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Abstract: In this paper, a nonlinear anti-sway control law for overhead cranes is 
investigated. The crane model itself is adopted from the literature; however, a new 
nonlinear decoupling control law that provides superior position-regulation and sway-
suppression characteristics is proposed in this paper. The derived control law uses the 
sway angular rate as well as the sway angle as feedback. The performance of the 
proposed control law is compared with those of the PD and 2E  control laws in the 
literature. The transient characteristics of the proposed control law are also verified using 
a 3-D pilot crane. Simulation and experimental results are discussed. Copyright © 2005 
IFAC 
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1. INTRODUCTION 

 
Cranes can be categorized into four types: overhead 
cranes, container cranes, tower cranes, and jib cranes. 
This paper focuses on overhead cranes that are 
widely used in factories and warehouses (Butler et al., 
1991). A major difference between container cranes 
and overhead cranes is that there is no girder motion 
in container cranes; that is, the trolley motion is the 
only motion that makes the load swing, whereas in 
overhead cranes, both the trolley and girder motions 
may occur at the same time. Hence, in container 
cranes, the sway motion is assumed to occur in a 
plane, whereas the sway motion of overhead cranes 
should be analyzed in three-dimensional space.  
 
For the speed control of a trolley in two-dimensional 
space, an analytical time-optimal control solution 
without a hoisting motion was investigated by 
Manson (1977). In contrast to speed control, the 
torque control method applies control forces/torques 
in such a way that the dynamics of the controlled 
system meet a given reference signal. The torque 
control method is more attractive from the aspects of 
accuracy and energy saving. Moustafa and Ebeid  
(1988) derived a 3-D nonlinear model of overhead 
cranes and investigated a linear state feedback 

control by linearizing the derived 3-D model. In 
(Hong, et al, 2000), to achieve both fast traveling of 
the trolley and precise regulation of the sway motion 
at the end of trolley strokes, a two stage control 
combining a time-optimal traveling control and a 
variable structure control for residual sway 
suppression was proposed. Fang, Dixon, Dawson, 
and Zergeroglu (2003) investigated a nonlinear 
control based upon the total energy of a 3-D 
overhead crane.  
 
In this paper, an energy-based (Lyapunov-function-
based) nonlinear control design for a 3-D crane is 
investigated. The advantage of using an energy-based 
control is that the nonlinearity of the plant can be 
fully incorporated into control law design when the 
energy function is differentiated along the plant 
dynamics. Also, the uniform asymptotic stability of 
the closed-loop system can be guaranteed by a 
properly chosen energy function. However, the dis-
advantage of energy-based control is that it is 
difficult to improve the transient performance (i.e., 
rise time, settling time, etc.) in a systematic way even 
though its stability is assured.  Hence, a trial and 
error approach to improve the transient performance 
is normally pursued. The contributions of this paper 
are the following. An energy-based control law with  
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(a) Schematic of a 3-D motion. 

 

 
(b) A 3-D pilotcrane: InTeCo (Poland). 

 
Fig. 1. 3-D overhead crane: its schematic and a pilot 

crane for experiment. 
 
improved rise time and sway suppression capability 
for a 3-D crane is proposed. The uniform asymptotic  
stability of the closed-loop system is assured. Finally, 
the developed algorithm is verified through 
simulations and experiments using a 3-D pilot crane. 
 
 

2. SYSTEM DYNAMICS 
 
For the successful suppression of the sway motion of 
a suspended load, it is important to know what part 
of the crane dynamics should be included in the 
control law design stage and what part can be 
neglected. In the case of overhead cranes, in contrast 
to container cranes, a three-dimensional model 
should be used to represent the swing dynamics of 
the suspended load. In this study, the model 
developed in (Moustafa, and Ebeid, 1988) and (Fang, 
et al., 2003) was adopted.  
 
Fig. 1 shows the schematic of a 3-D overhead crane. 
Let X be the trolley moving direction and Y be the 
girder moving direction. Let φ  be the angle of the 
Y ′ -axis and the projected line of the rope to the X ′ -
Y ′  plane. Let θ  be the angle between the vertical 
line and the rope. Let )(tx , Rty ∈)(  be the 
displacements of the trolley and the girder, 
respectively. Let xF  and yF  be the control forces 
applied to the trolley and the girder, respectively.  
 
The following assumptions are made: i) payload and 
trolley are connected by a massless rigid rod; that is, 
a pendulum motion of the load is considered; ii) the 
trolley and girder masses and the positions of the 
trolley and girder are exactly known; iii) the ball 
joint connecting the rod and trolley is frictionless and 
this joint does not rotate about the connecting rod; 
iv) the rod elongation is negligible; v) the rod length 

(hoist rope length) is constant, which gives a four-
d.o.f. crane model rather than five. Now, a variable 

4)( Rtq ∈  is defined as Ttttytxtq )](),(),(),([)( φθ= . 
 
In accordance with the assumptions made above, the 
crane dynamics are given by 

uqGqqqVqqM m =++ )(),()( &&&&                (1) 
where 
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In the above expressions, pm , gm , and tm  are the 
payload mass, girder mass, and trolley mass, 
respectively; I is the mass moment of inertia of the 
payload; L is the length of the suspending rope; g is 
the gravitational acceleration. It is remarked that the 
inertia matrix and centripetal term, )(qM  and 

),( qqVm & , satisfy the skew-symmetric relationship of 
0)),(2)(( =− ξξ qqVqM m

T &&  where )(qM&  is the time 
derivative of )(qM , and that they hold the 

inequalities 2
2

2
1 )( ξξξξ kqMk T ≤≤  for 4R∈ξ . 

 
To decouple the x- and y-dynamics from the θ - and 
φ -dynamics, (1) is rewritten as 

)}(),(){(1 qGqqqVuqMq m −−= − &&&& .              (2) 
Then, the x- and y-dynamics are 
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determinant of )(qM . Expression for ijp  and kw  for 
2,,1 ≤≤ kji  are referred to (Fang, et al., 2003). 

 
Finally, the θ - and φ - dynamics are 
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3. CONTROL LAW DESIGN 
 
In this section, a nonlinear control law for 
suppressing the sway angle of the suspended load is 
derived. The novelty of this law lies in improving the 
transient performance. The information on the sway 
angle, sway angular velocity, trolley displacement 
and velocity, girder displacement and velocity is 
assumed to be known (the sway angular velocity can 
be observed in practice, but this is not an issue in this 
paper). For comparison purposes, after introducing 
the PD and 2E  coupling control laws of Fang et al. 
(2003), a variant form of the nonlinear control law 
that  is superior to the PD and 2E  control laws is 
proposed. Let the position error be defined by  

T
eed yxrre ][=−=                        (5) 

where T
ddd yxr ][= , de xxx −= , de yyy −= ,  and 

dx  and dy  are the desired trolley and girder 
positions, respectively.  
 
(i) The PD control law in (Kiss, Levine, and 
Mullhaupt, 2000) and (Fang, et al., 2003) is in the 
form of 

Edp kekekF )( &−−=                           (6) 
where Ek , pk , and dk  are positive constants.  
 
(ii) The 2E  coupling control law of (Fang, et al., 
2003) is given by 
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(iii) To improve the transient performance in sway 
suppression and the robustness against initial swing 
and varying payload, the following new control law 
is proposed: 
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Theorem 1: Consider the plant (3)-(4) with 

2/)0( πθ < , and the control law given by (8)-(11). 
Then, the trolley and girder position errors ex  and 

ey , and the swing angle θ , converge to zero 
asymptotically, and Tyxq ][ φθ &&&&& =  remains bounded 
for all t ≥  0.  
 
Proof: By substituting (8) into (3) and rearranging the 
terms, the position error dynamics become 
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(14) 
Rewriting of (12) and (14) yields: 
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It is remarked that only (15)-(17) are used in control 
law design, because the φ -dynamics become 
insignificant if θ  converges to zero; see (Fang, et al., 
2003). 
 
First, a positive definite function for the x- and y-
dynamics is considered as follows: 
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Also, the sway dynamics, (17), are expressed as 
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where θθ =1 , θθ &=2 , and )( 2 ILmgLmc pp += . An 
energy function for system (20) (i.e., a positive 
definite function for the θ -dynamics) is considered 
as follows: 

}cos1{21 1
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Then, the time derivative of (21) using (20) becomes 
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In (24), three different values of f  can be chosen 
according to (11) (i.e., depending on the values of 

)(cos)(sin2 eeee yyxxa +−+− && φφθ  and ee xx +&(cosφ  
)(sin) ee yy +− &φ ). 
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Thus, V is a Lyapunov function for the x-, y-, and θ -
dynamics, and the uniform asymptotic stability of the 
closed-loop system is achieved. Hence, )(sin ee xx +&φ  

2)(cos θφ ayy ee −++ &  and +−+ eee yxx && (sin)(cos φφ  
)ey  continue decreasing until they become zero 

(Hong, 1997).  
(ii) Second, assume that +++= eee yxxa && (cos)(sin2 φφθ  
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Hence, from (26), (17) is uniformly asymptotically 
stable, and thus, from (27), (15) and (16) are input-
to-state stable (i.e., input 2θ  and state ee +& ). Then, 
the interconnected system (15) through (17) is also 
uniformly asymptotically stable (Khalil, 2002). 
(iii) Third, the given conditions are 
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)( sin)( cos eeee yyxx &&&&&& +=+ φφ .                (32) 
Hence, equation (30) becomes 

 0)}( cos)( {sin =⋅+++ φφφ &&& eeee yyxx .         (33) 
Thus, the following two cases can be obtained: a) 

0)( cos)( sin =+++ eeee yyxx && φφ  or b) 0=φ& . In the 
case of a), (28) gives 02 =θ , (29) yields 

( ) ( ) 022 =+++ eeee yyxx && , and (24) reduces to 0≤V& . 
Also, the second equation in (20) becomes  

  )sin( 12 θθ c−=& ,         (34) 
because −++++− )}(2 cos)(2 {sin2 eeee yyxxa && φφθ  

0=⋅ fa . Hence, 01 =θ  follows from (34). In the 
case of b), (15), (16), and 0=φ&  yield:  

 
ee

eeeeee

yxa

yyyxxx

&&

&&&&&&

 cos sin

)2( cos)2( sin

2 φφθ

φφ

++=

+++++
        (35)

 2)( cos)( sin θφφ ayyyxxx eeeeee =+++++ &&&&&&   (36) 
By (28) and (36), it follows that 

     0 cos sin =+ ee yx &&&& φφ .            (37) 
Also, the time derivative of (28), (37), and 0=φ&  give 
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Now, combining the time derivative of (38), (37), 
and 0=φ& , it follows that 
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Thus, either 02 =θ  or 1
2

1
22

21 cossin3cos θθθθ cc +−⋅  
0=  follows. In the latter case, the quadratic formula 

gives 08/)48(cos 24
2

2
21 ≥++−= ccθθθ , whose 

solution ( 21  ,θθ ) should also satisfy (34) since (34) 
holds in the case of b) as well. However, it can be 
easily seen that this leads to a contradiction. 
Therefore, 02 =θ  follows from (40), and thus, 01 =θ  
from (34).  
 
In both cases a) and b), 021 == θθ  are obtained, and 
thus, 0=+=+ eeee yyxx &&  from (28) and (29). Note 
that (24) reduces to 0≤V&  in any case.            □ 
 
 

4. SIMULATIONS AND EXPERIMENTS 
 
First, computer simulations of three control laws (i.e., 
the PD and 2E  control laws of (Fang, et al., 2003), 
and the proposed nonlinear control law in Section 3), 
using equations (3)-(4), were carried out. The system 
parameters used in the simulations were  

 
m. 7.0  ,m kg 005.0 

 ,kg 0.3  ,kg 06.1  ,kg 73.0 
2 ==

===

LI

mmm gtp      (41) 

The x and y position errors at the target positions and 
the swing angle throughout traveling were compared. 
Even though a performance comparison with various 



 

     

payload weights and initial sway angles was 
performed, the discussion in this paper is limited to 
the case of pm  = 0.73 kg and )0(θ  = 0 deg, because 
similar behaviors were observed in other cases. The 
target positions of the trolley and girder were 

  TT
dd yx ] 0.1 , 0.1 []  ,  [ = .                (42) 

Also, simulations with various target positions 
besides (4) were pursued, but the overall trend was 
the same.  
 
Fig. 2 shows the simulation results of the PD control 
in equation (6), where the used gains are 102=dk , 

45=pk , and 1=Ek . The positioning control of the 
trolley and girder according to (42) is acceptable (see 
Fig. 2a,b), but, even though their target positions had 
been achieved at about 9 sec, the payload continues 
oscillating (see Fig. 2c). Fig. 3 depicts the simulation 
results of the 2E  control in (7), where the used gains 
are 3.125=dk , 50=pk , and 001.0=Ek . Compared 
with Fig. 2, the set-point regulation is almost the 
same, but the θ -oscillation has been much improved 
(see Fig. 3c). Fig. 4 shows the simulation results of 
the proposed control in (8)-(11). Compared with the 
PD and 2E  control laws, both set-point regulation 
and sway suppression are much superior. 
 
The experimental results of the three control laws 
using a 3-D pilot crane were also compared.  The 3-
D crane utilized was an InTeCo 3DCrane. As shown 
in Fig. 1, it consists of a trolley, a girder, and a 
payload hanging on a pendulum-like lift-line wound 
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(a) −x position. 
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(b) −y position. 
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(c) swing angle θ . 

 
Fig. 2. Simulation result of the PD control of 

equation (6) with 102=dk , 45=pk , and 1=Ek  
(dotted : target values, solid : simulation values). 
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Fig. 3. Simulation result of the 2E  control of (7) 

with 3.125=dk , 50=pk , and 001.0=Ek (dotted : 
target values, solid : simulation values). 
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(a) −x position. 

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

time [sec]

y 
(s

ol
id

), 
y d (

do
tte

d)
 [m

]

 
(b) −y position. 

0 5 10 15 20
-5.0

-2.5

0.0

2.5

5.0

time [sec]

th
et

a 
[d

eg
]

 
(c) swing angle θ . 

 
Fig. 4. Simulation result of the proposed nonlinear 

controller of (8)-(11) (dotted : target values, 
solid : simulation values). 

 



 

     

by a motor mounted on the trolley. The girder is 
capable of rectilinear motion in the Y-direction, 
while the trolley is capable of rectilinear motion 
along the girder in the X-direction. The 3DCrane is 
driven by three DC motors. There are five encoders 
to measure five variables: the trolley and girder 
displacements, the lift-line length, and the two 
deviation angles of the payload (all five encoders are 
identical). The trolley and girder motors are driven 
by power interfaces, which amplify the signals from 
PC to DC motors and transmit the pulse signals of 
the encoder after converting them to 16-bit digital 
signals. The PC communicates with the power 
interface board via an internally equipped RT-DAC 
multipurpose digital I/O board. The physical 
parameters of the 3DCrane are given in (41). 
Actually, the 3DCrane values were used in 
simulations for comparison purposes. The sampling 
time was 0.01 sec. The desired target position was 
the same as (42).  
 
Fig. 5 compares the experimental results of the three 
controllers (PD, 2E , and the proposed one) using the 
same initial conditions. The rise time of the 2E  
control and that of the proposed one are almost the 
same, but the better sway suppression characteristics 
of the proposed controller are shown. 
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(c) swing angle θ . 
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(d) angle φ . 

 
Fig. 5. Experiment results(PD, 2E , proposed control). 

 

5. CONCLUSIONS 
 
In this paper, a nonlinear control law for 3-D 
overhead cranes using the feedback linearization 
technique and the decoupling strategy of θ - and φ -
dynamics from x- and y-dynamics was investigated. 
The performance of the proposed controller was 
compared with those of the PD and 2E  control laws 
of (Fang, et al., 2003). The stability proof in this 
paper is much more rigorous than those available in 
the literature. Because most transferences of loads in 
factories are performed with a fixed rope length, the 
applicability of the proposed controller is very high. 
The question of changing the rope length remains for 
future work. 
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