
FLATNESS BASED OPTIMAL NONCAUSAL
OUTPUT-TRANSITIONS FOR CONSTRAINED SISO

NONLINEAR SYSTEMS

GL Wang ∗,1 F Allgöwer ∗∗
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Abstract: The issue of optimal output transition is studied for nonlinear SISO systems
with constraints. Trajectory planning is mainly concerned to facilitate exact feedforward
linearization in the two-degree-of-freedom design framework. Our approach makes use
of the differential parametrization offered by the flatness property. Our contribution to
this idea is the generation of a noncausal trajectory for the flat output. This approach is
shown to be highly effective in creating performance improvement. It is notable that our
methodology guarantees the planned trajectories feasible for all nonlocal transitions. This
allows the application of stable inversion in planning the optimal output transitions. The
proposed method is illustrated on a benchmark system.Copyright c©2005 IFAC
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1. INTRODUCTION

In this work, we are interested in the issue of the
output transition between two (nonlocal) operating
points for constrained SISO nonlinear systems. Our
study will focus on generating a feedforward input and
reference state trajectory while meeting the optimal
transition objects under the constraint. This is essential
to exact feedforward linearization, which has aroused
considerable interest for nonlinear control systems
(Hagenmeyer and Delaleau, 2003).

Flatness is a notation originally associated with two
kinds of system equivalences: endogenous feedback
equivalence (Fliesset al., 1995), and Lie-Bäcklund
equivalence (Fliesset al., 1999). More precisely, a
flat system is equivalent to a system without dynam-
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ics, fully described by the so-called flat output, that
has the same dimensionality as the control. For a flat
system, there is a one-to-one correspondence between
the input-state and a flat output. Of special interest is
that the input and state can be expressed as functions
of a flat output and its derivatives. A flat output ex-
ists in a low-dimensional manifold but still contains
all the original information on the system trajecto-
ries in a high-dimensional space, thus it leads to the
reduction of the system complexity. In particular, a
trajectory planning problem is significantly simpli-
fied if the trajectories to be followed are designed
in flat output coordinates. This property has trigged
consierable research activity focused on exploiting the
flatness feature in trajectory generation (Rothfusset
al., 1996; Nieuwstadt and Murray, 1998; Oldenburg
and Marquardt, 2002). Our contribution to this idea
is the generation of a noncausal trajectory in the flat



output space. This turns out to be highly effective for
the performance improvement.

Some methods concerning noncausal output-transitions
have been reported in (Piazzi and Visioli, 2001; Perez
and Devasia, 2003) for linear systems, where the no-
tation of stable inversion plays an important role. In
(Piazzi and Visioli, 2001), the transition time is used to
parameterize the real output specified as a polynomial.
The transition object with the input and output con-
straints is optimized with the transition time. In (Perez
and Devasia, 2003), stable inversion is employed to
establish the parametrization of the planned trajectory
and the transition object in terms of the initial and
final values of the internal state. Compared with the
standard optimal state-transition techniques, the per-
formance improvement can be made by optimizing the
transition object with these two parameters. However,
it seems to be difficult to extend the above results to
nonlinear cases. The main difficulty lies on the fact
that the trajectories planned in the real output space
are often infeasible for nonlocal transition tasks of
nonlinear systems (Perezet al., 2002). The key to our
approach is to parameterize the planned trajectory in
the flat output space instead of the real output space.
This guarantees that the planned trajectory is achiev-
able for all possible transitions. Therefore, our ap-
proach augments the applicability of stable inversion
in planning the optimal output transitions.

2. OUTLINE OF OUR APPROACH

Consider the nonlinear SISO system

ẋ(t) = f [x(t), u(t)] (1a)

y(t) = h[x(t)] (1b)

with time t ∈ R, statex ∈ Rn, inputu ∈ R and real
outputy ∈ R. The vector fieldf : Rn × R → Rn

and the functionh : Rn → R are real-analytic.
We have the following assumptions for the system’s
output, flatness and equilibria.

A1 The relative degreer of the system (1a) with
respect to the outputy in (1b) is well-defined and
less thenn at operating points of interest below.

A2 There exists a flat outputz ∈ R such that

z = F (x) (2a)

x = φ(z, ż, · · · , z(n−1)) (2b)

u = ψ(z, ż, · · · , z(n)) (2c)

whereF , φ andψ are real-analytic inRn, Rn

and Rn+1, except a finite number of isolated
singularities, respectively.

A3 The controllable equilibrium manifoldE defined
by E = {(xe, ue)|f(xe, ue) = 0, the system (1)
is controllable atxe} is nonempty.

Obviously, the output set-points of practical interest
may be in the setYe = {ye ∈ R| there exists at least
a pair(xe, ue) ∈ E such thatye = h(xe), ye, xe and

ue are not singularities forF , φ andψ}. Here we are
interested in the issue of the output transition between
two different (equilibrium) operating points. In partic-
ular, it is desired to find a transition trajectory of (1),
i.e. the pair(x, u), that the outputy is transferred from
the present levely ∈ Ye at the start timets to the new
level y ∈ Ye at the terminal timetf := ts + ∆ while
minimizing the transition performance index

J(x, u) =
∫ tf

ts

L[x(t), u(t)]dt, (3)

subject to
P [x(t), u(t)] ≤ 0, (4)

whereL is a loss cost function,∆ ≥ 0 is the tran-
sition time,P is an evaluation operator reflecting the
physical constraints on the input and state trajectory.

Equations in (2) build up the one-to-one correspon-
dence between the pair(x, u) and the flat outputz.
This is the basis for our methodology. Let(x, u) and
(x, u) be the equilibria inE corresponding toy andy
in Ye, respectively. We can determine the correspond-
ing equilibria of the flat outputz: z andz from (2).
For every trajectory in the state space for transferring
x fromx tox, there exists a unique trajectory in the flat
output space, along whichz is transferred fromz to z.
Moreover,x andu can be naturally recovered from
z without involving the internal dynamics as needed
when recovered fromy using stable inversion. With
this motivation, our approach is to parameterize all
admissible transition trajectories in terms ofz and its
derivatives, from whichu and x are determined to
meet the optimal transition object.

If the transition effort is limited to the period[ts, tf ],
then the real output transition is equivalent to the flat
output transition. That is,z(ts) = z andz(tf ) = z.
Then the remainder freedom is only the generation of
z(·) over [ts, tf ]. This leads to the causal feedforward
input u(·) and the reference state trajectoryx(·) over
[ts, tf ]. Planning a trajectory in this way is somewhat
conservative and may not be optimal for the output
transitions of interest here. Actually, it is not always
necessary to constrainz(t) at the initial and final
time if the transition effort is distributed over the time
domainR rather than[ts, tf ]. This allows us to seek
the solution of the above optimal output transition
problem in a much wider range. As a consequence,
we are in a position to have an additional freedom of
choosing the values ofz(t) and derivatives thereof at
ts andtf in generating the flat output trajectory. This
will result in the noncausal feedforward inputs and
reference state trajectories. Our approach follow this
idea and is outlined as follows.

The idea used here for planningz(t) consists of three
primary components: the pre-transition overIpre =
(−∞, ts], the transition overItran = [ts, tf ] and
the post-transition overIpost = [tf ,∞). The pre-
transition trajectory is generated based on the con-
straint: fort ∈ Ipre,



lim
t→−∞

z(t) = z

h[φ(z, ż, · · · , z(n−1))] = y

}
(5)

That is, along the generated trajectory,z(t) is trans-
ferred from the equilibrium pointz to z(ts) without
changing the output:y(t) = y over t ∈ Ipre. (5) can
be treated as a final value problem thus its bounded
solution is acausal. It is clear that freely choosing
the values ofz(t) and derivatives thereof atts offers
a freedom to control the shape of the pre-transition
trajectory.

Likewise, the post-transition is to generate the tra-
jectory, along whichz(t) is driven fromz(tf ) to the
new equilibrium pointz without changing the output:
y(t) = y over t ∈ Ipost. This can be done based on
the constraint: fort ∈ Ipost,

lim
t→∞

z(t) = z

h[φ(z, ż, · · · , z(n−1))] = y

}
(6)

which can be treated as an initial value problem thus
its bounded solution is causal. Clearly, freely choosing
the values ofz(t) and derivatives thereof attf pro-
vides a freedom to shape the post-transition trajectory.

Over Itran, we need to generate the trajectory, along
whichz is transferred fromz(ts) to z(tf ). Clearly, the
values ofz(t) and derivatives thereof atts andtf and
∆ = tf − ts are basic parameters for the transition
trajectory. In principle, we can model the transition
geometric shape using various spline representations.
In our study, a B-spline model is used to represent
the transition trajectoryz(t) over Itran due to its
practical flexibility. The model parameters, which are
independent on the basic parameters aforementioned,
will be collected asΘ. In this way, the values ofz(t)
and derivatives thereof atts andtf , ∆ andΘ together
completely shapez(t) overItran.

3. PARAMETRIZATION OF FLAT TRAJECTORY

Let ze denote the equilibrium point ofz corresponding
to the pair(xe, ue) ∈ E associated withye ∈ Ye.
The problems posed in (5) and (6) motivate our un-
derstanding of the stable transition behavior ofz(t)
aroundze, subject to

h[φ(z, ż, · · · , z(n−1))] = ye. (7)

Indeed, the solution of (7) describes the trajectory,
along whichz(t) is transferred without changing the
real output. From the system inversion point of view,
(7) is just the internal dynamics of (1) in terms of the
flat output, which is driven by the constant real output
ye. Refer to (Hagenmeyer and Zeitz, 2004), the output
y can be parameterized by the flat outputz and its first
(n − r) derivatives. Letη = [z, ż, · · · , z(n−r−1)]T .
Accordingly, (7) can be written in the form of

η̇ = q(η, ye). (8)

with q(ηe, ye) = 0, whereηe = [ze, 0, · · · , 0]T .
Let W s(ηe) andWu(ηe) denote the local stable and

unstable manifolds at the equilibrium pointηe, re-
spectively. That is, any points on the stable manifold
W s(ηe) will eventually converge to the equilibrium
point ηe in forward time, and any point on the un-
stable manifoldWu(ηe) will eventually converge to
the equilibrium pointηe in backward time. Locally
W s(ηe) can be defined by an equationBs(η) = 0
and, similarly,Wu(ηe) can be defined byBu(η) = 0.
Refer to (Chen and Paden, 1996) for the technical
details about the notations of the stable and unstable
manifolds.

At this stage, we express the transition relation from
η(s) to η(t) in the form of

η(t) = η(s) +
∫ t

s

q[η(τ), ye]dτ. (9)

From the above transition relationship, the following
result is followed.

Claim 1. For a trajectoryη(t) generated by (9)

(i) if Wu(ηe) 6= {ηe} and Bu(η(s)) = 0, then
η(t) for t < s is an acausal bounded solution of
the the internal dynamics (8) with the final value
η(s) andlimt→−∞ η(t) = ηe;

(ii) if W s(ηe) 6= {ηe} andBs(η(s)) = 0, thenη(t)
for t > s is a causal bounded solution of the
internal dyanmics (8) with the initial valueη(s)
andlimt→∞ η(t) = ηe.

Now we can discuss the parameterizations of the pre-
and post-transition trajectories ofz(t).

Pre-transition: Following Claim 1 withye = y and
ηe = η := [z, 0, · · · , 0]T , we arrive at

Claim 2. For the pre-transition trajectory generation,
if Wu(η) 6= {η} andBu(η(ts)) = 0, then the goal of
the pre-transition defined in (5) can be fulfilled by

η(t) = η(ts) +
∫ t

ts

q[η(τ), y]dτ, t ∈ Ipre (10)

which leads to an acausal trajectoryz(t) parameter-
ized in terms of the values ofz(t) and its firstn − r
derivatives atts. Otherwise, the pre-transition trajec-
tory degenerates to the trivial case:z(t) = z overIpre.

Post-transition: Again following Claim 1 withye =
y andηe = η := [z, 0, · · · , 0]T , we have

Claim 3. For the post-transition trajectory generation,
if W s(η) 6= {η} andBs(η(tf )) = 0, then the goal of
the post-transition defined in (6) can be fulfilled by

η(t) = η(tf ) +
∫ t

tf

q[η(τ), y]dτ, t ∈ Ipost (11)

which leads to a causal trajectoryz(t) parameterized
in terms of the values ofz(t) and its firstn− r deriva-
tives at tf . Otherwise, the post-transition trajectory
degenerates to the trivial case:z(t) = z overIpost.



Transition: The role of the transition trajectory plan-
ning over Itran is to fill up the gap between the
pre- and post-transition thus piecing them together.
The noticeable discontinuities in the input are often
unacceptable in practical applications. To avoid this
issue, it demands that the planned trajectory forz(t)
should be sufficient smoothing. In setting the smooth
specification onz(·), we may take the advantage of the
following properties drawn from (2c).

Claim 4. u(·) ∈ C(l) if and only ifz(·) ∈ C(l+n) with
l being a nonnegative integer.

Here the notationC(i) denotes the space of the scalar
real functions which are continuous till theith time
derivatives. It is followed from (10) and (11) thatz(·)
are inC∞ over bothIpre andIpost. Thusu(·) ∈ C(l)

if and only ifz(·) ∈ C(l+n) overItran. Without loss of
generality, the generated feedforward input is expect
to be continuous. This requires thatz(·) ∈ C(n) .
In what follows, we will show thatη(ts) andη(tf )
play a fundamental role in the parametrization ofz(t).
Thereafter,η(ts) andη(tf ) are denoted asηs andηf ,
respectively.

Firstly, we assume that the pre- and post-transition are
not trivial. That is, bothWu(η) 6= {η} andW s(η) 6=
{η}. We can representz(t) overItran in the following
B-spline form

z(t) =
m∑

j=0

Bj,p(t)Zj , t ∈ Itran (12)

whereBj,p’s are B-spline basis functions of degree
p, {Zj}m

j=0 is the control point set associated with a
knot setIknot = {t0, t1, · · · , tm+p+1} ⊂ Itran. For
simplicity, we generate the knots as follows:

tj−1 = ts, tn+j = tf , j = 1, 2, · · · , p + 1, (13a)

tp+j = jδt, j = 1, 2, · · · ,m− p, (13b)

whereδt = ∆/(m − p + 1). Calling for the proper-
ties of B-spline(De Boor, 1978), we can parameterize
Z1, Z2, · · · , Zn andZm−n, Zm−n+1, · · · , Zm−1 in
terms of(ηs,ηf ,∆). We collect the remainder control
pointsZj , j = n+1, n+2, · · · ,m−n−1 intoΘ. As
a result, we can parameterizez(t) overItran in terms
of (ηs,ηf ,∆,Θ). Obviously,Θ 6= ∅ if and only if the
number of the control pointsm is larger than2(n+1).

Remark 1. WhenWu(η) = {η}, the pre-transition
becomes trivial. According to Claim 2, the above tra-
jectory generation needs to be modified by replacing
ηs by η and settingz(n−r+1)(ts) = · · · = z(n)(ts) =
0. Similarly, if W s(η) = {η}, referring to Claim 3,
we need to replaceηf by η and setz(n−r+1)(tf ) =
· · · = z(n)(tf ) = 0. The extreme situation is that both
of the pre- and post-transitions are degenerated. This
is the case whenWu(η) = {η} andW s(η) = {η}.
As shown in (Perezet al., 2002), finding a feasible tra-
jectory in the real output space is a challenging issue
to fulfill the transition objects in this situation. This

is not surprising because the planned trajectory in the
real output space generally does not guarantee that the
internal state lands on its equilibria at bothts andtf ,
respectively. We emphasize that this difficulty can be
avoided by means of the flatness in our approach. In-
deed, the above planned trajectory is still feasible even
though the above extreme case occurs. Our approach
removes the known limitations of planning noncausal
transition trajectories in the real output space.

4. OPTIMAL OUTPUT TRANSITION:
SIMULATION FOR ICSTR

Let γ denote the parameter vector associated with the
parametrization ofz(t), comprising all or some of
(ηs,ηf ,∆,Θ). Recall Claim 2 and 3 in the section
above that the admissible set ofγ is characterized by

Γ =
{
γ|Bu(ηs) = 0, Bs(ηf ) = 0

}
. (14)

Substituting the parametrization of the flat outputz(t)
into (2b) and (2c) gives the parameterizations ofx(t)
andu(t) in terms ofγ. Therefore,J in (3) andP in
(4) can be represented as the functions ofγ, we write
them asJ(γ) andP (γ, t), respectively. Then we can
formulate the optimal output transition problem as

γ̂ = arg min
γ∈Γ

J(γ) (15)

subject to
P (γ, t) ≤ 0 (16)

which is a static constrained optimization issue and
can be easily solved without demand on the complex
dynamic optimization techniques.

Simulations are performed with a benchmark system,
the Isothermal Continuous Stirred Tank Reactor (IC-
STR). The ICSTR considered here assumes a reac-
tion scheme due to Van de Vusse, refer to (Chenet
al., 1995) for a detailed explanation. The material and
enthalpy balance is a major concern in the ICSTR,
which is modeled by

ẋ1 = −k1x1 − k3x
2
1 + u(c− x1), (17a)

ẋ2 = k1x1 − k2x2 + u(−x2), (17b)

y = x2, (17c)

wherec andx1 are the concentrations of the input and
reactant substance,x2 the concentration of the output
desired product,u is the normalized input flow rate of
the reactant substance. The outputy reflects the grade
of the final product. The parametersk1, k2, k3 andc
are positive constants under the isothermal condition.

Under new agile manufacturing paradigms, the de-
mand on output transitions increases because batch
sizes will be reduced to meet the product specification
change (Perez and Devasia, 2003). Transition loss may
occur when the products during the transition do not
satisfy specified requirements. The transition object of
interest here is to minimize the waste loss produced



Fig. 1. (left) Operating points; (right) the values ofλe
2

during the transition. In particular, the transition per-
formance indexJ is defined by

J =
∫ tf

ts

[y(t)u(t)]dt, (18)

and the constraintP of interest here is specified as

ul ≤ u(t) ≤ ur, (19)

where0 < ul < ur are the constant physical con-
straints on the control. We define the flat outputz as

z = x2/(c− x1). (20)

The expressions ofφ andψ for the ICSTR are given
in Appendix. In this case,n = 2 and r = 1, thus
η becomes a scalar, that is,η = z and the internal
dynamics (7) or (8) becomes

η̇ = λe
3 + (λe

2 − 2λe
1ηe)η + λe

1η
2, (21)

whereλe
1, λe

2 andλe
3 are given by

λe
1 = −k1cy

−1
e − k3c

2y−1
e , (22a)

λe
2 = k1 − k2 + 2k3c + k1cy

−1
e + 2ηeλ

e
1, (22b)

λe
3 = −k1 − k3ye. (22c)

In addition, the solution of (9) for the ICSTR becomes

η(t) = ηe +
λe

2e
λe

2(t−s)[η(s)− ηe]
λe

2 + λe
1[1− eλe

2(t−s)][η(s)− ηe]
. (23)

Clearly, Wu(ηe) 6= {ηe} (Wu(ηe) 6= {ηe}) if and
only if λe

2 > 0 (λe
2 < 0). Notice thatΓ defined in (14)

becomes trivial for the ICSTR.

For comparison purpose, we use the following pa-
rameters as in (Perezet al., 2002):c = 10[mol/L],
k1 = 50[h−1], k2 = 100[h−1], k3 = 10[L/(mol.h)].
As shown in Figure 1, the operating points inE are di-
vided into two sets by the dotted linez = 0.23, and the
values ofλe

2 are positive at the left side and negative
at the right side. The output transitions between the
operating points ’A’,’B’,’C’ and ’D’ marked in Figure
1 are considered.

In the work of Perez (Perezet al., 2002), the output
transitions between the above operation points ware
studied, where the output transition trajectory is mod-
elled by a line segment connecting the present and
new operating points. There the noncausal trajectory
of the internal state,x1, is parameterized byx1(ts),
x1(tf ) and∆. The optimal parameters were found by
minimizing the same waste loss criterion as (18). Here
these results will be compared with ours.

In our simulation studies, the B-spline model (12)
is used withp = 4 and m = 8, this guarantees
z(·) ∈ C(2) thus the continuity ofu(·). Accordingly,
Θ contains two control pointsZ3 andZ4. As in (Perez
et al., 2002), the start transition time is taken asts =
100[sec], the input lower and upper bounds in (4) are
taken as:ul = 10[L/h] andur = 400[L/h]. We list
the comparison results in Table 1 and 2, where two
important performance indices: the transition time and
the waste loss, are involved. The following remarks
are in order.

Case 1: Four transition tasks are involved in Case
1, all of them have the well-defined pre- and post-
transition trajectories. The first twos correspond to the
output transitions that change the internal state but
not the output itself. In this case, the problem (15)
has trivial solutionŝγ characterized bŷ∆ = 0 and
Θ̂ = ∅, which leads toJ(γ̂) = 0. The third one
in Case 1 corresponds to the transition increasing the
output product level and the fourth one vice versa. It
can be observed that the waste loss, caused by the
transition: ’A’ to ’C’, is reduced significantly when our
approach is applied even though the transition takes a
considerable short time. It is interesting to note that
transition time for the transition: ’B’ to ’D’achieves
the minimum values.

Case 2: The two transitions in Case 2 are reverse
each other, both the post-transitions are degenerated.
Compared with the Perez’s, our approach significantly
improves the transition performance: the reductions of
both the transition time and the waste loss.

Case 3:There are another two reverse transitions in
Case 3. Our results are close to the Perez’s. It can
be observed that the first transition demands on the
input maximum level and the second does on the input
minimum level overItran. This is the cost paid for the
competitive transition time needed. As shown in Table
2, our approach leads to comparable reductions of the
transition time compared with the step-inputs.

Case 4:The four transitions in Case 4 are opposites to
those in Case 1. This leads to another extreme situa-
tion: both the pre- and post-transition are degenerated.
As mentioned in Remark 1, the Perez’s approach is not
applicable to this case. Indeed, our approach augments
the perez’s idea in noncausal output transitions by
removing the above limitation.

5. CONCLUSIONS

The generation of the feedforward input and the
state reference trajectory enables the two-degree-of-
freedom design, which offers a framework for the
problem of interest: the output transition control of
constrained nonlinear systems. This study advocates
the flatness based noncausal trajectory generation.

The point that distinguishes our approach from the
existing flatness based techniques is the generation of



Table 1. Comparison Results: Case 1 & 2

performance transition case 1 case 2
index ↓ case → A to D B to C A to C B to D B to A A to B

transition ours 0 0 16.0 2.44 11.0 47.1

time Perez’s 0 0 29.0 2.78 32.4 68.1
[sec] step input 42.8 55 110.3 39.50 59.7 138.6

transition ours 0 0 0.078 0.240 0.063 0.199

loss Perez’s 0 0 0.270 0.241 0.337 0.270

[mol/vol] step input 2.759 2.748 0.988 2.728 2.798 0.763

Table 2. Comparison Results: Case 3 & 4

performance transition case 3 case 4
index ↓ case → C to D D to C D to A C to B C to A D to B

transition ours 5.07 3.657 142.2 89.1 135.3 96.4

time Perez’s 6.87 3.600 NA NA NA NA
[sec] step input 12.2 12.9 195.4 145.9 190.6 151.3

transition ours 0.524 0.0405 1.584 1.004 1.266 1.255
loss Perez’s 0.634 0.0390 NA NA NA NA

[mol/vol] step input 0.975 0.6560 1.253 1.700 1.215 1.770

noncausal flat output trajectories. This feature allows
us to seek the optimal trajectory in a much wider
range thereby benefits the performance improvement.
It is notable that our approach guarantees the planned
trajectories feasible regardless of the type of the op-
erating points defining a transition task. Our approach
removes the known limitations of planning noncausal
trajectories in a real output space. This contribution
augments the applicability of stable inversion in plan-
ning the optimal output transitions.

Our approach is illustrated in the context of the
ICSTR, which is a benchmark system for testing
nonminimum phase control. Our simulation results
demonstrate the effectiveness of our approach.

APPENDIX: THE PARAMETERIZATIONS IN (2)
FOR ICSTR

φ1(z, ż) = [p(z, ż) + q(z, ż)](2k3z)−1,

φ2(z, ż) = [c− φ1(z, ż)]z,

ψ(z, ż, z̈) =
[
ż − q(z, ż)

q(z, ż)

] [
k1φ1(z, ż) + k3φ

2
1(z, ż)

c− φ1(z, ż)

]

− k2ż + z̈

q(z, ż)
,

wherep(z, ż) andq(z, ż) are given by

p(z, ż) = −[(k1 − k2)z − k1 − ż],

q(z, ż) =
√

[p(z, ż)]2 − 4k3cz(k2z + ż).
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