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Abstract: Subspace method identification (SMI) and model reduction for Multivariate 
Statistical Process Control has been proposed as an improvement to dynamic principal 
component analysis (DPCA). The linear parametric model structure captures both static and 
dynamic information from the system. In this paper, an analysis of the dimension reduction 
capabilities of the subspace approach is provided. It is proven that the SMI method yields a 
parsimonious model structure that requires fewer latent variables and uses fewer process 
measurements than DPCA. These findings are illustrated by an industrial application study. 
Copyright © 2005 IFAC. 
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1. INTRODUCTION 
 
Process condition monitoring is a technique for the 
detection and diagnosis of abnormal process behavior 
in a wide range of industries. It has the potential to 
improve bottom line returns, improve process 
quality, and reduce the energy required per unit of 
product (Brisk, 2004). This has led to the application 
of various statistically based condition monitoring 
strategies, collectively referred to as multivariate 
statistical process control (MSPC) (MacGregor and 
Kourti, 1995; Kourti and MacGregor, 1996). The 
most commonly used approaches have involved 
Principal Component Analysis (PCA) (Martin and 
Morris, 1996). 
 
PCA (Wold et al., 1987; Wise et al., 1990; Kresta et 
al., 1991) uses a static process model to monitor a 
reduced set of statistically uncorrelated variables. It 
is generally assumed that the process is operating at a 
predefined steady state operating point, however it is 
not uncommon for process variables to be affected by 
controller feedback and dynamic transients. Process 

variables may then move away from steady state 
conditions and exhibit some degree of auto-
correlation (Ku et al., 1995).  
 
Subspace method identification (SMI) is a dynamic 
extension for MSPC, which employs a state space 
model structure to incorporate the dynamic effects of 
auto- and cross-correlated process variables into the 
model (Treasure et al., 2004). This technique is an 
alternative to the more widely known DPCA. The 
SMI method is based on the N4SID algorithm (Van 
Overschee and De Moor, 1994), and error-in-
variables (EIV), to generate a set of state-variables 
that can describe dynamic process data. An MSPC 

framework is used to define Hotelling’s 2T  and Q 
statistics. 
 
In this paper, a review of the SMI method (Treasure 
et al., 2004) and DPCA (Wise and Ricker, 1992) 
procedures is provided and then building on from this 
work, there is an analysis of the respective model 
structures. It is proven that the SMI method is able to 
provide a process monitor using fewer latent 



 

variables and fewer measured variables than DPCA. 
An industrial application study is presented to 
demonstrate that the SMI method provides a unique 
analysis, providing the same information as DPCA 
using fewer latent variables and fewer measured 
variables. 
 
 

2. DYNAMIC MONITORING MODELS 
 
Section 2 presents an outline of the SMI method and 
DPCA as described in Treasure et al (2004). 
 
 
2.1 SMI Algorithm 
 
The SMI algorithm calculates a state sequence 
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, , ,A B C D  are matrices of appropriate dimension and 

ky  and ku  are the process output/input 

measurements. An error-in-variables approach is 
applied to (1) to calculate the system parameters. 
This is equivalent to finding the total least squares 
solution to the state equations (1). 
 
 Calculating the state sequence. A full description of 
the algorithm used to calculate a state sequence for 
the process is given in (Van Overschee and De Moor, 
1992). The identification procedure involves block 
Hankel matrices, , , ,P F P FY Y U U , constructed as 

follows: 
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and similarly for PU  and FU , where the initial 

prediction of FY  is the least squares solution to 
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The state sequence is then calculated from  
 

1 2k p pΓ = +X R U R Y           (3) 

 
where 1  [  ( )  ( ) ]T T j T T−=Γ C CA CA  represents the 

extended observability matrix and kX  is the 

identified states sequence. The final model is 
estimated by applying SVD to (3), then using 

balanced truncation (Moore, 1981), where the 
estimated states are equivalent to the system states up 
to within a similarity transformation. 1k+X  is 

determined by adding incoming measurements to 
, , ,F P F PU U Y Y  and recalculating (3).  

 
 
2.2 Dynamic Principal Component Analysis(DPCA) 
 
DPCA (Ku et al., 1995) involves PCA of a data 
matrix that corresponds to an ARX  model structure 
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where 0,  iB A  and iB  are parameter matrices of 

appropriate dimension and n  is the number of time 
lags incorporated into the model. 
 
 
2.3 Statistics for the process condition monitors 
 
Multivariate statistics are developed on the basis of 
the PCA decomposition 
 

T= +Z TP E            (6) 
 
ˆ T=Z TP  is the model of significant process 

variation within the recorded process variables and 
E  contains the residuals which are statistically 

independent to Ẑ . If TP  is the “in control” model 
based on normal process operation, the co-ordinates 
of the kth score of the monitored process are then 
determined as: 
 

T
k k=t P z            (7) 

 

where kz  is the kth column vector in TZ : 
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The residuals of each model are used to calculate the 
prediction error, or mismatch, between the measured 
and reconstructed process variables: 
 

 k k k= −e z Pt          (10) 

 
Given the above definitions for kt  and ke , 

Hotelling’s 2T statistic is calculated as  
 

2 1T
k k kT −= t Λ t          (11) 

 



 

where Λ  is a diagonal matrix storing the variance of 
each of the columns of T, as defined by the reference 
data set. The Q statistic is calculated as  
 

T
k k kQ = e e          (12) 

 

The univariate statistics ( 2T  and Q) are plotted 
against time. The confidence limits for the 2T  and Q 
statistics are calculated as defined in (Jackson and 
Mudholkar, 1979; Jackson, 1980). A contributions 
analysis is used to diagnose the likely source of 
process faults. Contributions of individual process 

measurements to the 2T  and Q statistics are obtained 
using the following expressions: 
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where I  is an identity matrix of appropriate 
dimension. 
 
 

3. MODEL STRUCTURES 
 
In this section, it is assumed that the system under 
study can be described by a state space model. A 
proof is provided that the SMI method uses fewer 
measurement variables and fewer latent variables 
than DPCA. This is followed by an analysis of the 
consistency of the state space estimate.  
 
 
3.1 SMI algorithm compared to DPCA 
 
Subject to the conditions imposed on the 
measurement uncertainty, the model structures 
employed by the SMI method and DPCA are 
equivalent. For simplification, a SISO system in state 
space form is studied to demonstrate that the SMI 
model requires fewer latent variables than DPCA. 
Consider the following system: 
 

1 1k k k kx ax bu e+ += + +  

k k k ky cx du f= + +                    (15) 

 
where ke  and kf  are independent, zero mean, 

Gaussian distributed noise terms with variance eσ  

and fσ . The state space model (15) is equivalent to 

the following ARX model structure (Treasure, 2004): 
 

( )1 1k k k k ky ay du bc ad u g− −= + + − +         (16) 

 
where 1k k k kg f af ce−= − + , and the variance of the 

error on ky  is var( ) (1 )k f eg a cσ σ= − + . Assuming 

the input variables are also measured inaccurately, 
then for the SMI/DPCA model structures, the 
following EIV problems can be formulated:  
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Modern manufacturing plants routinely monitor 
hundreds of variables (Martin and Morris, 1996), 
often with high degrees of correlation, and therefore 
dimension reduction techniques are an important 
aspect of MSPC. Equations (17) and (18) can be 
represented as = +Z PT E , where kh  represents the 

measurement uncertainty of ku . Although (17) and 

(18) contain the same number of process variables, a 
large-scale process with highly correlated process 
measurements admits to significant dimension 
reduction. In the case of large-scale MIMO 
processes, the number of internal variables used by 
DPCA is prohibitive. In contrast, the SMI algorithm 
provides considerable dimension reduction, where 
relatively few (orthogonal) state sequences are used 
in the model, in place of the time-lagged process 
variables used in DPCA.  
 
The SMI method generally provides a condition 
monitor using fewer principal directions, as 
demonstrated in the following analysis. Ignoring the 
noise terms in (17), if the input is uncorrelated with 
the states, then a stable system is fully described by 
two principal directions where ky  and 1kx +  are linear 

combinations of kx  and ku   
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The sequences kx  and ku  lie in the subspace 

described by the principal directions. Equation 19 
corresponds to =Z PT , and indicates the maximum 
number of dimensions required by SMI analysis. For 
large-scale MIMO processes the maximum number 
of dimensions required is: 
 

( ) ( )maxdim dim dim m n≤ + = +u x            (20) 

 
 
Lemma 1 

The upper bound for the number of dimensions 
required for SMI analysis of an thn  order  MIMO 
process is maxdim m n≤ + . 



 

Proof 

Assuming the system is stable and the input sequence 

ku  to be statistically independent of the state 

sequences, then the SMI method fully describes the 
process using two principal directions, i.e. both ky  

and 1k+x  are linear combinations of kx  and ku : 

 

1

    

    

   

k

k kmxm

k knxn

k+

   
        =               

y C D

u x0 I

x uI 0

x A B

        (21) 

 
The deterministic part of this system is estimated as 
ˆ T=z PP z , with coefficient matrix  
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By inspection, the maximum number of dimensions 
required is ( ) ( )maxdim dim dim m n≤ + = +u x , since 

column blocks 1 and 4 are padded with zeros. ■ 
 
Lemma 1 indicates that SMI requires 2m n+ =  
latent variables to fully describe the process (15). In 
contrast, DPCA requires ( ) 3m p n m+ + =  latent 

variables to describe the same process (16), i.e. 
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where q bc ad= − , and ky , 1ku +  and ku  lie in the 

subspace defined by the three principal directions 
 
 
Lemma 2 

The upper bound for the number of dimensions 
required for DPCA of an nth order  MIMO process is 

maxdim ( )m p n m≤ + +  

Proof 

An nth order DPCA model, as described by (9) is 
based on the ARX model structure 
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It can be seen directly from (24) that for an thn  order 
ARX model with random input, the upper bound for 
the number of principal components required by 
DPCA is equal to 

maxdim *dim( ) ( 1)*dim( ) ( )n n m p n m≤ + + = + +y u  

 
 
Lemma 3 

SMI uses ( ) 2m p n+ +  variables to model the 

process which is fewer than the ( 1)( )n m p+ +  

variables required by an equivalent order DPCA 
model.  
 
Proof 

The nth order state space model (1) requires 
( ) 2m p n+ +  variables and the SMI method (8) also 

uses ( ) 2m p n+ +  variables. The ARX model (24) 

uses ( )m p n m+ +  process measurements, and 

DPCA (9) requires ( 1)( )n m p+ + variables. For a 

MIMO (or SISO) system with m inputs and p 
outputs, 1,  1m n≥ ≥ , it follows directly that: 
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4. APPLICATION STUDY 
 
The distillation process is designed to purify Butane 
from a fresh feed containing a mixture of 
hydrocarbons, primarily Butane (C4), Hexane (C5) 
and some impurities of Propane (C3). A purified C4 
stream leaves the distillation process as the top 
product while C5 and impurities of C3 leave the 
distillation process with the bottom draw. The 
product quality is measured by the C5 concentration 
in the top draw, which should be kept below a 
predefined limit. Furthermore, to achieve economic 
operation of the plant, it is desirable to maintain the 
C4 concentration of the bottom draw below a 
specified limit. The process is affected by frequent 
changes in the feed, since no control system is 
employed to regulate the top and bottom 
concentrations of C5 and C4. The input and output 
variables of the process are listed in Table 1. 
Significant drops in fresh feed leads to violations of 
the C5 and the C4 concentration limits. The aim of 
this study is to detect these drops. Note that the SMI 
method uses considerably fewer variables in the 
model than DPCA, since the tray temperatures and 
pressures inside the distillation tower are highly 
correlated. The state space model is 2nd leading to a 
total of 20  variables overall; and the DPCA model is 
first order, requiring 32  variables. The number of 
principal components required for each of the models 
was found using parallel analysis (Ku et al., 1995) as 
4 principal components (the SMI method) and 6 
principal components (DPCA). 
 

Figures 1 and 2 show the 2T  and Q statistics for the 
SMI method and DPCA. It is clear that the results for 



 

the SMI method compare favorably with those for 
DPCA. In each case the arrival of abnormal behavior 
is indicated by a clear violation of the confidence 
limits. Figures 3 and 4 show the Q statistic 
contributions for the SMI method and DPCA. In 
particular the column temperatures (M1, M3) are 
significantly larger than predicted (as expected from 
prior knowledge of the process dynamics). In 
addition, the fresh feed temperature and the fresh 
feed flow (A1 and A2) are contributing to this event. 
Other contributions are from the reflux flow (A3), 
and the concentrations. 
 

Table 1: Process variables (Wang et al., 2003) 
 

VARIABLE  DESCRIPTION 
A1 Flow of fresh feed 
A2 Temperature of fresh feed 
A3 Reflux flow 

 
PREDICTOR 
VARIABLES 

A4 Reboiler steam flow 
M1 Tray 14 temperature 
M2 Column overhead pressure 
M3 Tray 2 temperature 
M4 Reflux vessel level 
M5 Butane product flow  
M6 Percentage of C3 in C4 
M7 Percentage of C5 in C4 
M8 Tray 31 temperature 
M9 Reboiler vessel level 
M10 Bottom draw 
M11 Percentage of C4 in C5 

 
 
 
 
 
RESPONSE 
VARIABLES 

M12 Reboiler temperature 
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Fig. 1. Industrial Process data comparison of 
Hotelling’s T2 statistic the SMI method (left) and 
DPCA (right). 
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Fig. 2. Industrial process data comparison of  Q 
statistic. The SMI method (left) and DPCA (right). 
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Fig. 3. Contributions to the Q statistic (SMI). 
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Fig. 4. Contributions to the Q statistic (DPCA). 
 
 



 

5. CONCLUSION 
 
It has been proven that the SMI method has the 
potential to provide a more concise model, using 
fewer latent variables than DPCA. In contrast, DPCA 
produces redundant information compared to the 
SMI method, as it requires more measurement 
variables and more latent variables. The simulation 
study demonstrates that the SMI method produces 
results that are consistent with DPCA, at the same 
time providing a less cluttered fault analysis than 
DPCA. 
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