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Identification of the function part of the analytical model of the movement of a mass 
along vertical guide way is made. Indeed, knowledge of friction parameters is necessary 
to detect wear or mechanical failure. Because of the non linearity the identification is 
made using Genetic Algorithms (GA). After many simulations, the proposed approach is 
tested with the recorded experimental data from a test bed. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
System identification is the process of deriving a 
mathematical model from observed data in 
accordance with a selected criterion. In the past few 
decades, many researchers have extensively studied 
various identification methods for linear systems 
(Ljung, 1999). Many friction models are parametric 
models. They try to represent the complexity of 
physic phenomena. However, friction is still one of 
the great unknowns in mechanical systems. Beside 
that, friction model is not linear (Olsson, Astrom, 
Canudas de Wit, 1998). Friction model identification 
can be made using various methods (Besançon-Voda 
Besançon, 1999) such as:, non linear estimation, 
(Elhami, Brookfield, 1996), linear and non linear 
regression or dynamical network (Parlitz, Al-Bender, 
Fassois, Wong, 2004), neural networks (Domingez, 
Michelin, Martinez, 1995). In this paper genetic 
algorithm (GA) are used in batch processing to find 
the best estimated values of the friction model 
parameters. GA are particularly effective for 
optimization of non linear function. The advantage of 
the use of GA to identify friction parameters is that 
velocity measure (or estimation) is not required. The 
paper is organized as follow: in section 2, the 
selected friction model is presented. The 
identification method is presented in section 3. 
Simulations are presented in section 4. Some 
practical results concerning an actual plant are given 
in section 5.  
 
 

2. FRICTION MODEL 
 
Friction is the tangential force between two surfaces 
in contact. It’s a very complex physical phenomenon 
that varies with chemical and physical properties of 
materials. Indeed, dynamic, thermal and lubrication 
conditions strongly modify the friction force. Hence 
the construction of a general friction model is a 
difficult task (Richardson, Nolle, 1976). 
The classical models of friction can be classified in 
two categories: static models and dynamic models 
(Canudas de Witt, Lischinsky, 1997). In this work 
static model is used.  
Let y be the position of a mass moving along a 
surface and let v denote the velocity of this mass. The 
force friction has the form: 
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With: Fs: Stribeck friction, vs: Stribeck velocity, 
Fc: Coulomb friction, Fv: viscous friction coefficient 
Force friction depends on 4 parameters: . 41, α…α
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With the following interpretation of parameters: 

Fc1 =α , Fc-Fs2 =α , s3 v=α , . Fv4 =α
The sign function is defined as: 
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Figure 1 shows an example of force friction (N) 
respect to the linear velocity (m/s). This model is 
symmetric, but some authors use an asymmetrical 
friction model (Elhami, Brookfield, 1996). 

     



 
Fig. 1. Example of friction force 
 
 

3. IDENTIFICATION WITH GA 
 
 
3.1 Identification with GA 
 
The goal of identification is then to determine the 
numerical values of the parameters α1,…,α4. System 
identification is an experimental approach for 
determining the parameter of the model. Typically, 
identification includes four steps (Ljung 1999): 
a)  apply an input and record the measures, 
b)  choice a model, 
c)  estimate the parameters, 

     

d)  validate the identified parameters. 
There exist many methods to perform estimation 
(step c) when the output is linear in parameter 
(Pintelon, Schoukens, 2001). For example, 
estimation could be made using spectral analysis, 
linear regression, Kalman filter, etc. But the friction 
model is not linear in the parameters because of α3. 
The relation (2) shows that the model is not linear in 
velocity. Hence, parameter identification is treated as 
an optimization problem with the use of GA 
(Masseguerra, Zio, Torri, 2003). GA are different 
from conventional optimization methods because 
they start with multiple points, so they are more 
likely to obtain global solution. GA are search 
techniques based on the principle of natural 
selection. GA suppose that the potential solution of 
any problem is an individual and can be represented 
by a finite set of parameters. Here, GA are used to 
identify the friction of a system as is shown in figure 
2. Friction parameters of the model are modified by 
GA in order to reduce the values of the output error.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Identification method 
 
The following notations are used: 
u(k): process input, y(k): process measured output, 

ye(k): estimated output by the model 
)k(ye)k(y)k( −=ε : output error. 

 
In figure 2, the bloc (2) could be either simulated 
either could be represented by a data base recorded 
on the actual plant. To simulate the bloc (1), a 
Simulink© model with the friction parameter 
numerical values given by GA is used.  
 
 
3.2 Coding 
 
As chromosomes, each parameter is coded in a 
binary form (8 bits or genes). GA work with the code 
of parameters and not with the parameters 
themselves. For example, considering the Coulomb 
friction Fc1 =α , suppose that the minimal value is 

N0min1 =α  and the maximal value is .  N40max1 =α
Noting E the value of the encoded parameter α1, the 
value of the parameter is given by: 

E
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This is a key advantage of GA: we can incorporate 
specific knowledge in a straightforward fashion. 
The 4 codes of the 4 parameters are collected to form 
an individual coded with 32 bits.  
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Fig. 3. Coding 4 parameters 
 
 
3.3 Initial Population 
 
A key part of GA is derived from the fact that the 
initial population is build with several individuals 
chosen at random. For example, initial population 
has between 20 and 100 individuals. These 
individuals are called parents.  
 
 
3.4 Criteria 
 
The goal is to reduce the output error: 

)k(ye)k(y)k( −=ε . In figure 2, the output error is 
computed with a Simulink© model having the 
parameters modified by GA at each iteration. The 
criterion I to minimize is defined as: 
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Where n is the number of time points simulated or 
recorded at sampling time Ts. Because of non 
linearity, the sampling time has to be chosen very 
small. In this criterion, the denominator is build with 
the measured or simulated output of the machine. 
Knowing the friction parameter values, the calculus 
of the criteria I for a fixed window is called 
“evaluation”. The length of the windows n is about 
1500 to 2500 points, depending on the experiments. 
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u(k) y(k) Plant with 
unknown 
Friction. (1) 
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estimated 
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+ 
− 

ye(k) 

ε(k) 
GA (3) 



 
3.5 Selection Reproduction 
 
GA is based on three basic genetic rules in analogy 
to natural evolution: selection (or reproduction), 
crossover, mutation. Knowing the parents, the 
criterion I is valued for each parents. The individual 
that gives the greater criteria will be eliminated. But 
this can drive to a local minimum. Hence, only one 
parent is eliminated and is replaced by the parent that 
gives the smaller criteria. 
 
 
3.6 Crossover 
 
Crossover method is inspired by biological process. 
The aim is to combine parts of good parents to 
generate better children. The crossover procedure 
implements the exchange mechanism between two 
parents. For each parent, for each parameter coded, 
random integers L1, L2, L3, and L4 are chosen 
between 1 and 7. These numbers are crossing point: 
they are generated using a selected “crossover rate”. 
For example in figure 4 we have two parents, and 
two parameters coded with 5 bits (genes). Before 
crossing, suppose that L1=2 and L2=4 are 
determined by the crossover rate. For the first 
parameter, the first parent gives 2 bits for the “child” 
(1,1) and the following bits of the first parent are 
replaced by those (1, 1, 0) of the second parent. This 
procedure gives the “child” for the first parameter. 
The same procedure is applied for the others 
parameters. This is illustrated by the figure 4. 

     

 
Fig. 4. Crossing procedure 
 
 
3.7 Mutation 
 
Mutation consists in changing the value of one or 
several bits (genes). Each bit has a mutation 
probability Pm very small, for example, Pm=0.05. 
Hence, mutation provides the random search 
capability for GA. It helps the GA avoid premature 
convergence and find the global optimal solution. 
 
 
3.8 Implementation and comments 
 
The flow chart is given in figure 5. At the first step, 
the data base is loaded. It contains the data recorded 
on the plant and data obtained by simulation.  

At the second step parents are initialized at random, 
and each parent is valued. These values are used to 
simulate the plant (with Simulink©) and the criterion 
I is calculated (using (4)) over a window of length 
n·Ts. If the criterion I is too big, the main loop 
begins. 
The minimum of the selected parents is compared to 
the predefined value called Max. If this minimum is 
less or equal than Max, the corresponding individual 
(4 parameters α1,…,α4) is put in the population. This 
is a slight improve of classical GA implementation: it 
allows keeping the best individual known at this 
iteration. In addition, selection, crossover and 
mutation are developed. This gives new population. 
If the minimum of the evaluation of this population is 
less than a previous optim, this minimum is kept as a 
new optim, and the integer mu is increased by one. 
This mu is a way to increase Pm and thus to 
introduce diversity into the population. Then local 
minima are avoided. The main loop is stopped when 
the criterion is smaller than Max. 
 

 
Fig. 5. Flow chart of GA identification 
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GA approach gives a good balance between 
complexity and efficiency. Unlike classical methods, 
GA do not require the knowledge of gradients or 
derivatives that are sensitive to noise sensors of 
actual process. GA automates the trial and error 
evaluation process. Therefore GA could be used for a 
very large variety of models. GA have some 
disadvantages: among them, the difficulty to find the 
exact global optimum. This usually requires a large 
initial population and a large number of iterations. 

     

 
 

4. SIMULATION 
 
 
4.1 Experimental set-up 
 
At each extremity, a moving beam is linked to two 
belts driven by two brushless motors. The height of 
the vertical guide is 2 meters and the length of the 
beam is 1.8 meter. In this paper, only one extremity 
is moving up and down along rail guides.  

 
Fig. 6. Plant process 
 
Position of the extremity of the moving beam is 
obtained from a magnetostrictive sensor. 
The measurement and control are carried out by a 
dSpace© real time computer. During the experiment, 
inputs (torques) and outputs (positions) are recorded 
with sampling time Ts = 0.01s. 
 
 
4.2 Plant model 
 
The mass M moves on a vertical guide way rail witch 
presents friction: it represents a part of the mass of 
the beam of fig 6. This mass is subject to gravity 
force and to the force exerted by a belt. This belt is 
engaged in two pulleys. One of these pulleys is 
driven by a brushless motor associated with a 
reducing gear: see figure 6.  
Introduce the notations (see fig 7): 
Rc, Re, Rm: pulley radius, M: mass in translation, 
Cr: input torque, Cm: torque provided by the motor, 
J: total inertia expressed with respect to the driving 
pulley axis,  
y: vertical position of the mass,   g: gravity. 

The plant is represented by the following equation: 
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Fig. 7. Plant 
 
 
4.3 Simulink model 
 
Figure 8 shows the Simulink© model. The input is a 
torque (N·m) given by the motor and the output is the 
position (m) of the mass. 

 
Fig. 8. Simulink model 
 
The following values have been chosen because they 
are next to the plant friction value: N90Fc= , 

N60Fs = , )s/m/(N180Fv= , . s/m1.0vs =

 
Fig. 9. Simulation results  
 
For a sinusoidal torque with amplitude 2.1 N and 
frequency 0.2 Hz, the simulation is given in Fig 9. 
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Because of the non linearity of the friction, the 
output is periodic, but it is not sinusoidal. Each 
simulated position and torque are recorded in a data 
base used by GA to obtain parameters Fc, Fs, Fv and 
vj. Sampling time value is Ts=0.01s and n=1500. 
 
 
4.4 Numerical values 
 
For these simulations, each parameter α, αmax = 1.5·α 
and αmin = 0.5·α where α is the parameter nominal 
value. After many simulations the following design 
has been selected:  
• Initial population with 50 individuals, 
• Mutation probability 0.03,  
• Crossover rate = 0. 5. 
Figure 10 shows the evolution of the best criteria 
(top). Note that different parameter values could 
correspond to very close values of the criteria. 
When the optimum parameters are obtained, the 
output error (see fig 2) is plotted versus time. 

     

 
Fig. 10. Best criteria and error 
 
The optimum parameters obtained are: Fc=93N, 
Fs=69N, vs=0.12m/s and Fv=172N. The output error 
is less than one millimeter; the precision is quite 
good. This shows the efficiency of the identification 
with GA.  
Figure 11 shows the parameters evolution versus the 
generation iterations. Due to random search 
algorithm, this evolution is rather chaotic.  

 
Fig. 11. Parameters evolution 
 

 
4.5 Input choice 
 
When the model is linear in parameters, it is 
important to note that the input should be informative 
enough with respect to the model (Ljung 1999). 
To obtain precise identification, the inputs have to be 
chosen very carefully. But, due to non linearity, is 
difficult to select a “good” input. Roughly speaking, 
the input have to produce max(Fv,·v) close to the Fc 
value. However, the output is constrained by physical 
limits of the machine. Input (torque) amplitude is 
chosen to obtain displacements about ± 0.2 m. GA 
are running with numerical values of §4.4. Different 
inputs have been tested and some comparisons are 
given in table 1. The symbol ++ means precise 
identification, and -- stands for very bad 
identification.  
 

Table 1 
Form Freq (Hz) Criteria I quality 
Sin 0.1  9 10-5  ++ 
sin 0.2  4·10-5  ++ 
sin 0.5  8·10-6  ++ 
square 0.05  7·10-5  -- 
square 0.1  3·10-4  -- 
square 0.2  2·10-3  -- 
random   2.3  -- 
 
Some other forms have been tested; among them saw 
tooth, piecewise constant sequence of variable 
length, superposition of two squares at different 
frequency. But the identified parameters are not 
good. In conclusion, for the experiments on the 
system, the selected form of the input is a sine. 
 
 
4.6 Noise 
 
Output process is corrupted by noise. Assume that 
this noise is zero mean Gaussian random signal with 
variance . Results of figure 12 have to 
be compared with figure 10. The output error reflects 
the noise influence. Identified parameters are very 
similar to those obtained without noise. 
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Fig. 12. Simulation with noise 
 
 



5. EXPERIMENTS 
 
The input is selected using the simulation results: the 
torque is a sine. Before identification, is necessary to 
filter input and output in order to reduce noise 
effects. Spectral estimation of the displacement (Fast 
Fourier transform) shows that a cut frequency f=2Hz 
is a good choice. To eliminate gravity effects, torque 
and displacement have been centered. In figure 13 
filtered input (torque, N·m) and output (position, m) 
are presented. As the figure shows, the position is not 
very symmetrical. 

 
Fig. 13. Filtered position and torque 
 
From this data base, a window of 2000 points is 
selected. Identification of friction parameters have 
been made using model (5) with the hypothesis that 
the inertia J is constant, which is a very strong 
hypothesis. For the GA, the same design parameters 
as in §4.4 were used. Each identified parameter is 
coded with 8 bits. Because of noise and model 
uncertainty, coding with 10 bits or more doesn’t 
improve the accuracy on identified parameters. Many 
inputs were tested (periodic or not): same 
conclusions for simulations and for experiments are 
drawn, thus sinusoidal input is the best here.  
 
Results 
The optimum parameters given by GA are:  
Fc= 91N, Fs= 69N, vj= 0.1m/s and Fv =150 N/(m/s). 
Figure 14 shows the measured and the simulated 
output with the “best” identified parameters.  

 
Fig. 14. Measured and estimated position with 

optimum parameters 
 
Many experiments have been made and the 
conclusion is that friction is not very repetitive in this 
test bed. So, in order to control the position, it seams 
necessary to use adaptive control. 

6. CONCLUSION 
 
This paper has described a practical use of GA for 
identification of friction of a mass moving along 
guide ways. The need of a “good input” is pointed 
out. Identification based on GA gives good results. 
Indeed, the criterion chosen is only depending on the 
measured quantities and it is not depending on the 
velocity. The performance of the method was 
demonstrated by applying it to a simulated system 
and to an experimental test bed.  
Friction identification is a very important task 
because of the knowledge of the parameters 
describing friction could be use for many purpose as 
for example:  
a) Non linear control for precision machine,  
b) Surface damage detection,  
c) Wear detection, 
d) Lubricant modification detection, etc. 
Friction modeling is and will still be a challenge in 
the future. 
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