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Abstract: In this note, we address the reachability of switched linear systems
with switching/input constraints. We prove that, under a mild assumption of
the feasible switching signals, the reachability set is the reachable subspace of
the unconstrained switched system. We also investigate the local reachability for
switched systems with input constraints and present a complete criterion for a
general class of systems. Copyright c©2005 IFAC
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1. INTRODUCTION

A switched linear system is a hybrid dynamic
system which switches at different time instants
among a finite set of linear time-invariant sub-
systems. Switched linear systems have attracted
increasingly more attention in the past few years.
The literature grew exponentially and quite a few
new ideas and powerful tools have been developed
from various disciplines. The reader is referred to
(Decarlo et al. 2000, Sun & Ge 2005) for surveys
of recent development.

A fundamental pre-requisite for the design of
feedback control systems is full knowledge about
the structural properties of the switched sys-
tems under consideration. These properties are
closely related to the concepts of controllability,
observability and stability which are of fundamen-
tal importance in the literature of control. For
controllability and reachability of switched lin-
ear systems, much work has been done (Stanford
& Conner 1980, Ezzine & Haddad 1989, Sun &
Zheng 2001, Sun, Ge, & Lee 2002, Yang 2002, Xie
& Wang 2003). In particular, complete geometric
and equivalent algebraic criteria have been pre-

sented in (Sun, Ge, & Lee 2002, Gurvits 2002).
In these works, however, the switching signal and
the control input are assumed to be designed in
an arbitrary way without constraints. That is,
we do not impose any restriction on the possible
way of switching and control. In many practical
situations, this is not the case. For example, in
workshops, the order of the activated subsystems
is pre-assigned rather than arbitrarily assigned.
In this case, for instance, we must first active
subsystem 1, then switch to subsystem 2, then
subsystem 3, etc. This fixed sequence imposes a
restriction on the switching signal. Another ex-
ample is the control input which is subject to
certain saturation that imposes a restriction on
the control input.

In this note, we discuss several kinds of restric-
tions and their possible influences in the reacha-
bility of the systems. As both the switching signal
and the system input are control variables, the
constraints may impose on the switching law, or
the control input, or both. Here, we focus on the
following cases: the switching signal is constrained
by a direct graph, and/or the control input is sub-
ject to saturations. Complete reachability criteria



are presented for the constrained switched linear
systems under mild assumptions.

2. PRELIMINARIES

Let M = {1, · · · ,m} be an index set.

Consider the switched linear control system given
by

∑

(Ai, Bi)M : ẋ(t) = Aσx(t) + Bσu(t), (1)

where x ∈ Rn is the state, u ∈ Rp is the piecewise
continuous input, σ ∈ M is the switching signal,
and Ai and Bi are real constant matrices with
compatible dimensions.

In the sequel, we briefly review some existing
results which will be used in the later derivations.

Let φ(t; t0, x0, u, σ) denote the state trajectory
at time t of switched system (1) starting from
x(t0) = x0 with input u and switching signal σ.

Let S be the allowed set of switching signals, and
U be the allowed set of inputs. The reachable set of
system (1) under S and U is the set of states which
are attainable from the origin in a finite time by
appropriate choices of the inputs and switching
signals in the allowed sets.

Definition 2.1. The reachable set of system (1)
at time T > 0 starting from x under S and U ,
denoted R(x, T,U ,S)M , is the set

{φ(T ; 0, x, u, σ) : u ∈ U , σ ∈ S}.

System (1) is said to be (completely) T -reachable
under S and U , if

R(x, T,U ,S)M = Rn, ∀ T > 0, x ∈ Rn.

This notion of reachability implies the conven-
tional controllability, reachability and small-time
controllability/reachability.

Another concept is the local reachability. Local
reachability means the ability to steer the system
from an initial point to its nearby (local) states by
means of the feasible switching signals and inputs.

Definition 2.2. Switched linear system (1) is lo-
cally T -reachable at x0 under S and U , if x0 is an
interior point of set R(x0, T,U ,S)M .

Recall that the reachable set of matrix pair (A,B)
is the minimal A-invariant subspace that contains
the image space of B. This criterion has been ex-
tended to switched system (1) without constraints
where the allowed set of switching signals is

S0
def
= {σ : [0,∞) →M piecewise constant},

and the allowed set of inputs is

U0
def
= {u : [0,∞) → Rp piecewise continuous}.

In fact, let V(Ai, Bi)M be the minimum subspace
of Rn which is invariant under all Ai, i ∈M and
contains all the image spaces of Bi, i ∈ M . This
subspace can be obtained recursively by

V1 =
∑

i∈M

=Bi,

Vj+1 = Vj +
∑

i∈M

n−1
∑

k=1

Ak
i Vj , j = 1, 2, · · · (2)

and we have

V(Ai, Bi)M = Vn

=

j1,···,jn−1=0,···,n−1
∑

i0,···,in−1∈M

A
jn−1

in−1
· · ·Aj1

i1
=Bi0 , (3)

where =B denotes the image space of B.

Lemma 2.1. (Sun, Ge, & Lee 2002) For the un-
constrained switched linear system (1), the reach-
able set is precisely the subspace V(Ai, Bi)M .

We thus refer to V(Ai, Bi)M as the reachable
subspace of system (1).

In (Sun, Ge, & Lee 2002), a constructive proce-
dure is provided to compute appropriate switching
signal and control input that steer the switched
system from an initial state x0 at t = 0 to any
target state xf at t = T in the reachable subspace.
Here we briefly recall part of the procedure which
will be used later.

First, let l =
∑n−1

k=0 m(mn)k − 1, and define the
cyclic index sequence

i0 = 1, i1 = 2, · · · , im−1 = m,

im = 1, im+1 = 2, · · · , i2m−1 = m,

· · ·

il−m+1 = 1, il−m+1 = 2, il = m, (4)

and fix a time sequence

0 = t0 < t1 < · · · < tl < tl+1 = T.

Then, we have

eAil
hl · · · eA2h1 < A1|B1 > + · · ·

+eAil
hl < Ail−1

|Bil−1
> + < Ail |Bil >

= V(Ai, Bi)M , (5)

where < A|B >= =[B,AB, · · · , An−1B] denotes
the reachable subspace of pair (A,B), and hj =
tj+1 − tj for j = 0, · · · , l.



Second, solve the linear equation

xf − eAlhl · · · eA1h0x0 =

eAlhl · · · eA2h1

t1
∫

t0

eA1(t1−τ)B1B
T
1 e

AT
1 (t1−t)dτa1

+ · · ·+
tl+1
∫

tl

eAil
(tl+1−τ)BilB

T
il
e
AT
il

(tl+1−t)
dτal+1 (6)

for a1, · · · , al+1 ∈ Rn. Let

W k
t =

t
∫

0

eAk(t−τ)BkB
T
k e

AT
k (t−τ)dτ,

and

a = [aT1 , · · · , a
T
l+1]T .

(6) is equivalent to

xf − eAlhl · · · eA1h0x0 = [eAil
hl · · · eA2h1W 1

h0
,

· · · , eAil
hlW

il−1

hl−1
,W il

hl
]a. (7)

According to (Sun, Ge, & Lee 2002), this equation
has at least has one solution.

Third, suppose a0 = [aT0,1, · · · , a
T
0,l+1]T is a solu-

tion of equation (7). Define the control input as

u(t) =BT
ik
e
AT
ik

(tk+1−t)
a0,k+1,

tk ≤ t < tk+1, k = 0, 1, · · · , l (8)

and the switching signal as

σ(t) = ik, for t ∈ [tk, tk+1), k = 0, 1, · · · , l. (9)

Then, we have xf = x(T ; 0, x0, u, σ).

For the development of the main results, we need
the following lemma which was presented in (Sun,
Ge, & Lee 2002).

Lemma 2.2. For any given matrices Ak ∈ Rn×n

and Bk ∈ Rn×pk , k = 1, 2, inequality

rank[A1e
A2tB1, B2] ≥ rank[A1B1, B2] (10)

holds for almost all t ∈ R.

3. REACHABILITY UNDER RESTRICTED
SWITCHING SIGNALS

In reality, the switching transition is usually gov-
erned by a logic-based switching device. The
switching logic can be generated either by an

automata or by a directed graph. Here, we assume
that the switching transition sequence (i.e., the
sequence of switching index) is governed by a
directed graph.

Suppose G is a directed graph composed of the set
M of nodes, and a set of directed arcs N , where
N ⊆ M × M . Thus, G = (M,N) denotes the
allowed switchings from one subsystem to others.
That is, for any k ∈M , the (possibly empty) set

Nk = {i ∈M : (k, i) ∈ N}

defines the allowed subsystem indices following
the kth subsystem. In other words, a switching
index sequence (k, i) with i 6∈ Nk is prohibited.
Accordingly, if N is a strict subset of M×M , then
the directed graph impose a nontrivial restriction
on the switching index sequence and hence on
the switching signal. Let SG denote the set of
switching signals obeying the restriction, that is,
including each switching signal where any two
consecutive switching indices belongs to N .

Note that in the above scheme, we do not impose
any restriction on the switching time sequence.
That is, the duration between any consecutive
switching instants are arbitrarily chosen by the
designer.

Given any sequence i1, · · · , il, we say the sequence
generates the set ÃL if ij ∈ ÃL for any j = 1, · · · , l
and each element in ÃL appears at least once in the
sequence.

A directed graph G = (M,N) is said to permit
a loop sequence {k1, · · · , ks, k1} if (kj , kj+1) ∈ N

for j = 1, · · · , s− 1 and (ks, k1) ∈ N .

Note that the loop {k1, · · · , ks, k1} means that the
cyclic index sequence

k1, · · · , ks, k1, · · · , ks, · · ·

is an allowed sequence under G.

The following theorem presents a sufficient condi-
tion for complete reachability of the constrained
switched linear systems.

Theorem 3.1. Suppose that directed graph G per-
mits a loop sequence which generates the set ÃL. If
switched system

∑

(Ai, Bi)ÃL is completely reach-
able, then we have

R(x, T,U0,SG)M = Rn, ∀ T > 0, x ∈ Rn(11)

which means that switched system
∑

(Ai, Bi)M is
completely reachable under graph G.

Proof. We consider a switching signal with the
cyclic switching index sequence

k1, · · · , ks, · · · , k1, · · · , ks. (12)



The switching time sequence 0, t1, · · · , tl is to be
designed later.

Note that this switching signal is in the allowed
switching set SG.

Let tf > tl. Simple analysis exhibits that the
reachable set at tf via the switching signal is

R(tf ) = eAkshl · · · eAk2
h1 < Ak1

|Bk1
> + · · ·

+eAkshl < Aks−1
|Bks−1

> + < Aks , Bks >,

where hj = tj+1 − tj , j = 0, 1, · · · , l − 1 and
hl = tf − tl.

Arrange a permutation of {i1, · · · , ij} of ÃL such
that i1, · · · , ij is a subsequence of k1, · · · , ks. That
is, there is a natural number sequence 1 ≤ l1 <

l2 < · · · < lj ≤ s, such that

iν = klν , ν = 1, · · · , j.

It is clear that the cyclic index sequence

i1, · · · , ij , · · · , i1, · · · , ij

is a subsequence of the index sequence (12).
Denote the corresponding duration index subse-
quence of h0, · · · , hl to be τ1, · · · , τµ. Applying
Lemma 2.2 successfully, we have

dim(eAkshl · · · eAk2
h1 < Ak1

|Bk1
> + · · ·

+eAkshl < Aks−1
|Bks−1

> + < Aks , Bks >)

≥ dim(eAij
τµ · · · eAi2

τ2 < Ai1 |Bi2 > + · · ·

+eAij
τµ < Aij−1

|Bij−1
> + < Aij |Bij >)

for almost all h0, · · · , hl. By (5), we have

e
Aij

τµ · · · eAi2
τ2 < Ai1 |Bi1 > + · · ·

+eAij
τµ < Aij−1

|Bij−1
> + < Aij |Bij >

= V(Ai, Bi)ÃL = Rn.

This means that complete reachability can be
achieved via a single switching signal with index
sequence (12). This fact clearly leads to the con-
clusion.

Corollary 3.1. Suppose that directed graph G

permits a loop sequence that generates the set M .
Then, for any T > 0 and x ∈ Rn, we have

R(x, T,U0,SG)M = V(Ai, Bi)M .

Proof. It is clear that the set R(x, T,U0,SG)M is
a subset of V(Ai, Bi)M . On the other hand, from
the proof of Theorem 3.1, we have

dimRG(∗) ≥ dimV(Ai, Bi)M ,
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Fig. 1. The schematic of the directed graph with
m = 5

where RG(∗) ⊆ RG(Ai, Bi)M is the reachable
set of switched system along an allowed switching
signal under graph G. As

RG(∗) ⊆ R(x, T,U0,SG)M ,

This means that the two sets R(x, T,U0,SG)M
and V(Ai, Bi)M coincide with each other.

This corollary provides an important information
for the reachability of the switched linear system
under the restricted switching logic. Indeed, ac-
cording to the corollary, assume that the directed
graph permits a loop sequence that generates
the index set M , then the switched system pos-
sesses the complete reachability under the graph.
The assumption is very mild and could be met
in many practical situations. For example, in a
workshop, there need m working procedures to
produce a product. Suppose procedure sequence
is cyclic among 1, · · · ,m − 1, but between any
two procedures the mth procedure applies. This
corresponds to the directed graph (with m = 5)
depicted in Figure 1. It can be seen that a loop
sequence is

1,m, 2,m, · · · ,m− 1,m, 1

which generates the set M = {1, · · · ,m}. Accord-
ing to Corollary 3.1, the reachable set under the
graph is exactly the full reachable subspace of the
unconstrained switched system.

A special but very interesting case is that the sub-
systems are divided into different groups and tran-
sitions within a group are forbidden. That means
that only transitions among different groups are
allowed. A typical example is a production work-
shop with a set of procedures each of which could
be implemented in several alternative ways. In this
case, the switching is severely restricted as only
transition between the groups (the procedures) is
allowed. However, a loop sequence that generates
the total index set always exists in this case, hence
the reachable set coincides with the reachable
subspace of the unconstrained system.



Corollary 3.1 could be further extended to more
general cases. For example, for a switched system
with a restriction on switching signals which is
not necessarily described by a directed graph,
we can prove that, the reachable set under the
restriction coincides with the reachable subspace
of the unconstrained system, provided that, there
exists an allowed switching index sequence where
each individual index appears sufficiently many
times.

4. REACHABILITY UNDER RESTRICTED
INPUTS

In this section, we consider the local reachability
at the origin of the switched linear system with
the input constraint

ẋ(t) = Aσx(t) + Bσu(t), u(t) ∈ U, (13)

where U is a set in Rn containing the origin as an
interior.

Note that the system model reflects many prac-
tical situations where the control input is sub-
ject to hard constraints such as the saturation or
force/enegy limitation. A typical example is that
U is a bounded closed convex set. However, here
we do not require that the set is convex or closed.
The only intrinsic assumption is that the origin is
an interior point of the set.

By means of the reachability criterion presented
in Lemma 2.1, we are able to prove the following
criterion.

Theorem 4.1. The constrained switched linear
system (13) is locally reachable at the origin if
and only if

V(Ai, Bi)M = Rn. (14)

Proof. The necessity (only if) can be easily
proven by contradiction. Indeed, the violation of
(14) means that the unconstrained switched sys-
tem is not locally reachable at the origin. This
implies that the constrained switched system is
not locally reachable at the origin.

To prove the sufficiency, we need to recall some
formulas in Section 2.

Suppose the unconstrained switched system is
completely reachable. Then, from any initial state
the unconstrained system can be steered to the
target state by means of the piecewise continuous
control strategy (8), where the constant vectors
satisfy (7), that is, given any T > 0, x0 and xf ,
there exist a cyclic index sequence

1, · · · ,m, · · · , 1, · · · ,m

and a duration sequence h0, · · · , hl, such that

xf − eAlhl · · · eA1h0x0 =

[eAil
hl · · · eA2h1W 1

h0
, · · · , eAil

hlW
il−1

hl−1
,W il

hl
]a,

where a = [aT1 , · · · , a
T
l+1]T and

∑l
k=1 hk < T .

Let x0 = 0 and define matrix

L = [eAil
hl · · · eAi1

h1W 1
h0
, · · · , eAil

hlW
il−1

hl−1
,W il

hl
].

The assumption (14) indicates that the linear
operate

Θ : R(l+1)n → Rn, Θ(a)
def
= La.

is onto. This, together with the linearity of the
operator, implies that, for any set W in R(l+1)n

containing the origin as an interior, the set

Θ(W ) = {Θ(a) : a ∈W}

also contains the origin as an interior in Rn. On
the other hand, from (8), it can be seen that the
set of allowed constant vectors

{a = [aT1 , · · · , a
T
l+1]T : u(t) ∈ U,∀ t ∈ [0,

l
∑

k=1

hk]}

contains the origin as an interior point in R(l+1)n.

The above analysis exhibits that, for the switched
linear system with the input constraint, the reach-
able set R(0,

∑l
k=0 hk,U ,S0)M at the origin con-

tains the origin as an interior point.

Finally, note that, for any T1 ≤ T2, we have

R(0, T1,U ,S0)M ⊆ R(0, T2,U ,S0)M . (15)

Indeed, suppose x ∈ R(0, T1,U ,S0)M , then, there
is a switching signal σ(·) and input u(·) defined
on [0, T1], with u ∈ U , such that

x = φ(0, T1, u, σ).

Now, define another switching signal σ′ and input
u′ on [0, T2] by

σ′(t) =

{

σ(0) t ∈ [0, T2 − T1),
σ(t + T1 − T2) otherwise,

and

u′(t) =

{

0 t ∈ [0, T2 − T1),
u(t + T1 − T2) otherwise.

It can be seen that



φ(0, T2, u
′, σ′) = φ(0, T1, u, σ) = x.

As a result, (15) holds.

The above reasonings shows that, for any T > 0,
the set R(0, T,U ,S0)M at the origin contains the
origin as an interior point.

The theorem asserts that the constrained switched
system is locally reachable at the origin if the un-
constrained switched system is completely reach-
able. Note that, in the proof of the theorem, the
design of input and the design of the switching
signal is decoupled in the following sense. In the
proof, what we need is an index sequence i0, · · · , il,
and a duration sequence h0, · · · , hl, such that

eAil
hl · · · eAi1

h1 < Ai0 |Bi0 > + · · ·

+eAil
hl < Ail−1

|Bil−1
> + < Ail |Bil >

= V(Ai, Bi)M .

Any sequence i0, · · · , il with this property suffices
the purpose of proving the theorem. This obser-
vation, together with the proof of Theorem 3.1,
indicates that the more general conclusion can be
made.

Theorem 4.2. Suppose that directed graph G per-
mits a loop sequence which generates the set M ,
and U is a set in Rn containing the origin as an
interior. Then, the constrained switched system

ẋ(t) = Aσx(t) + Bσu(t), u(t) ∈ U, σ ∈ SG

is locally reachable at the origin, if and only if
the unconstrained switched system is completely
reachable.

5. CONCLUDING REMARKS

In this note, several reachability criteria have been
presented for switched linear systems under cer-
tain switching/input constraints. We proved that,
for a wide class of switching logics, the reachable
sets under the switching constraints are in fact the
reachable subspaces of the unconstrained switched
systems. This means that, the reachability keeps
unaffected even if the switching rules are severely
restricted in a certain sense. In addition, if the
control input is subject to some constraint, the
switched system is still locally reachable provided
that the unconstrained switched system is com-
pletely reachable.

Note that there are other kinds of switching/input
constraints which we did not discuss in the note.
For example, if the transition of the switching
depends the on-line state variable, the reacha-
bility analysis may be very involved (Bemporad,
Ferrari-Trecate, & Morari 2000). As for input

constraints, a typical example is the force-free
switched system where no input imposes on the
system at all. For such systems, the only design
variable is the switching signal. As the origin
is always an equilibrium of the system under
any switching signal, the origin itself forms an
invariant set of the system. As an implication,
the force-free system is not locally reachable at
the origin. However, by means of the switching
signal, it is still possible that the system is locally
reachable at other states away from the origin (Xu
& Antsaklis 1999, Cheng & Chen 2003). This is a
very interesting open subject for further investi-
gation.
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