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Abstract: This paper presents coordination algorithms for networks of mobile
autonomous agents. The objective of the proposed algorithms is to achieve
rendezvous, that is, agreement over the location of the agents in the network.
We provide analysis and design results for multi-agent networks in arbitrary
dimensions under weak requirements on the switching and failing communication
topology. The correctness proof relies on proximity graphs and their properties
and on a LaSalle Invariance Principle for nondeterministic discrete-time systems.
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1. INTRODUCTION

This work is a contribution to the emerging disci-
pline of motion coordination for ad-hoc networks
of mobile autonomous agents. With this termi-
nology we refer to groups of robotic agents with
limited mobility and communication capabilities.
In the future, groups of coordinated devices will
perform a variety of tasks including search and
recovery operations, surveillance, exploration and
environmental monitoring. The potential advan-
tages of employing arrays of agents have recently
motivated vast interest in this topic. From a con-
trol viewpoint, a group of agents inherently pro-
vides robustness to failures of single agents or
communication links.

The motion coordination problem for groups of
autonomous agents is a control problem in the
presence of communication constraints. Typically,
each agent makes decisions based on partial in-
formation about the state of the entire network
- obtained via communication with its immedi-

ate neighbors. An important difficulty is that the
topology of the communication network depends
on the agents’ locations and, therefore, changes
with the evolution of the network.

The “multi-agent rendezvous” problem and a
first “circumcenter algorithm” have been intro-
duced in (Ando et al., 1999). This algorithm has
been extended to various asynchronous strategies
in (Lin et al., 2004b; Lin et al., 2004a; Flocchini
et al., 2001). A related algorithm, in which con-
nectivity constraints are not imposed, is proposed
in (Lin et al., 2004c). These schemes are mem-
oryless (static feedback), anonymous (all agents
are indistinguishable), and spatially distributed
(only local information is required). An incom-
plete list of recent works on motion coordination
algorithms includes (Suzuki and Yamashita, 1999;
Justh and Krishnaprasad, 2004) on pattern forma-
tion, (Klavins et al., 2004) on self-assembly, (Liu
and Passino, 2004) on foraging, and (Cortés et
al., 2004b) on deployment.



In this paper we provide novel analysis and design
results on a class of rendezvous algorithms. First,
we define and analyze a class of “circumcenter al-
gorithms” defined over switching communication
topologies. We classify communication topologies
for our algorithms via the notion of “proxim-
ity graph,” see (Jaromczyk and Toussaint, 1992)
and (Cortés et al., 2004b). Admissible topologies
are proximity graphs being “spatially distributed”
over the disk graph (i.e., they can be computed
with the local information encoded in the disk
graph) and such that their connected compo-
nents have the same vertices as the disk graph
(cf. Section 2.1). This is a more general class of
communication topologies than those adopted in
most works on coordination including (Ando et
al., 1999; Lin et al., 2004b; Lin et al., 2004c).
The ability to rely on general topologies is advan-
tageous in the design of wireless communication
strategies and is referred to as “topology control”,
see (Li, 2003) and references therein.

Second, we consider networks of agents whose
state space is R

d, where d ∈ N. We prove that
our proposed class of circumcenter algorithms is
correct in arbitrary dimensions and include simu-
lations in two and three dimensions. As a natural
outcome, we prove that the original circumcenter
algorithm in (Ando et al., 1999) can be adapted
to work in higher dimensions, and that it is guar-
anteed to converge in finite time.

Third, we establish a general theorem on the
robustness of the proposed class of circumcenter
algorithms with respect to communication link
failures. Rendezvous is guaranteed even if each
agent experiences link failures, provided the re-
sulting directed communication graph is strongly
connected at least once every finite number of
time instants. Our results provide the first con-
tribution to the theoretical explanation of the ro-
bustness properties of the circumcenter algorithm
observed in computer simulations in (Ando et
al., 1999). Because of length constraints, we refer
the interested reader to (Cortés et al., 2004a) for
all the proofs. We only highlight that the (novel)
method of proof is based on a recently-developed
LaSalle Invariance Principle for nondeterministic
discrete-time systems, see (Cortés et al., 2004b).

2. PRELIMINARY DEVELOPMENTS

We review some notation for standard geomet-
ric objects; for additional information we refer
to (de Berg et al., 1997) and references therein.
For a bounded set S ⊂ R

d, d ∈ N, we let
co(S) denote the convex hull of S. For p, q ∈ R

d,
we let ]p, q[= {λp + (1 − λ)q | λ ∈]0, 1[} and
[p, q] = co({p, q}) denote the open and closed
segment with extreme points p and q, respectively.
For a bounded set S ⊂ R

d, we let CC(S) and
CR(S) denote the circumcenter and circumradius

of S, respectively, that is, the center and radius
of the smallest-radius d-sphere enclosing S. For
p ∈ R

d, we let B(p, r) and B(p, r) denote the
open and closed ball of radius r ∈ R+ centered
at p, respectively. Here, we let R+ and R+ denote
the positive and the nonnegative real numbers,
respectively. A polytope is the convex hull of a
finite point set. We let Ve(Q) denote the set of
vertices of a polytope Q, and we emphasize that
any vertex of Q is strictly convex.

Proposition 1. Let S ⊂ R
d be a polygon. Then

(i) CC(S) ∈ co(S) \ Ve(co(S));
(ii) if p ∈ S \ CC(S) and r ∈ R+ satisfy

S ⊂ B(p, r), then ]p,CC(S)[ has nonempty
intersection with B(p+q

2 , r
2 ) for all q ∈ S.

2.1 Proximity graphs and their properties

We introduce some concepts regarding proximity
graphs for point sets in R

d. We assume the reader
familiar with the standard notions of graph theory
as defined in (Diestel, 2000, Chapter 1). Given V,
let F(V) be the collection of finite subsets of V. We
denote an element of F(Rd) by P = {p1, . . . , pn} ⊂
R

d, where p1, . . . , pn are distinct points in R
d.

Let G(Rd) be the set of undirected graphs whose
vertex set is an element of F(Rd). A proximity
graph function G : F(Rd) → G(Rd) associates to a
point set P an undirected graph with vertex set P
and edge set EG(P), where EG : F(Rd) → F(Rd ×
R

d) is such that EG(P) ⊆ P × P \ diag(P × P)
for any P. Here, diag(P × P) = {(p, p) ∈ P ×
P | p ∈ P}. In other words, the edge set depends
on the location of the vertices. Examples include
the complete graph and the Euclidean Minimum
Spanning Tree GEMST. The following examples are
defined in (de Berg et al., 1997; Jaromczyk and
Toussaint, 1992; Cortés et al., 2004b):

(i) the r-disk graph Gdisk(r), for r ∈ R+, with
(pi, pj) ∈ EGdisk(r)(P) if ‖pi − pj‖ ≤ r;

(ii) the Delaunay graph GD, with (pi, pj) ∈
EGD

(P) if the Voronoi regions of pi and pj

have non-empty intersection;
(iii) the Relative Neighborhood graph GRN, with

(pi, pj) ∈ EGRN
(P) if, for all pk ∈ P \{pi, pj},

pk 6∈ B(pi, ‖pi − pj‖)∩B(pj , ‖pi − pj‖);
(iv) the Gabriel graph GG, with (pi, pj) ∈ EGG

(P)

if, for all pk ∈ P\{pi, pj}, pk 6∈ B(
pi+pj

2 ,
‖pi−pj‖

2 ).

If needed, we write Gdisk(P, r) to denote Gdisk(r)
at P. We will also consider the proximity graphs
GRN ∩disk(r) and GG ∩disk(r) defined by the inter-
section of GRN and GG with Gdisk(r), r ∈ R+, re-
spectively. A different proximity graph related to,
but different from, the intersection GD ∩disk(r) of
GD with Gdisk(r) is the r-limited Delaunay graph
GLD(r) (see (Cortés et al., 2004b)).

To each proximity graph function G, one can
associate the set of neighbors map NG : R

d ×



F(Rd) → F(Rd), defined by

NG(p,P) = {q ∈ P | (p, q) ∈ EG(P ∪ {p})}.

Given p ∈ R
d, it is convenient to define NG,p :

F(Rd) → F(Rd) by NG,p(P) = NG(p,P). Let G1

and G2 be two proximity graph functions. We say
that G1 is spatially distributed over G2 if,

NG1,p(P) = NG1,p

(

NG2,p(P)
)

for all p ∈ P.

It is clear that if G1 is spatially distributed over
G2, then G1 is a subgraph of G2, that is, G1(P) ⊂
G2(P) for all P ∈ F(Rd). The converse is in general
not true (see (Cortés et al., 2004b)). We conclude
this section with some examples of proximity
graphs in R

2 and R
3; see Figs 1 and 2.

r-disk graph r-lim. Del. graph EMST graph

Fig. 1. From left to right, r-disk, r-limited Delaunay, and
Euclidean Minimum Spanning Tree graphs in R

2 for a
configuration of 25 agents with coordinates uniformly
randomly generated within the square [−7, 7] ×
[−7, 7]. The parameter r is taken equal to 4.
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Fig. 2. From left to right, r-disk, Gabriel, and Relative
Neighborhood graphs in R

3 for a configuration of 25
agents with coordinates uniformly randomly gener-
ated within the square [−7, 7]× [−7, 7]× [−7, 7]. The
parameter r is taken equal to 4.

2.2 Spatially distributed maps over proximity graphs

The notion of proximity graph is defined for sets
of distinct points P = {p1, . . . , pn}. However,
we will also consider ordered sets of possibly
coincident points, P = (p1, . . . , pn) ∈ R

d. Let
iF : (Rd)n → F(Rd) be the natural immersion,
i.e., iF(P ) only contains only the distinct points
in P = (p1, . . . , pn). Note that iF is invariant
under permutations of its arguments and that the
cardinality of iF(p1, . . . , pn) is in general less than
or equal to n. In what follows, P = iF(P ) always
denotes the point set associated to P ∈ (Rd)n.

We can now extend the notion of proximity graphs
to this setting. Given a proximity graph function
G with edge set function EG , we define

G = G ◦ iF : (Rd)n → G(Rd),

EG = EG ◦ iF : (Rd)n → F(Rd × R
d).

We define the set of neighbors map NG : (Rd)n →
(F(Rd))n as the function whose jth component is

NG,j(p1, . . . , pn) = NG(pj , iF(p1, . . . , pn)).

Note that coincident points in the tuple (p1, . . . , pn)
will have the same set of neighbors.

Given a set Y and a proximity graph function G, a
map T : (Rd)n → Y n is spatially distributed over

G if there exists T̃ : R
d×F(Rd) → Y , such that, for

all (p1, . . . , pn) ∈ (Rd)n and for all j ∈ {1, . . . , n},

Tj(p1, . . . , pn) = T̃ (pj ,NG,j(p1, . . . , pn)) ,

where Tj denotes the jth-component of T . In
other words, the jth component of a spatially
distributed map at (p1, . . . , pn) can be computed
with only the knowledge of the vertex pj and the
neighboring vertices in the graph G({p1, . . . , pn}).

3. RENDEZVOUS VIA PROXIMITY GRAPHS

3.1 Modeling a network of robotic agents

We introduce the notions of robotic agent and of
network of robotic agents. Let n be the number
of agents. The ith agent has a processor with the
ability of allocating and operating on continuous
and discrete states. It occupies a location pi ∈ R

d,
d ∈ N, and is capable of moving at any time
m ∈ N, for a unit period of time, according to

pi(m + 1) = pi(m) + ui. (1)

The control ui takes values in a bounded subset
of R

d. We assume there is a maximum step size
sm ∈ R+ common to all agents, ‖ui‖ ≤ sm, for
all i ∈ {1, . . . , n}. The processor of each agent
has access to its location, and transmits this
information to any other agent within a closed
disk of radius r ∈ R+. The communication radius
is the same for all agents.

3.2 The rendezvous motion coordination problem

We now state the control design problem for
the network of robotic agents. The rendezvous
objective is to achieve agreement over the location
of the agents in the network, that is, to steer
each agent to a common location. This objective
is to be achieved with the limited information
flow described in Section 3.1. Typically, it will
be impossible to solve the rendezvous problem if
the agents are placed in such a way that they
do not form a connected communication graph.
Arguably, a good property of any algorithm for
rendezvous is that of maintaining some form of
connectivity between agents.

3.3 The Circumcenter Algorithm

Here is an informal description of the Circumcen-
ter Algorithm over a proximity graph G:



Each agent performs the following tasks: (i)
it detects its neighbors according to G; (ii) it
computes the circumcenter of the point set
comprised of its neighbors and of itself, and
(iii) it moves toward this circumcenter while
maintaining connectivity with its neighbors.

This algorithm is an extension of the one intro-
duced in (Ando et al., 1999). Let us clarify two
which proximity graphs are allowable and how
connectivity is maintained. First, we are allowed
to design algorithms that are spatially distributed
over the r-disk graph Gdisk(r), or more generally,
over any proximity graph G that is spatially dis-
tributed over Gdisk(r). This is a consequence of our
modeling assumption that each agent can acquire
the location of each other agent within distance
less than or equal to r. Second, we maintain con-
nectivity by restricting the allowable motion of
each agent. If agents pi and pj are neighbors in
G, then their subsequent positions are required to
belong to B(

pi+pj

2 , r
2 ). If agent pi has its neighbors

at locations {q1, . . . , ql}, then its constraint set is

Cpi,r({q1, . . . , ql}) =
⋂

q∈{q1,...,ql}

B
(pi + q

2
,
r

2

)

.

Finally, for q0 and q1 in R
d, and for a convex closed

set Q ⊂ R
d with q0 ∈ Q, let λ(q0, q1, Q) denote

the solution of the strictly convex problem:

maximize λ

subject to λ ≤ 1, (1 − λ)q0 + λq1 ∈ Q.
(2)

This convex optimization problem has the follow-
ing interpretation: move along the segment from
q0 to q1 the maximum possible distance while
remaining in Q. Under the stated assumptions the
solution exists and is unique. We are now ready
to formally describe the algorithm.

Name: Circumcenter Algorithm over G
Goal: Solve the rendezvous problem
Assumes: (i) sm ∈ R+ maximum step size

(ii) r ∈ R+ communication radius
(iii) G spatially distributed prox-
imity graph over Gdisk(r)

Agent i ∈ {1, . . . , n} executes at each time
instant in N:

1: acquire {q1, . . . , qk} := NGdisk(r),pi
(P)

2: compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}

3: compute Qi := Cpi,r(Mi\{pi})∩B(pi, sm)

4: compute λ∗
i := λ(pi,CC(Mi), Qi)

5: set ui := λ∗
i (CC(Mi) − pi), i.e.,

move from pi to (1−λ∗
i )pi +λ∗

i CC(Mi)

In what follows we refer to the Circumcenter
Algorithm over G as TG : (Rd)n → (Rd)n.

3.4 Correctness of the Circumcenter Algorithm

We now state the main convergence result, whose
proof is provided in (Cortés et al., 2004a).

Theorem 2. Let p1, . . . , pn be a network of robotic
agents in R

d, for d ∈ N, with maximum step size
sm ∈ R+ and communication radius r ∈ R+.
Let the proximity graph G be spatially distributed
over Gdisk(r) and have the same connected com-
ponents as Gdisk(r). Any trajectory {Pm}m∈N∪{0}

of TG has the following properties:

(i) if the locations of two agents belong to the
same connected component of Gdisk(Pk, r) for
some k ∈ N ∪ {0}, then they remain in the
same connected component of Gdisk(Pm, r)
for all m ≥ k;

(ii) there exists P ∗ = (p∗1, . . . , p
∗
n) ∈ (Rd)n with

the following properties: Pm → P ∗ as m →
+∞, and p∗i = p∗j or ‖p∗i − p∗j‖ > r for each
i, j ∈ {1, . . . , n};

(iii) if G = Gdisk(r), then there exists k ∈ N

such that Pm = P ∗ for all m ≥ k, that is,
convergence is achieved in finite time.

A consequence of Theorem 2(i) and (ii) is that, if
the locations of two agents belong to the same
connected component of G at some time, then
they converge to the same point in R

d. The
statements Theorem 2(i) and (ii) were originally
proved in (Ando et al., 1999) for the Circumcenter
Algorithm over Gdisk and for d = 2.

3.5 Robustness of the Circumcenter Algorithm

Here we characterize the robustness of the Cir-
cumcenter Algorithm with respect to link failures.

Definition 3. A link failure in Gdisk(r) at P ∈
(Rd)n is said to occur at agent pi if (pi, pj) is
an edge in Gdisk(P, r) and the agent pi does not
detect agent pj . For P = iF(P ), we denote this
link failure by the directed edge (pi, pj) ∈ P × P.

Remark 4. Consider an application of the Cir-
cumcenter Algorithm over a proximity graph G as
described in the steps 1-5 above. If the link failure
(pi, pj) takes place at step 1, then the following
two events will ensue:

(i) if pj is a neighbor of pi according to G, then
pi looses the neighbor pj at step 2,

(ii) if pk is not a neighbor of pi according to G
because of the presence of pj , then pi gains
the neighbor pk at step 2.

After steps 1 and 2, the collection of neighbors
has been computed inaccurately. Nevertheless the
execution of steps 3 through 5 can continue. �

Definition 5. For P ∈ (Rd)n, let P = iF(P ). Let
G be a proximity graph spatially distributed over
Gdisk(r) and F ⊂ P×P be a set of link failures. Let



(i) Gdisk(P, r) 8 F be the directed graph with
vertex set P and with edge set Edisk(P, r)\F ;

(ii) G(P) 8 F be the directed graph with vertex
set P and with edges determined as follows;
the neighbors of p ∈ P are

NG,p

(

{q | (p, q) ∈ Edisk(P, r) \ F}
)

,

that is, the edges of G(P) 8 F arise from the
computation of G(P) with the link failures F ,
as described in Remark 4;

(iii) TG8F (P ) is the configuration obtained from
applying the Circumcenter Algorithm over G
(steps 1-5) at configuration P with the link
failures F at step 1.

Note that only a finite number of possible link fail-
ures can occur at any configuration. Consequently,
the set of possible directed graphs arising from
link failures is finite. We are now ready to state
the main robust convergence result, whose proof
is provided in (Cortés et al., 2004a).

Theorem 6. Let the network p1, . . . , pn and the
proximity graph G have the same properties as
in Theorem 2. Given P0 ∈ (Rd)n, consider the
two sequences {Pm}m∈N∪{0} and {Fm}m∈N∪{0}

defined recursively by

(i) Fm is a set of link failures in Gdisk(r) at Pm,
(ii) Pm+1 = TG8Fm

(Pm).

If there is ` ∈ N such that at least one graph of any
` consecutive elements of {G(Pm) 8 Fm}m∈N∪{0}

is strongly connected, then there exists p∗ ∈ R
d

such that Pm → (p∗, . . . , p∗) as m → +∞.

This theorem provides the first theoretical expla-
nation for the robustness behavior against sensor
and control errors of the Circumcenter Algorithm
over Gdisk(r) observed in (Ando et al., 1999).

Corollary 7. With the same notation as in Theo-
rem 6, if at each step m ∈ N, the proximity graph
G(Pm) is km-connected and if Fm contains at most
km−1 link failures, then there exists p∗ ∈ R

d such
that Pm → (p∗, . . . , p∗) as m → +∞.

Next, we analyze the performance of the Circum-
center Algorithm when each agent of the mobile
network at each time step is allowed to use a dif-
ferent proximity graph to compute its neighbors.

Definition 8. Let S be a set of proximity graph
functions that are spatially distributed over Gdisk(r).
The Circumcenter Algorithm over S is the Cir-
cumcenter Algorithm where step 2 is replaced by

2(a): choose any G ∈ S

2(b): compute Mi := NG,pi
({q1, . . . , qk}) ∪ {pi}.

The selection algorithm for each agent at each
execution of step 2(a) is left unspecified.

Corollary 9. Let the network p1, . . . , pn be as in
Theorem 2. Let S be a set of proximity graph func-
tions that are spatially distributed over Gdisk(r).
Assume there exists a proximity graph F with
the same connected components as Gdisk(r) such
that F ⊂ G, for all G ∈ S. Then any trajectory
{Pm}m∈N∪{0} of the Circumcenter Algorithm over
S has properties (i) and (ii) in Theorem 2.

For r ∈ R+, GRN ∩disk(r), GG ∩disk(r) and GLD(r)
are spatially distributed over Gdisk(r) and con-
tain GEMST ∩disk(r), which has the same con-
nected components as Gdisk(r) (cf. (Cortés et
al., 2004a)). As a consequence, any subset of
{GRN ∩disk(r),GG ∩disk(r),GLD(r)} satisfies the hy-
pothesis of Corollary 9.

4. SIMULATIONS

In order to illustrate the performance of our ren-
dezvous algorithms, we developed a library of ba-
sic geometric routines. The resulting Mathematica r©

packages PlanGeom.m (containing the 2-dimensional
routines) and SpatialGeom.m (containing the
3-dimensional routines) are freely available at
http://www.soe.ucsc.edu/~jcortes/software.

The simulation run for the Circumcenter Algo-
rithm in the plane, d = 2, over GLD(r) with link
failures is illustrated in Figure 3. The 25 vehicles
have a maximum step size sm = .15, and a com-
munication radius r = 4. At each time step, a

Fig. 3. Evolution (in light gray) of the Circumcenter
Algorithm over the r-limited Delaunay graph GLD(r)
with link failures. The initial configuration of the
network is as in Figure 1.

set consisting of 18 numbers between 1 and 25 is
randomly selected, corresponding to the identities
of the agents where link failures occur. For each of
them, a randomly selected link failure in Gdisk(r)
is chosen. Since the identity of an agent might
appear more than once in the random set, more
than one link failure may occur at the same agent.
However, rendezvous is asymptotically achieved
according to Theorem 6 (usually after 80 steps).



The simulation run for the Circumcenter Algo-
rithm in space, d = 3, over the set {Gdisk(r),GG(r)∩
Gdisk(r),GRN(r) ∩ Gdisk(r)} is illustrated in Fig-
ure 4. The 25 vehicles have, as before, a maxi-
mum step size sm = .15, and a communication
radius r = 4. At each time step, each agent
randomly selects one of the proximity graphs in
{Gdisk(r),GRN∩disk(r),GG∩disk(r)} and computes
its corresponding set of neighbors according to
it. Then, it executes steps 3 through 5 of the
Circumcenter Algorithm. Rendezvous is achieved,
according to Corollary 9 (in this case, in a finite
number of steps- usually 100).
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Fig. 4. Evolution (in light gray) of the Circumcenter
Algorithm over {Gdisk(r),GG(r) ∩ Gdisk(r),GRN(r) ∩
Gdisk(r)}. The initial configuration of the network is
as in Figure 2. The right figure is a rotated view of
the left figure by 45 degrees.

5. CONCLUSIONS

We have designed and analyzed a class of cir-
cumcenter algorithms over proximity graphs for
multi-agent rendezvous. Also, we have provided
a set of novel tools that we believe are impor-
tant in the design and analysis of general motion
coordination algorithms. Future directions of re-
search include the study of increasingly realistic
communication settings (asynchronicity, quanti-
zation, media access and power control issues),
the analysis of the performance and complexity
of the algorithms, and the formal design of other
spatially distributed coordination primitives.
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