared to the RMSE
from Monte Carlo simulations, both with and without
accelerations measurements.

5. SIMULATION RESULT

The model is implemented and simulated using the
Robotics Toolbox (Corke, 1996) in Simulink and it is
the same model as in (Svensson, 2004). The robot is
stabilized using a PID-controller.



In Fig. 3 the first four terms of (8) are shown for the
data in the simulation. The damping term is not shown
since it is considered negligible compared to the other
terms. From Fig. 3 the importance of the different
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Fig. 3. Terms in the measurement equation, (8). (a)
r−1
g qa, (b) r−1

g k−1Ma(qa)q̈a, (c) r−1
g k−1g(qa),

and (d) r−1
g k−1C(qa, q̇a)q̇a, (dash-dotted) axis 1,

(dashed) axis 2, and (dotted) axis 3.

terms can be concluded. The term containing qa is
fundamental, the gravitational term is also important
since it gives a bias to the estimate. The inertia term
also contributes together with the Coriolis term. The
5th term, the damping, has been neglected.

The simulation study is based mainly around the EKF
approach, since it is a fast method well suited for
large Monte Carlo simulations. The particle filter is
much slower so we will only include a smaller Monte
Carlo study as well as some concluding remarks. The
Monte Carlo simulations use the following Covariance
matrices for the process and measurement noise

Q = 4 · 10−6I, R =

(

10−6 · I O
O 10−4 · I

)

.

We simulate the system around the nominal trajectory
and produce different independent noise realizations
for the measurement noise in each simulation. The
same covariances are used in the CRLB evaluation.
The continuous-time Simulink model of the robot is
sampled in 1 kHz. The data is then decimated to 100
Hz before any estimation method is applied.

EKF. In Fig. 4 the RMSE from Monte Carlo simu-
lations are compared with the CRLB limit, both with
and without acceleration measurements. As seen the
RMSE is close the the fundamental limit. The dis-
crepancy is due to model errors, i.e., neglected damp-
ing term and the fact that the estimator uses a sim-
plified system matrix consisting of integrators only.
We also note that the accelerometer measurements re-
duces the estimation uncertainty. The results in Fig. 4
is of course for the chosen trajectory. The acceleration
values are not that large, so greater differences occur
for larger accelerations. On a 1.5 GHz PC running
MATLAB the EKF performs in real-time on the 100
Hz data rate.
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celerometer.

PF. The particle filter is rather slow compared to the
EKF for this model structure. The MATLAB imple-
mentation of the system is not well suited for large
Monte Carlo simulations. Instead we focus on a small
study over a much shorter time period than for the
EKF case. We compare the particle filter and the EKF
and show a small performance improvement. The re-
sult is given in Fig. 5. Even tough the particle fil-
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Fig. 5. EKF and PF position RMSE with external
accelerometer signal from 20 Monte Carlo sim-
ulations.

ter is slow, it gives more insight in the selection of
simulation parameters than the EKF, where the filter
performance is more dependent on the ratio between
the process and measurement noise. Since the data rate
is rather high the linearization problem is not severe,
so the EKF performs sufficiently well. To improve per-
formance another more complicated system dynamics
must be implemented in the filter.

6. CONCLUSIONS

A multiple sensor fusion approach to find estimates of
the tool position by combining a 3-axis accelerometer
and the measurements from the motor angles of an in-
dustrial robot is presented. We formulate the position
estimation as a Bayesian problem and propose two
solutions, EKF and PF respectively. The algorithms



were tested on data from a realistic robot model. For
the linear dynamical model used in the estimation,
sufficiently accurate estimates are produced. The per-
formance both with and without accelerometer mea-
surements are close to the fundamental CRLB limit.
Estimation performance with the accelerometer is bet-
ter, considering both the CRLB and the actual result
from the MC-simulations. Since the intended use of
the estimates is to improve position control using an
off-line method, like ILC, there are no real-time is-
sues using the computational demanding particle fil-
ter algorithm, however the EKF runs in real-time in
MATLAB. It is left for future work to evaluate the
robustness of the estimation algorithm and also to do
the experiment on the robot using a highly accurate
position measurement system for evaluation.
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Linköping Studies in Science and Technology.
Dissertations No. 579. Linköping University,
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Gunnarsson, S., M. Norrlöf, G. Hovland, U. Carlsson,
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Norrlöf, M. (2000). Iterative Learing Control –
Analysis, design and experiments. PhD the-
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