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Abstract: The paper presents a transfer function approach to the stable dynamic
inversion of nonminimum-phase scalar linear systems. The technique is based
on the study of the structure of the causal unstable input obtained with the
standard inversion technique. It is shown that the unbounded term of this input
can be decomposed as the sum of a linear combination of unstable zero modes
for which new formulae are provided. Then, a closed-form expression of the
bounded noncausal solution of the input-output inversion problem is proposed.
An automatic inversion scheme built by exploiting the new inversion formula is
also presented. Copyright c© 2005 IFAC
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1. INTRODUCTION

In the control theory literature noncausal feed-
forward based on stable (dynamic) inversion is
known to be an effective technique to improve the
performances of tracking and regulation (Devasia
et al., 1996; Hunt et al., 1996; Piazzi and Visi-
oli, 2001b). The great majority of the techniques
on the subject has adopted a purely state-space
approach to solve the relevant stable inversion
problem for linear and nonlinear systems. An ex-
ception to this mainstream course is the work of
Ramakrishna et al. (Ramakrishna et al., 2001)
which is about the effects of parameter variations
on the feedforward input synthesized by stable
inversion and uses a transfer function approach in
some parts of its formal development. Probably,
the main reason of the polarization toward the
state-space is the attention to nonlinear prob-
lems given by the first researchers of the sub-
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ject, notably Devasia, Chen and Paden (Devasia
et al., 1996) and Hunt and Meyer (Hunt and
Meyer, 1997). However, a purely transfer function
approach to the linear problem has its advantages
as this article is about to disclose.

The contribution of this article is the solution
of the stable inversion problem for nonminimum-
phase scalar linear systems through explicit for-
mulae. We study the structure of the causal un-
stable input obtained with the standard inversion
technique. It is then shown that the unbounded
convolutional integral contained in this input can
be decomposed in two noncausal signals: the un-
bounded and the bounded part. New formulae
are given to characterize this unbounded signal
as linear combination of unstable zero modes. We
therefore solve the stable input-output inversion
problem by (mathematically) cancelling the un-
bounded signal from the standard inversion in-
put. Finally we obtain a closed-form expression
of the bounded noncausal input that causes the
desired output signal. An automatic inversion sys-
tem built by exploiting the provided inversion for-



mula is also presented. Due to lack of space, proofs
of the formal statements reported in this article
are omitted. They can be found in (Pallastrelli et
al., 2004).

Notation. The set of positive reals and the set
of complex numbers with positive real part are
denoted by R+ and C+ respectively. We denote
by Ck the space of the scalar real functions (de-
fined over R) that are continuous till the kth time
derivative, and by BCk the subset of Ck of the
functions that are continuous and bounded over
R till the kth time derivative. The ith derivative
operator is denoted by Di. P k is the set of Ck-
piecewise continuous functions defined by P k :=
{f : R→ R : ∃ {t1, . . . , tn, . . . } ⊂ R 3 f ∈ Ck(R−
{t1, . . . , tn, . . . }) and ∃ limt→t−

j
Dif ∃ limt→t+

j
Dif

j ∈ N , i = 0, . . . , k}. The Heaviside function is
denoted by 1(t).

2. PRELIMINARIES AND PROBLEM
STATEMENT

Let Σ be an nth-order linear, time-invariant,
scalar continuous-time system with transfer func-
tion

H(s):=k1
b(s)
a(s)

=k1
sm + bm−1s

m−1 + · · ·+ b1s + b0

sn + an−1sn−1 + · · ·+ a1s + a0
.

(1)
H(s) is stable, nonminimum phase, and does not
have j-axis zeroes. In addition, H(s) has no pole-
zero cancellations: a(s) and b(s) are coprime. The
input and output of Σ are u ∈ R and y ∈
R, respectively. The relative order (or relative
degree) of Σ is ρ := n − m. Finally, the set of
all cause/effect pairs associated with Σ is denoted
by

B :=
{ (

u(·), y(·)) ∈ Pm × Pn :
(
u(·), y(·)) is a weak solution of

Dny + an−1D
n−1y + · · ·+ a0y =

k1

(
Dmu + bm−1D

m−1u + · · ·+ b0u
)}

.

B is the behaviour set of Σ with an input/output
partition. The concept of ”weak solution” has
been rigorously exposed in the book of Polderman
and Willems devoted to the behavioral approach
to system theory (Polderman and Willems, 1998).
Roughly speaking, (u(·), y(·)) is a weak solution
when there exists a sequence {ui(·), yi(·)} ∈ Cm×
Cn satisfying the differential equation of Σ and
converging to it for i → +∞. The following result
is useful to introduce our problem:

Proposition 1. (Polderman and Willems, 1998)
Consider any pair (u(·), y(·)) ∈ B. Then given l,
a nonnegative integer, u(·) ∈ Cl if and only if
y(·) ∈ Cρ+l.

Now suppose that we are given an output function
yd : R → R for which we conveniently assume
yd(t) = 0 for t < 0 and we are interested
in finding a control input ud : R → R which
yields the desired output yd(·). Considering the
nonminimum-phase property of Σ, the critical
issue is to find a bounded (possibly noncausal)
ud(·). Then the Stable Dynamic Input-Output
Inversion (SDIOI) Problem can be introduced as
it follows:

SDIOI Problem: Let be given any yd(·) ∈ BCρ

with yd(t) = 0 for t < 0. Then find ud(t) ∈ BC0

such that (ud(·), yd(·)) ∈ B.

It will turn out (cf. Section 4) that to each
bounded output yd(·) there corresponds exactly
one bounded input ud(·).

3. ON THE STRUCTURE OF THE
STANDARD INVERSION SOLUTION

Denote with Yd(s) := L[yd(t)] the Laplace trans-
form of yd(t) and, performing the inverse Laplace
transformation, compute

uu(t) := L−1
[
H−1(s) Yd(s)

]
. (2)

Function uu(·) is the result of the standard input-
output inversion for which uu(t) = 0 for t < 0
and evidently (uu(·), yd(·)) ∈ B. If yd(·) ∈ BCρ

then uu(·) ∈ C0 but, due to the unstable zero
dynamics, uu(·) /∈ BC0, i.e. uu(·) is a continuous
but unbounded signal, hence it can not be used as
a feedforward input for control purposes.

By polynomial division, the inverse of the transfer
function (1) can be expressed as

H−1(s) =
1
k1

a(s)
b(s)

(3)

= ξρs
ρ + ξρ−1s

ρ−1 + · · ·+ ξ0 + H0(s),

where H0(s) is a strictly proper rational function
representing the zero dynamics of Σ. By using the
fraction expansion, H0(s) can be decomposed into
stable and unstable parts according to

H0(s) =
c(s)
b(s)

= H−
0 (s)+H+

0 (s) =
d(s)
b−(s)

+
e(s)
b+(s)

,

(4)
where b−(s) and b+(s) are the monic polynomials
containing the roots of b(s) with negative and
positive real part, respectively. Moreover, defining
m− := deg{b−(s)}, m+ := deg{b+(s)} results in:
deg{d(s)} ≤ m−−1 and deg{e(s)} ≤ m+−1. The
modes associated to b−(s) and b+(s) be denoted
by m−

i (t), i = 1, . . . ,m−, and by m+
i (t), i =

1, . . . , m+ respectively. Note that if z is a real
zero of b−(s) or b+(s) with multiplicity h, then
the associated modes are defined by:

{ezt, tezt, . . . , th−1ezt},
whereas if σ ± jω are complex zeroes of b−(s)
or b+(s) with multiplicity h, then the associated
modes are



{eσt sin ωt, eσt cos ωt, . . .

. . . , th−1eσt sin ωt, th−1eσt cos ωt}.
Expression (2), (3), and (4) permit writing:

uu(t) =L−1
[
(ξρs

ρ + ξρ−1s
ρ−1 + · · ·+ ξ0) Yd(s)

+ H−
0 (s)Yd(s) + H+

0 (s)Yd(s)
]
. (5)

The three addends contained in the previous ex-
pression will be studied in detail below.

The first term is

L−1
[
(ξρs

ρ + ξρ−1s
ρ−1 + · · ·+ ξ0) Yd(s)

]

= ξρD
ρyd(t)+ξρ−1D

ρ−1yd(t) + · · ·+ξ0yd(t)

which is continuous and bounded over R provided
that yd(·) ∈ BCρ.

By defining η−(t) the noncausal inverse Laplace
transformation of H−

0 (s) such that η−(t)1(t) =
L−1[H−

0 (s)], the second addend of expression (5)
can be given by this convolutional integral:

L−1[H−
0 (s)Yd(s) ] =

∫ t

0

η−(t− τ) yd(τ) dτ. (6)

Integral (6) is the response of a BIBO system (the
zero stable dynamics) to the bounded signal yd(·).
Hence, it is bounded too, and continuous over R.

By defining η+(t) the noncausal inverse Laplace
transformation of H+

0 (s) such that η+(t)1(t) =
L−1[H+

0 (s)], the third addend being considered is

L−1
[
H+

0 (s)Yd(s)
]

=
∫ t

0

η+(t− τ) yd(τ) dτ. (7)

which is, in general, unbounded over [0, +∞)
due to instability of H+

0 (s), the unstable zero
dynamics of Σ.

Summing the three addends, we obtain the closed-
form expression of the unstable inverse uu(t):
(t ∈ R)

uu(t)=ξρD
ρyd(t) + · · ·+ ξ1D yd(t) + ξ0 yd(t) (8)

+
∫ t

0

η−(t− τ)yd(τ) dτ +
∫ t

0

η+(t− τ)yd(τ) dτ.

In full generality, consider that the unstable zeros
of Σ are given by zi ∈ R+, i = 1, . . . , l with
associated multiplicity mi and by σj ± ωj ∈ C+,
j = 1, . . . , h with associated multiplicity mj .
Then, by applying the partial fraction expansion
on H+

0 (s) we obtain:

η+(t) =
l∑

i=1

mi−1∑

j=0

ki,j tj ezit (9)

+
h∑

i=1

ri−1∑

j=0

tj eσit
(
pi,j cos ωit + qi,j sin ωit

)
,

where ki,j , pi,j , qi,j ∈ R are appropriate coeffi-
cients. The following two propositions are useful
in the development.

Proposition 2. Let h : R→ R be defined by

h(t) :=
m−1∑

k=0

Ck tk ezt ∀ t ∈ R, (10)

where m ∈ N, z ∈ R+, and Ck ∈ R. Let
y(·) ∈ BC0 with y(t) = 0 for t < 0. Then ∀t ∈ R
the convolution between y(t) and h(t)1(t) can be
written as

y(t) ∗ h(t)1(t) =
m−1∑

k=0

γk tk ezt −
∫ +∞

t

h(t− τ) y(τ) dτ, (11)

where:

γk :=
m−1∑

i=k

Ci

(
i

k

)
L

[
(−t)i−k y(t)

]
s=z

. (12)

Proposition 3. Let h : R→ R be defined by

h(t) :=
m−1∑

k=0

tk eσt
(
pk cos ωt + qk sin ωt

) ∀t ∈ R,

(13)
where m ∈ N, σ, ω ∈ R+, and pk, qk ∈ R. Let
y(·) ∈ BC0 with y(t) = 0 for t < 0. Then ∀t ∈ R
the convolution between y(t) and h(t)1(t) can be
written as

y(t) ∗ h(t)1(t) =
m−1∑

k=0

tkeσt
(
αk cos ωt + βk sin ωt

)

−
∫ +∞

t

h(t− τ) y(τ) dτ, (14)

where:

αk:=
m−1∑

i=k

(
i

k

)
L [

(−t)i−k
(
pi cos ωt− qi sin ωt

)
y(t)

]
s=σ

(15)

βk:=
m−1∑

i=k

(
i

k

)
L [

(−t)i−k
(
pi sinωt + qi cos ωt

)
y(t)

]
s=σ

.

(16)

Using the above propositions and the explicit
expression of η+(t) given by (9) we obtain (∀t ∈
R)

∫ t

0

η+(t− τ)yd(τ) dτ = (17)

f(t) + g(t)−
∫ +∞

t

η+(t− τ) yd(τ) dτ,

where f and g are defined by:

f(t) :=
l∑

i=1

mi−1∑

k=0

γi,k tk ezit (18)



γi,k :=
mi−1∑

j=k

ki,j

(
j

k

)
L

[
(−t)j−kyd(t)

]
s=zi

(19)

g(t) :=
h∑

i=1

ri−1∑

k=0

tk eσit
(
αi,k cosωit + βi,k sinωit

)

(20)

αi,k :=
ri−1∑

j=k

(
j

k

)
(21)

·L
[
yd(t)(−t)j−k

(
pi,j cos ωit− qi,j sin ωit

)]
s=σi

βi,k :=
ri−1∑

j=k

(
j

k

)
(22)

·L
[
yd(t)(−t)j−k

(
pi,j sin ωit + qi,j cosωit

)]
s=σi

.

This result can be summarized by (t ∈ R):

∫ t

0

η+(t− τ)yd(τ) dτ =
m+∑

i=1

di m+
i (t) (23)

−
∫ +∞

t

η+(t− τ) yd(τ) dτ,

where di are appropriate coefficients, calculated
by means of the above definitions.

Consider now the right side of identity (23). Being
m+

i (t), i = 1, . . . , m+ unstable modes, it results
that the first terms are not bounded whereas
the integral

∫ +∞
t

η+(t− τ)yd(τ) dτ is bounded as
stated by the following proposition.

Proposition 4. If yd(t) is bounded over R, then
the integral

∫ +∞

t

η+(t− τ)yd(τ) dτ (24)

is bounded over R as well.

Using expression (23), the unbounded input uu(t)
(8) can be then rewritten as (t ∈ R):

uu(t) = ξρD
ρyd(t) + · · ·+ ξ1D yd(t) + ξ0 yd(t)

−
∫ +∞

t

η+(t− τ)yd(τ) dτ +
m+∑

i=1

di m+
i (t)

+
∫ t

0

η−(t− τ)yd(τ) dτ. (25)

4. SOLUTION OF THE STABLE DYNAMIC
INVERSION PROBLEM

The following lemma points out that any linear
combinations of stable and unstable modes in-

Inversion
Automatic

H(s)
yd(t) ũ(t) ≈ ud(t − ∆T ) ỹd(t) ≈ yd(t − ∆T )

Fig. 1. Automatic inversion schema.

jected on the input of Σ results into a null output
response.

Lemma 5.


m−∑

i=1

µim
−
i (·) +

m+∑

j=1

νjm
+
j (·) , 0


 ∈ B ∀µi, νj ∈ R

Then, taking into account the structure of the
unbounded input (25) we can straightforwardly
solve the posed inversion problem.

Theorem 6. (Solution of the SDIOI Problem) Let
be given any yd(·) ∈ BCρ with yd(t) = 0 for t < 0.
For all t ∈ R define

ud(t) := ξρD
ρyd(t) + · · ·+ ξ0 yd(t) (26)

+
∫ t

0

η−(t− τ)yd(τ) dτ −
∫ +∞

t

η+(t− τ)yd(τ) dτ,

then ud(·) is the sole function in BC0 satisfying
(ud(·), yd(·)) ∈ B.

By comparing the solution (26) with expression
(23) for the negative times we infer that ud(t) =
−∑m+

i=1 dim
+
i (t) for t < 0. This makes evident

that the solution to the SDIOI problem is a
noncausal signal.

Remark 1. Note that by defining:

η(t) := 1(t) η−(t)− 1(−t) η+(t), (27)

the solution (26) can be rewritten:

ud(t) = ξρD
ρyd(t) + · · ·+ ξ1D yd(t) + ξ0 yd(t)

+
∫ +∞

−∞
η(t− τ)yd(τ) dτ. (28)

The integral appearing in (28) is the compact
closed-form expression of the noncausal bounded
output of the zero dynamics driven by the signal
yd(t).

5. AUTOMATIC INVERSION METHOD

In this section an automatic method to obtain
the signal ud(·) through the elaboration of yd(·)
applied with a preaction time ∆T is presented.
The method is based on the approximation of the
integral

∫ +∞
t

η+(t−τ)yd(τ) dτ that appears in the
(26).

In general, the Cavalieri-Simpson can be used to
approximate the value of a defined integral as
follows. If τi := i∆T

n and n is large enough:



2

−

+

+

H(s)

4

∆T
6n

Σ

Σ

Σ

Σ

Σ

H−

0 (s)

d
dt

d
dt

d
dt

e−
s∆T

2ne−
s∆T

2ne−
s∆T

2ne−
s∆T

2ne−
s∆T

2ne−
s∆T

2n e−
s∆T

2n

ξ0 ξρξ1

η+(−τn) η+(∆T
2n

− τn) η+(−τn−1) η+(∆T
2n

− τn−1) η+(−τn−2) η+(−τ1) η+(∆T
2n

− τ1) η+(0)

ỹd(t − ∆T )

yd(t)

ũ(t − ∆T )

Fig. 2. Automatic inversion generator.

∫ t+∆T

t

f(x) dx ≈ ∆T

6n

{
f(t) + f(t + τn)

+2
n−1∑

i=1

f(t + τi) + 4
n∑

i=1

f(t− ∆T

2n
+ τi)

}
.

Under appropriate hypothesis, the method can be
applied to the (26), obtaining:

∫ +∞

t

η+(t− τ)yd(τ) dτ ≈
∫ t+∆T

t

η+(t− τ)yd(τ) dτ

≈ ∆T

6n

{
η+(0)yd(t) + η+(−τn)yd(t + τn)

+ 2
n−1∑

i=1

η+(−τi)yd(t + τi)

+ 4
n∑

i=1

η+

(
∆T

2n
− τi

)
yd

(
t− ∆T

2n
+ τi

) }

when ∆T ∈ R is large enough. Thus, the signal
ud(t) can be approximated by ũ(t):

ũ(t) :=
ρ∑

i=0

ξiD
iyd(t) + η−(t) ∗ yd(t) (29)

− ∆T

6n

{
η+(0)yd(t) + η+(−τn)yd(t + τn)

+ 2
n−1∑

i=1

η+(−τi)yd(t + τi)

+ 4
n∑

i=1

η+

(
∆T

2n
− τi

)
yd

(
t− ∆T

2n
+ τi

) }
.

Once H(s) (namely the system plant Σ) is fixed,
the expression (29) can be used to implement the

−0.5 0 0.5 1 1.5
−0.02

0

0.02

0.04

0.06

0.08

0.1

Fig. 3. Desired output: transition polynomial.

−1 −0.5 0 0.5 1 1.5 2
0

0.02

0.04

0.06

0.08

0.1

0.12

Automatic Method n=6
Automatic Method n=8
Automatic Method n=10
Analytic Solution

Fig. 4. Input obtained through inversion.

block ”Automatic Inversion” of Fig. 1. Indeed
the signal ũ(t) can be automatically generated
through the block diagram shown in Fig. 2 em-
ploying 2n delay blocks of ∆T/(2n) seconds.

6. EXAMPLE

As illustrative example, the open-loop end-point
control of a flexible link is considered (Piazzi and
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Fig. 5. Output of the system.
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Fig. 6. Error of the inversion.

Visioli, 2001a). The transfer function between the
load and the hub angular position is:

H(s) := −0.16
(s− 9.31)(s + 6.93)
(s + 1.16)2 + 2.992

(30)

and it is nonminimum-phase. The problem is on
finding the bounded input signal to apply to the
hub to obtain the transition of the load between
the initial position 0 rad and the final position 0.1
rad. This is done in 0.8 seconds using the following
transition polynomial

yd(t) := 0.1
(

6
t5

0.85
− 15

t4

0.84
+ 10

t3

0.83

)
(31)

valid in the interval [0, 0.8]; yd(t) = 0 for t < 0
and yd(t) = 0.1 for t > 0.8. Note that yd(·) ∈ BC2

implying the continuity of velocities and acceler-
ations. This desired output function is plotted in
Fig. 3. Below, both the analytic solution and the
automatic method are applied to this example.

6.1 Analytic Method

Using the provided solution (26) along with the
closed-form expression (31) of the desired output
yd(t) results:

ud(t) =





0.0291 e9.31t t < 0
0.204 e−6.93t − 0.0000838 e9.31t

− 0.175 + 1.687 t− 3.63 t2 t ∈ [0, 0.8]
+ 3.05 t3 − 1.93 t4 + 1.82 t5

0.100− 6.302 e−6.93t t > 0.8

The dashed line in Fig. 4 displays the input
ud(t) whereas the dashed line in Fig. 5 plots the
output signal obtained by simulating the transfer
function (30) with the preaction time ∆T = 1 sec.

6.2 Automatic Inversion

Three approximation cases have been simulated:
n = 6, 8, 10 with preaction time ∆T = 1 sec. The
figures 4, 5 and 6 displays respectively the input,
output and error of the automatic inversion, com-
pared with the analytic solution. The compari-
son between the analytic and automatic methods
shows that even with n = 8 (i.e. with 16 delay
blocks) the input and output obtained during the
two simulations are practically indistinguishable.

7. CONCLUSION

In this paper an explicit formula for the stable
inversion of nonminimum-phase scalar linear sys-
tems has been presented. Based on this formula,
an automatic inversion scheme is proposed to gen-
erate an approximation of the bounded noncausal
input for a given preaction time.
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