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Abstract: For a servo plant with an integrator, analytical tuning formulas for phase
lead compensators with both gain and phase margin specifications are derived in
this paper. Comparing with other tuning methods, this method is simple with
a short tuning time. Simulation results under two typical cases show that this
method is general, too. Copyright c©2005 IFAC
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1. INTRODUCTION

Phase lead compensators are widely used in indus-
trial servo applications for their simple structures
and efficient improvements to the transient perfor-
mance. However, simple auto-tuning methods to
satisfy both gain and phase margin specifications
are not yet available both in the literature or in
practice. The manual tuning method of Ogata
(2002) has been applied broadly in such cases. It
is a trial-and-error method and both the gain and
phase margin specifications may not be satisfied
very well. Loh et al. (2004) proposed an auto-
tuning method based on a hysterisis relay. As it
follows the similar way to Ogata’s method, very
long tuning time is inevitable. On the other hand,
Yeung and Lee (1998; 2000) proposed some chart
methods to satisfy both gain and phase margin
specifications exactly, but crossover frequencies
still need to be specified a priori. Ho and Wang
proposed some more straightforward methods (Ho
et al., 1995; Fung et al., 1998; Wang et al., 1999b)
for PID controllers design with exact gain and
phase margin specifications, respectively. Unfor-
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tunately, these methods can not be extended to
phase lead compensator design directly because
lead/lag compensators have some parameters in
the denominator of its transfer function, unlike
PID controllers where all the parameters appear
linearly. Up to now, no analytical solution exists
for the tuning of phase lead compensators.

In this paper, a new tuning method of phase
lead compensators to meet both gain and phase
specifications are proposed. From the viewpoint
of engineering practice, analytical tuning formulas
for all three unknown parameters of phase lead
compensators are derived. The procedure of the
new method is quite simple and it requires short
tuning time. Simulation results show that our
solution is also very accurate.

The paper is organized as follows. In Section
2 and 3, the derivation of tuning formulas and
frequency identification principles are presented,
respectively. Examples and simulation results will
follow in Section 4 to illustrate the method. Con-
clusions will be finally drawn in Section 5.



2. TUNING METHOD

Consider a servo plant G(s) with the frequency
response G(jω). Its Nyquist curve is shown as Fig-
ure 1. Am, φm and ωg are gain margin, phase mar-
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Fig. 1. Nyquist curve of systems

gin and corresponding gain crossover frequency,
respectively. A phase lead compensator with the
following form,

K(s) = Kc
Ts + 1
αTs + 1

, 0 < α < 1, (1)

is to be inserted in series with the plant in a unit
output feedback configuration. Our objective is to
make K(s)G(s) satisfy the desired gain margin
A∗m and phase margin φ∗m simultaneously, i.e.
the Nyquist curve of K(jω)G(jω) should pass
through P1 and Q1.

Noting that in engineering practice, the gain mar-
gin specification is not necessary to be exactly
satisfied. It is good enough when the gain margin
of the compensated system is equal or greater than
the specification. So we have

Kc
1 + jωpT

1 + jαωpT
G(jωp) ≥ − 1

A∗m
. (2)

For the proportional controller, K(s) = Kc with

Kc

Am
=

1
A∗m

⇒Kc =
Am

A∗m
, (3)

the Nyquist curve of KcG(jω) will pass through
P1, shown as Figure 1. For a lead compensator
with the gain Kc, the gain margin of the compen-
sated system will usually become greater, which
implies that gain margin specification (2) already
holds if (3) is true. So, only phase margin specifi-
cation needs to be satisfied, i.e.

Kc
1 + jωgT

1 + jαωgT
G(jωg) = −ejφ∗m . (4)

Define the complex function:

f(ω) = − ejφ∗m

KcG(jω)
= Re(ω) + jIm(ω), (5)

where Re and Im denote the real and imaginary
components of f . From (4) we have

1 + jωgT = (1 + jαωgT )[Re(ωg) + jIm(ωg)]

= Re(ωg)− αωgT Im(ωg)

+j[Im(ωg) + αωgTRe(ωg)]. (6)

The complex equation (6) is equivalent to two real
equations as follows,

Re(ωg)− αωgT Im(ωg) = 1, (7)

Im(ωg) + αωgTRe(ωg) = ωgT. (8)

Now, we have three unknowns α, T and ωg but
two equations (7) and (8) only. It seems that
infinity solutions exist. If ωg can be determined,
then we may find finite solutions of α and T in
the following way.

From (7), we have

αT =
Re(ωg)− 1
ωgIm(ωg)

. (9)

Substituting (9) into (8) yields

T =
r2(ωg)− Re(ωg)

ωgIm(ωg)
. (10)

Substituting (10) back into (9), we obtain

α =
Re(ωg)− 1

r2(ωg)− Re(ωg)
, (11)

where r =
√

Re2 + Im2 is the module of f .

Assume that the frequency response KcG(jω) is
known, ωg can be determined by the following
lemma.

Lemma: If the gain margin of KcG(jωg) is equal
to the specification A∗m and A∗m > 1/ cos φ∗m holds
true, we can always find the range of ωg given by

ωg ∈ {ω ||KcG(jω)| < cos(φ∗m − φ)} , (12)

where φ = 6 KcG(jω) + π.

The geometrical meaning is shown as Figure 1:
the above range of ωg is the frequency segment
between L1 and L2, which are intersection points
of KcG(jω) and the semi circle with diameter of
OQ1.

Proof: Suppose A = |KcG(jω)| and KcG(jω) =
x + jy, then from (5) we have



f(ω) =− ejφ∗m

x + jy

=
(−x + jy)(cos φ∗m + j sin φ∗m)

A2

=
−x cos φ∗m − y sin φ∗m

A2

+j
y cos φ∗m − x sin φ∗m

A2

= Re(ω) + jIm(ω). (13)

Therefore,

Re(ω) =
−x cos φ∗m − y sin φ∗m

A2
, (14)

Im(ω) =
y cos φ∗m − x sin φ∗m

A2
. (15)

Assume gain crossover frequency of KcG(jω) is
ω′g, then ωg > ω′g because phase lead angle added
will shift the ωg to the right of ω′g. Thus

r(ω) = |f(ω)| = 1
A

> 1. (16)

So that

r2(ω)− Re(ω) > r(ω)− Re(ω) > 0. (17)

The last “>” holds according to the triangle
inequality.

On the other hand,

y

x
<

sin φ∗m
cos φ∗m

⇒ y cosφ∗m − x sin φ∗m > 0

⇒ Im(ω) > 0, (18)

since x < 0, 0 < φ∗m < π/2, cos φ∗m > 0 and
sin φ∗m > 0.

From (10), (11), (17) and (18) we can see that
T (ω) > 0 is always true but α(ω) > 0 iff

Re(ω) > 1. (19)

Substituting (14) into (19) yields

A <− x

A
cosφ∗m − y

A
sin φ∗m

= cos φ cos φ∗m + sin φ sin φ∗m
= cos(φ∗m − φ). (20)

From Figure 1 we can see that all points on
the semi circle with diameter OQ1 = 1 satisfy
A = cos(φ∗m − φ). Points inside circle satisfy
A < cos(φ∗m − φ) and points outside circle satisfy
A > cos(φ∗m − φ). If A∗m > 1/ cosφ∗m, then
cos φ∗m > 1/A∗m, which implies there exists some
frequency such that their corresponding frequency
response are inside the circle OQ1. This frequency
range can be denoted as the segment between

intersection points of KcG(jω) and semi circle
OQ1. 2

If the frequency response KcG(jω) is unknown,
then it should be identified a priori by auto-
tuning based on FFT techniques and relay feed-
back (Wang et al., 2001). Principles of this auto-
tuning method will be demonstrated in the next
section.

Once ωg is determined, Kc, T and α can be easily
calculated from (3), (11) and (10).

The tuning method can be summarized as follows:

Step 1. Calculate the frequency response of the
plant. If the transfer function of the plant is
unknown, estimate it with FFT-based auto-
tuning method;

Step 2. Determine Kc by (3), compute KcG(jω)
and choose ωg by (12);

Step 3. Calculate α and T from (11) and (10),
respectively.

3. FREQUENCY RESPONSE
IDENTIFICATION

If the transfer function G(s) of the plant is known,
its frequency response G(jω) can be easily ob-
tained by converting s = jω. However, when
G(s) is unknown, its frequency response can still
be obtained by relay feedback and FFT-based
techniques(Wang et al., 2001; Wang et al., 1999a).

Consider a standard relay feedback system shown
as Figure 2. If stable oscillation can be con-

r = 0 
Gp(s)

u y+

–

Fig. 2. Relay feedback system

structed, y(t) or u(t) can be decomposed into the
periodic stationary cycle parts ys(t) or us(t) and
the transient parts ∆y(t) or ∆u(t) as

y(t) = ∆y(t) + ys(t),

u(t) = ∆u(t) + us(t).

Thus

G(s) =
Y (s)
U(s)

=
∆Y (s) + Ys(s)
∆U(s) + Us(s)

. (21)

where ∆Y (s) and ∆U(s) are the Laplace trans-
forms of the transient parts ∆y(t) and ∆u(t),
respectively; Ys(s) and Us(s) are the Laplace
transforms of the periodic parts ys(t) and us(t),
respectively.



For the periodic parts, their Laplace transforms
can be calculated by the following lemma(Kuhfittig,
1978).

Lemma: Suppose that f(t) is a periodic function
with period Tc for t ≥ 0, i.e.,

f(t) =
{

f(t + Tc), t ∈ [0, +∞),
0, t ∈ (−∞, 0). (22)

Assume that Lf(t) = F (s) exists, then

F (s) =
1

1− e−sTc

Tc∫

0

f(t)e−stdt. (23)

Thus

Ys(jω) =
1

1− e−jωTc

Tc∫

0

ys(t)e−jωtdt. (24)

For the transient parts, we suppose that after
t = Tf , both ∆y(t) and ∆u(t) are approximately
zero, then

∆Y (jω) =

∞∫

0

∆y(t)e−jωtdt ≈
Tf∫

0

∆y(t)e−jωtdt.(25)

After discretization, we have

∆Y (ωi) = T

N−1∑

k=0

∆y(kT )e−jωikT ,

Ys(jωi) =
1

1− e−jωiTc

Nc∑

k=0

ys(kT )e−jωikT T,

i = 1, 2, · · · ,m.

where m = N/2, ωi = 2πi/(NT ), Nc = (Tc −
T )/T, Tf = (N − 1)T and T is the sampling
interval.

∆U(jωi) and Us(jωi) can be calculated in the
same way, so that the frequency response of the
plant is obtained as

G(jωi) =
∆Y (jωi) + Ys(jωi)
∆U(jωi) + Us(jωi)

, (26)

i = 1, 2, · · · ,m.

After the frequency response of the plant is ob-
tained, ω∗g and φ∗m can be easily obtained by nu-
merical interpolation and searching. For example,
suppose that Ĝp(ω1) and Ĝp(ω2) are consecu-
tive frequency response of G(jω) by auto-tuning
method, which satisfy |Ĝp(ω1)| > 1 > |Ĝp(ω2)|
for ω1 < ω∗g < ω2, then we have

log |Ĝp(ω1)| − log |Ĝp(ω2)|
log ω1 − log ω2

≈ 0− log |Ĝp(ω2)|
log ω∗g − log ω2

.(27)

4. ILLUSTRATIVE EXAMPLE

Example 1 A lead compensator of the form

K(s) = Kc
Ts + 1
αTs + 1

, α < 1, (28)

is designed for the plant

G(s) =
4

s(s + 2)
e−0.35s, (29)

with the desired gain margin A∗m = 3 and phase
margin φ∗m = 60◦, respectively.

The auto-tuning procedures are shown as Figure
3. The first part of Figure 3 for t ∈ [0, 11.8] is the
relay test, then a phase lead compensator is tuned
and commissioned. After settling down, at t = 18,
a step set point change of one is introduced and
the process output is quite good.
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Fig. 3. Auto-tuning performance

The frequency response of the plant can be
obtained from (26), shown as Figure 4, where
“+” denotes the estimation of frequency re-
sponse of plant. Its gain margin Am = 1.5549.
From (3), Kc = 0.5183; while from (12), ωg ∈
(1.0669, 12.448).
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Fig. 4. Frequency response identification by auto-
tuning



Let ωg = 1.0669, from (10) and (11)

α = 0.3725,

T = 0.6252,

K(s) =
0.324s + 0.5183

0.2329s + 1
.

The Bode diagram of the compensated system
K(s)G(s) is given in Figure 5; its comparison
with the uncompensated system is also presented.
The gain margin, phase margin and corresponding
crossover frequencies are shown as Table 1.

Table 1. Comparison of G and KG.

System Am φm ωp ωg

G 1.572 20.3◦ 2.14 1.57
KG 3.016 60.3◦ 3.02 1.07
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Fig. 5. Bode diagram of open-loop systems

From Figure 5 we can see that phase margin
specification is well satisfied and gain margin
can be guaranteed that it is greater than the
specification. So, the lead compensator obtained
is good enough and can be accepted.
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Fig. 6. Frequency response of open-loop systems

The open-loop frequency responses of processes:
G(jω),KcG(jω) and K(jω)G(jω) are shown as
Figure 6. To evaluate improvements for the plant
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by a phase lead compensator, we choose propor-
tional control with Kc as a reference because it
satisfies the gain margin specification. The closed-
loop unit step response of K(s)G(s) and KcG(s)
are shown is Figure 7. From the figure we can see
that the transient behavior of the lead compen-
sated system is greatly improved.

Example 2 Design a compensator for the plant

G(s) =
0.25

s(0.5s + 1)(2.5s + 1)(5s + 1)
, (30)

with the desired gain margin A∗m = 3 and phase
margin φ∗m = 60◦, respectively.

By auto-tuning, the gain margin of the plant
Am = 1.8515. Follow the same approach as what
we used in Example 1, Kc = 0.6172 and ωg ∈
(0.1437, 0.3232).

Let ωg = 0.1437, from (10) and (11) we have

α = 0.1349,

T = 4.9436,

K(s) =
3.051s + 0.6172

0.6668s + 1
.

The Bode diagram of the compensated system
is shown as Figure 8 and its comparison with
the proportional control system is also presented.
The gain margin, phase margin and corresponding
crossover frequencies are shown as Table 2.

Table 2. Comparison of G and KG.

System Am φm ωp ωg

G 1.875 20.8◦ 0.248 0.173
KG 6.839 60.4◦ 0.553 0.144

From the figure we can see that the phase margin
specification is well satisfied but gain margin of
the compensated system is sure to be greater than
specification. So the lead compensator obtained is
good enough and acceptable.
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The open-loop frequency responses of processes:
G(jω),KcG(jω) and K(jω)G(jω) are shown in
Figure 9. To evaluate improvements to the plant
by a phase lead compensator, we choose propor-
tional control with Kc as a reference since it satis-
fies the gain margin specification. The closed-loop
unit step response of K(s)G(s) and KcG(s) are
shown as Figure 10, it is obvious that the transient
performance of lead compensated plant is greatly
improved.
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5. CONCLUSION

With our method, it becomes simple and straight-
forward to tune a phase lead compensator for
exact phase margin specification and acceptable
gain margin. For the wide class of servo applica-
tions, we have been able to determine the proper
parameters Kc, α and T by analytical formulas
while facilitating simple and fast auto-tuning.
Simulation results show that our method is very
general.
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