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Abstract: Nonlinear empirical models are used in various applications. During
model-building, five major steps usually have to be carried out: model structure
selection, determination of input variables, complexity adjustment of the model,
parameter estimation and model validation. These steps have to be repeated until
a satisfactory model is found, which can be very time consuming and may require
user interaction. This paper proposes an algorithm based on sparse grid function
approximation to incrementally build a nonlinear empirical model. The algorithm
exhibits good performance in terms of manual effort and computation time. The
method is illustrated by a case study on the identification of a NARX model.
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1. INTRODUCTION

Many important industrial processes exhibit non-
linear behavior. For model-based control and op-
timization a process model is required. Physically-
based process models are often not available due
to development and maintenance cost. Therefore
an empirical process model may be identified from
experimental or plant data as described by e.g.
Henson and Seborg (1997).

As a typical example, the identification of discrete-
time, nonlinear, auto-regressive models with exo-
geneous inputs (NARX models) is considered in
this paper, although the methodology presented
can easily be applied to other model structures as
well. The general formulation of a NARX model
for a process with a single input u ∈ R and a single
output y ∈ R is yk = f(xk), where f is a nonlinear
function. The input variables of the NARX model
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xk = [uk−1, . . . , uk−p, yk−1, . . . , yk−q] (1)

are delayed samples of the process input and
output, using the notation yk = y(t = tk). The
model order parameters p and q determine how
many delayed samples are included in xk.

Given a measurement data set, the NARX model
is usually built in an iterative process that consists
of five major steps:

(1) Select a model structure: A suitable model
structure for the function f has to be selected
from the many alternatives that are proposed in
literature, such as artificial neural networks or
polynomial models (Henson and Seborg, 1997).
The selection is usually strongly influenced by
personal preferences and the available software
but should be based on the intended application.
For instance, Pearson (2003) states four impor-
tant measures for model utility in process control:
approximation accuracy, physical interpretability,
ease of controller design and ease of model devel-
opment.



(2) Determine input variables: The input vari-
ables of the NARX model, i.e. the model order,
are often assumed to be known. Alternatively,
they are determined by building multiple model
candidates with different sets of input variables
and selecting the best one. This time-consuming
search strategy can be avoided by algorithms that
suggest a model order prior to the choice of a
model structure as was presented by e.g. Feil et
al. (2004).

(3) Adjust the model complexity: The concepts
of stepwise model refinement, model pruning, i.e.
deleting dispensable parameters, and regulariza-
tion are frequently employed when model com-
plexity is adjusted, see e.g. Bishop (1995) for arti-
ficial neural networks. Model complexity is often
expressed by the number of model parameters and
is determined by the grade of nonlinearity in the
data set as well as the desired model accuracy.

(4) Estimate the model parameters: A parameter
estimation problem, which is sometimes also com-
bined with step (3), is set up and solved by an
algorithm that is usually tailored to the model
structure for numerical efficiency.

(5) Validate the identified model: After a solution
has been obtained, the model should be validated,
in order to decide if some of the preceding steps
have to be repeated to improve the model.

The model-building process can be very time-
consuming if many model candidates with differ-
ent sets of input variables and model complexities
have to be considered. The goal of this paper is to
reduce the repetitions of the model-building steps
by a systematic model-building strategy that com-
bines all steps into one algorithm. Brendel and
Marquardt (2003) noted that sparse grid approxi-
mation may find use for structure selection of non-
linear discrete-time models. This is demonstrated
in this work.

Yserentant (1986) proposed the sparse grid ap-
proach for multilevel-splitting of finite-element
spaces. It was mainly used for the solution of
PDEs (Griebel et al., 1992). Recently the sparse
grid approach has been introduced to the field of
function approximation by Garcke et al. (2001)
and Brendel and Marquardt (2003). In this paper
the stepwise model refinement algorithm of Bren-
del and Marquardt (2003) is modified to system-
atically select input variables and adjust model
complexity. Furthermore, an alternative regular-
ization term is proposed.

Sparse grid approximation is described briefly
in Section 2, which is the basis of the system-
atic model-building strategy presented in Section
3. This strategy is exemplified in a case study
on NARX model identification and the resulting
NARX model orders are compared to those found

by Feil et al. (2004). Finally, some conclusion are
given in Section 5.

2. SPARSE GRID FUNCTION
APPROXIMATION

Two basic statistical assumptions are commonly
made if an output error model ỹk = f(xk) +
εk is used in function approximation: (i) the
model structure f is reasonably correct and (ii)
the measurements of the input variables xk in
the k-th experiment contain negligible errors. All
measurement errors and the model mismatch are
described by the error term εk, which is assumed
to have a normal distribution with zero mean and
variance σ2.

The objective is to identify the function f : R
d →

R of some function space V from measurement
data of the output variable ỹ and the input
variables x. This inverse problem may be ill-posed
in the sense of Hadamard and therefore requires
regularization (Engl et al., 1996).

The function f is the solution of the regularized
least-squares estimation problem

min
f∈V

1
M

M∑
k=1

(f(xk) − ỹk)2 + λΦ(f). (2)

The first term measures the average approxima-
tion error of the function f to the measured values
ỹk and the second term represents a regularization
term to handle the ill-posedness.

The following subsections briefly describe how the
function f is defined in the sparse grid approach.
Since the sparse grid solution is composed of
multiple so-called full grid solutions, the function
approximation on a full grid is presented first.

2.1 Function approximation on a full grid

The function f is represented in the full grid
approach by a truncated basis function expansion

fl(x) :=
∑
j∈Λ

θl,jφl,j(x) (3)

where θl,j are parameters to be estimated and
φl,j(x) are basis functions that are local with finite
support in d-dimensional space. The basis func-
tions φl,j(x) are parameterized by the level multi-
index l and the position multi-index j, which have
d entries each, where d is the number of variables
in x. The level multi-index l defines the mesh
size hl = (hl1 , ..., hld) = (2−l1 , ..., 2−ld) of the full
grid in each dimension. The position multi-index
j translates the basis function in each dimension
to the coordinates xl,j = (j12−l1 , . . . , jd2−ld) with
j ∈ Λ := {j | ji ∈ {0, . . . , 2li}, i = 1 . . . d}. For



0 0.25 0.5 0.75 10
0.5

1
    

0   

0.5 

1   

x
1

[4,2]
[1,1]

x
2

y

Fig. 1. Two basis functions for level l = (2, 1) on
the positions j = (1, 1) and j = (4, 2).

convenience the input variables x are transformed
first to the interval [0, 1]d.

The basis functions are created from the piece-
wise-linear mother function φ(x) by dyadic dila-
tion and translation:

φl,j(x) :=
d∏

i=1

φli,ji
(xi), (4)

φli,ji
(xi) := φ

(
xi − jihli

hli

)
, (5)

φ(x) :=
{

1 − |x| if x ∈ ]-1, 1[
0 otherwise . (6)

The basis functions are centered on the grid
points of a grid with a uniform mesh size in each
dimension. For instance, two basis functions are
shown in Figure 1 for a two-dimensional full grid.

The sparse grid approach can be generalized
to other basis functions including higher-order
polynomials, interpolets, prewavelets and wavelets
(Bungartz and Griebel, 2004), e.g. if f has to be
continuously differentiable.

The mesh size determines how accurate the full
grid can approximate a given data set. However,
the finer the mesh the more parameters have to
be estimated. The number of parameters of a full
grid with level l is Nl =

∏d
i=1 (2li + 1) and thus it

increases exponentially with both the number of
model inputs d and the level l.

2.2 Replacement of the full grid by a sparse grid

To cope with the high number of parameters
in the full grid approach, Griebel et al. (1992)
proposed a combination technique for the solution
of sparse grid problems. The solution on a large
full grid is approximated by combining solutions
on a set of smaller full grids, so-called subgrids.
More precisely, the sparse grid solution f

(c)
l on

level l is the weighted sum of all subgrid solutions
on levels s that are elements of an index set Il:

f
(c)
l (x) :=

∑
s∈Il

wsfs(x). (7)

The superscript (c) denotes the combination of
subgrid solutions. Each subgrid fs is a full grid
on level s, defined by equation (3) with the level
index l being replaced by s.

Different subgrid combination techniques were
presented by Garcke and Griebel (2002) and Bren-
del and Marquardt (2003). Brendel and Mar-
quardt (2004) compare those techniques and state
that the anisotropic grid combination technique
from Garcke and Griebel (2002) seems to be fa-
vorable, therefore it is used in this work.

The index set for the anisotropic grid combination
technique is defined by

Il :=

{
s |

d∑
i=1

si

li
≤ 1, si ≥ 0

}
. (8)

With its characteristic function

χIl(s) :=
{

1 if s ∈ Il,
0 otherwise (9)

the weights in equation (7) result in

ws :=
(1,...,1)∑

z=(0,...,0)

(−1)‖z‖1χIl(s + z). (10)

These weights take integer values. The associated
subgrid solution is dispensable if a weight is zero.
Table 1 gives an example for the subgrid decom-
position of a sparse grid with level (4, 2, 2, 1) along
with the number of parameters Ns of each subgrid.
A full grid on level (4, 2, 2, 1) would contain 1275
parameters, whereas the sparse grid is composed
of 10 subgrids with 484 parameters in total. All
subgrid solutions are calculated separately, thus
the largest parameter estimation problem involves
only 136 parameters.

Table 1. Subgrids on level l=(4,2,2,1).

s ws Ns s ws Ns

(0, 0, 0, 1) 1 24 (0, 0, 1, 0) -2 24
(0, 0, 2, 0) 1 40 (0, 1, 0, 0) -2 24
(0, 1, 1, 0) 1 36 (0, 2, 0, 0) 1 40
(2, 0, 0, 0) -2 40 (2, 0, 1, 0) 1 60
(2, 1, 0, 0) 1 60 (4, 0, 0, 0) 1 136

2.3 Estimation of sparse grid parameters

The sparse grid parameter estimation problem is
easily solved, when it is expressed as a linear set
of equations. Therefore, all parameters θs,j and
basis functions φs,j(x) of a subgrid with level
s are arranged to column vectors θs and φs(x)
using a bijective mapping function M : R

d → R

that maps the multi-index j to an element of
the column vector. Thus, equation (3) can be
rewritten for a subgrid s as fs = φT

s (xk)θs for a
single record of the data set and as fs = JT

s θs for



the whole data set. The matrix Js is the Jacobian
of fs w.r.t. to θs with column k being φs(xk).

Garcke and Griebel (2002) investigated sparse
grids in data mining applications, where the out-
put variable ỹ is a discrete valued class label. For
regularization they choose a Tikhonov regulariza-
tion term defined by Φ(fs) := θT

s Csθs with the
regularization matrix Cs defined elementwise by

(Cs)v,w :=
∫

[0,1]d
∇φT

s,v(x)∇φs,w(x)dx. (11)

For regression with ỹ ∈ R an alternative regular-
ization term is proposed that enforces smoothness
of the solution. Since the basis functions are d-
linear, the smoothness is evaluated by summing
up squared 2nd-order finite differences along all
dimensions. The finite differences are evaluated
at the basis function centers where the function
values are equal to the corresponding parameter
values. The regularization term is defined by

Φ(fs) :=
d∑

i=1

∑
j∈Λi

(
θs,j−ei

− 2θs,j + θs,j+ei

2−2si

)2

,

(12)
where the lower and upper border of the grid
are taken out from finite difference calculation
by defining Λi := Λ \ {j | ji ∈ {0, 2si}}. ei

denotes the i-th unit vector. Equation (12) can
be rewritten in the form Φ(fs) := θT

s Dsθs with a
regularization matrix Ds.

The sparse grid parameters are estimated by solv-
ing the linear problems

(JsJT
s + λMDs)θs = Jsỹ ∀s, (13)

which can be done in parallel. M is the number
of data points in the estimation data set.

The regularization parameter λ can be chosen in
different ways. Brendel and Marquardt (2003) ap-
ply cross-validation and the L-curve criterion from
Hansen (1998) and state that cross-validation ren-
ders more reliable estimates of λ. Therefore, the
regularization parameter is estimated by 10-fold
cross-validation throughout this work. It should
be noted here that the sparse grid solution is reg-
ularized in two ways. First, the chosen discretiza-
tion level is an inherent regularization (Kirsch,
1996). Additionally, the Tikhonov term regular-
izes the solution, which becomes significant with
increasing discretization level.

3. GRID REFINEMENT ALGORITHM

The preceding section presented the identification
of a sparse grid for a given set of input variables
x and a specified discretization level l. However,
a suitable level is usually not known a-priori.

Brendel and Marquardt (2003) proposed a grid re-
finement algorithm to avoid an exhaustive search
through all possibilities. This algorithm is ex-
tended for the purpose of input variable selection
in the present work. Furthermore, the criterion for
selecting the refinement step is modified.

For automatic input variable selection a dis-
cretization level of -1 is formally introduced. All
input variables that are discretized on level -1
are simply ignored when calculating the sparse
grid solution. For example f

(c)
(4,−1,0)(x1,x2,x3) =

f
(c)
(4,0)(x1,x3). If the level is -1 in all dimensions,

all input variables are ignored. In this case, the
function f is defined as the mean value of ỹ.

The optimal regularization parameter is estimated
by cross-validation. The whole data set is split up
in Ncv parts. Ncv – 1 parts are used for estimating
the parameters and the remaining part for vali-
dation of the solution. The superscript r denotes
the r-th part, while the superscript [r] denotes all
data sets except the r-th part. Accordingly, the
parameter vector θ

[r]
s is the solution of equation

(13) on data set (x[r], ỹ[r]).

The cross-validation error

ecv(l, λ) :=
1
M

Ncv∑
r=1

∥∥∥∥∥ỹr −
∑
s∈Il

wsfs(xr, θ[r]
s )

∥∥∥∥∥
2

2
(14)

is a function of the regularization parameter and
its minimum yields the optimal regularization
parameter

λ̂(l) := arg min
λ

ecv(l, λ). (15)

The grid refinement algorithm starts with an
initial grid of level l = {−1, . . . ,−1}. Thereafter
the grid is successively refined by the algorithm:

(1) Calculate the cross-validation error
ecv(l, λ̂(l)) for the current grid l.

(2) Create a set of extended grids of levels li =
l+ei with i = 1 . . . d by sequentially bisecting
the current grid in one dimension. ei is the
i-th unit vector.

(3) For each extended grid calculate ecv(li, λ̂(li)).
(4) Find the dimension î that leads to the lowest

cross-validation error.
(5) If ecv(l̂i, λ̂(l̂i)) > ecv(l, λ̂(l)) or some other

termination criterion is met, then the grid
refinement is finished. Otherwise select the
extended grid corresponding to î as current
grid (l̂i → l) and proceed with step (2).

During the refinement process equation (13) has
to be solved several times for different values of λ.
For numerical efficiency the matrices Ds and Js

are stored and reused.



4. EXAMPLE

The sparse grid refinement algorithm is exempli-
fied in a case study on the identification of a
NARX model. For this model class the set of input
variables is usually unknown a-priori. Feil et al.
(2004) demonstrated a clustering-based model or-
der selection approach with data sets generated by
a simulation model of a continuous polymerization
reactor, which is also used for comparison in this
work.

4.1 First-principles reactor model

The model describes the free-radical polymeriza-
tion of methyl methacrylate with azobisisobuty-
ronitrile as an initiator and toluene as a solvent.
The reaction takes place in a jacketed continuous
stirred tank reactor. Under some simplifying as-
sumptions, the first-principle model is given by:

ẋ1 = 10(6 − x1) − 2.4568x1
√

x2

ẋ2 = 80u − 10.1022x2

ẋ3 = 0.024121x1
√

x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√

x2 − 10x4

y =
x4

x3
.

The model input u is the dimensionless volumetric
flow rate of the initiator and the model output y is
the number-average molecular weight. For further
information on this model see (Doyle et al., 1995).

A uniformly distributed random input u over the
range 0.007 – 0.0015 with a sampling time of 0.2 s
is applied to the model. The output y is scaled to
zero mean and unit variance. White noise with a
variance of 0.01 is added to y in order to make
the subsequent NARX identification task more
realistic. Delayed samples of u and y are assembled
to two data sets: one for parameter estimation and
one for validation, including 2000 and 1000 data
points respectively.

4.2 Sparse grid NARX reactor models

A NARX one-step-ahead prediction model is iden-
tified from the simulated measurement data of
the first-principles reactor model. The incremen-
tal model building approach is compared to a
classical approach in terms of the mean square
one-step-ahead prediction error e on the valida-
tion data set, the computation time T and the
number of model parameters N (c). It is empha-
sized that the prediction error e is not the same
as the cross-validation error ecv that is used to
estimate the optimal regularization parameter.
The computation time T is measured in seconds

for the current implementation of the algorithm
in Matlab (The MathWorks, Inc., 2004), which
is executed on a personal computer (CPU: AMD
Athlon XP 2600+, RAM: 1.5 GB). The reported
levels correspond to the NARX input variables
with the ordering defined in equation (1). For
example, the level (2, 1, 0) with model orders
p = 2 and q = 1 encode the NARX model
yk = f(uk−1, uk−2, yk−1), where the sparse grid
was discretized on level 2 for uk−1, on level 1 for
uk−2 and on level 0 for yk−1.

In the classical model-building approach a set
of NARX model candidates is identified with
different model orders and a fixed discretization
level. The model with the lowest prediction error
on the validation data set is chosen as final model.
The input variables to the NARX model have
to be defined a-priori, thus all possibilities for
selecting delayed process inputs uk−p and delayed
process outputs yk−q in equation (1) are taken
into account. Here p and q are limited to the
interval [0, 3]. In general, different discretization
levels can be used for each input variable of
the NARX model. In this approach the level is
fixed to 2, in order to narrow the set of possible
model candidates. It is assumed that this level will
ensure a sufficient flexibility of the sparse grid to
approximate the data set.

The identification results were obtained after
71.9 s of CPU time and are presented in Table 2.
The rigid discretization results in a high number
of parameters. However, even for high N (c) the
prediction error is close to the variance of 0.01
of the noise that was added to yk. This indicates
that the Tikhonov regularization term efficiently
prevents the models from overfitting.

The model with p = 2 and q = 1 and the level
(2, 2, 2) is chosen as final model, because it has a
low prediction error e as well as a low number of
parameters N (c).

Table 2. Classical approach.

Input Output delays q

delays p 0 1 2 3

e 1.0044 0.7701 0.7560 0.7567
0 T [s] 0.1 0.4 0.4 0.9

N(c) 1 5 41 158

e 0.2576 0.0284 0.0117 0.0107

1 T [s] 0.1 0.4 1.1 2.5

N(c) 5 41 158 488

e 0.0249 0.0107 0.0107 0.0108
2 T [s] 0.4 1.1 2.4 8.0

N(c) 41 158 488 1392

e 0.0112 0.0108 0.0109 0.0110
3 T [s] 1.0 2.5 8.4 42.3

N(c) 158 488 1392 3760

The incremental model-building approach uses
the grid refinement algorithm presented in Section
3. The initial level is set to -1 for automatic selec-
tion of suitable model inputs. Model complexity



is adjusted by the grid refinement algorithm to
reflect the characteristics of the given data set.
The maximal model order is limited to p = q = 3
to conveniently present the results.

Table 3 shows the intermediate best grid refine-
ment levels. The solution with level (2, 1, -1, 0,
0, -1) is obtained after only 10.4 s of CPU time
(corresponding to p = q = 2) in refinement step 8
with a prediction error of 0.0107. The refinement
level (1, 0, -1, 0, -1, -1) in refinement step 5,
which corresponds to p = 2 and q = 1, is almost
optimal in terms of the cross-validation error ecv,
while only requiring 12 parameters. The user may
choose this model if simulation time is essential in
the envisioned application.

Table 3. Incremental approach.

Step Level l ecv N(c)

1 (-1, -1, -1, -1, -1, -1) 44.962 1
2 ( 0, -1, -1, -1, -1, -1) 0.2700 2
3 ( 0, 0, -1, -1, -1, -1) 0.0313 4
4 ( 0, 0, -1, 0, -1, -1) 0.0131 8
5 ( 1, 0, -1, 0, -1, -1) 0.0102 12
6 ( 2, 0, -1, 0, -1, -1) 0.0101 20
7 ( 2, 0, -1, 0, 0, -1) 0.0099 40
8 ( 2, 1, -1, 0, 0, -1) 0.0099 80

The approach of Feil et al. (2004) indicates, prior
to selecting any model structure, a model order
of p = 2 and q = 1. However, this model order
has still to be validated by identifying a limited
number of model candidates. The results of the
classical and the incremental approach show that
the indicated model order is indeed suitable for
this case study.

5. CONCLUSIONS

Stepwise refinement of a sparse grid was used to
automatically select model input variables and
to adjust model complexity in an efficient way
without requiring any user interaction. The algo-
rithm was exemplified in a case study on NARX
model identification. The determined model order
is validated by an exhaustive search and compares
well to the model order reported by Feil et al.
(2004).

Future research will focus on:

• higher-order basis functions to obtain contin-
uously differentiable functions,

• locally adaptive sparse grids to further re-
duce the number of required parameters,

• an alternative refinement criterion that also
takes the number of parameters into account,

• an input design strategy that is integrated in
the stepwise model refinement procedure to
optimize experimental data acquisition,

• more complex case studies on multi-input
multi-output (MIMO) processes.
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