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Abstract: The paper presents a theoretical and numerical study of the existence
problem of self-sustained periodic solutions in feedback control systems including
a hysteresis nonlinearity with non-local memory. The presence of this type of
nonlinearity in the feedback control system can cause undesired effects, e.g. limit
cycles, instability, and thus must be taken into account in the design phase of the
control system. In the present work the problem is addressed by resorting to functional
analysis tools and to the Preisach operator theory.Copyright c©2005 IFAC
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1. INTRODUCTION

In traditional control systems, the problem of
foreseeing limit cycles has been usually tackled by
modelling the nonlinearities of the components,
e.g. the saturation of the power amplifier, or the
backlash of a mechanical transmission, with a
memory-less function, or with simple nonlinear
models with memory, e.g. ideal relay with hystere-
sis. In modern control systems the major source
of nonlinearity can be imputed to the actuator
when this device uses a so-called “smart mate-
rial”, e.g. magnetostrictive materials, electroac-
tive polymers, piezoelectric ceramics and shape
memory alloys. The principal use of such materials
is the development of actuators and sensors for
a number of different applications in, e.g. aero-
nautics both for fixed-wing and rotary-wing, naval
and aerospace engineering, MEMS and nanoscale
manufacturing, micropositioning systems, medical
sensors. In this paper, the attention is focused on
the problem of foreseeing limit cycles in control
systems employing actuators based on Terfenol-
D magnetostrictive materials (see (?)), which ex-
hibit a strong hysteretic behaviour due to their
magnetic nature caused by the loss phenomena
taking place inside the active material. The prob-
lem of modelling such a behaviour can be car-

ried out either on a physical ground, describing
processes on a mesoscopic scale (?) or, from the
phenomenological viewpoint, by defining mathe-
matical operators with memory able to describe
input/output relationships of systems with hys-
teresis (?).

The existence problem of periodic solutions in a
closed-loop system containing a hysteretic com-
ponent has been tackled by resorting to different
mathematical approaches, i.e. the ideal relay with
hysteresis (?), the Poincaré maps, the harmonic
balance (?), and, more in general frequency meth-
ods (?). The relay hysteresis model is simple and
describes the main characteristic of the oscillation
phenomenon due to hysteresis. Also, more gen-
eral relay models are adopted to study periodic
oscillations in (?), where topological methods are
applied. However, those models cannot accurately
reconstruct real hysteretic behaviours, due to dis-
continuous outputs or local memory mechanism.

In order to overcome these limitations, in the
present paper, the Preisach operator (?) is adopted
to model the hysteresis, and the existence of a
limit cycle is theoretically discussed by resorting
to a suitable modification of the describing func-
tion method (?; ?). Specifically, owing to the Lips-



chitz continuity of the Preisach operator, sufficient
conditions for the existence and nonexistence of
periodic solutions, based on fixed-point methods,
are derived. Moreover, a constructive algorithm
to compute the periodic solution is presented,
but without resorting to the describing function
tool, as proposed in a former paper (?). In fact,
a case study is presented where the describing
function method revisited in (?) and further ex-
tended in (?) cannot be applied at all. Then, a
second case study presents an experiment with a
commercial magnetostrictive actuator used in a
feedback system where a limit cycle occurs.

2. PREISACH HYSTERESIS MODELS

The Preisach operator formalizes a classical model
describing magnetization of materials at a macro-
scopic scale (?). After some decades it has been
studied by a pure mathematical viewpoint in (?)
where it has been put into a sort of spectral
decomposition of operators. The model has been
widely spread to researchers in (?) (see refer-
ences therein for a comprehensive history of that
model), and, according to the formalism in the
above reference, the model is defined as

y = Γx
△
=

∫∫

α≥β

µ(α, β) γ̂αβ xdαdβ (1)

where x and y are the input and the output,
respectively, of the hysteresis. The operator can
be seen as the linear superposition, weighted by
the so-called distribution function µ(α, β), of ideal
relays γ̂αβ having “up” switching value α, and
“down” switching value β. A correspondence be-
tween every relay γ̂αβ , with α ≥ β, and the half
plane above the line α = β, referred to as the
Preisach plane sketched in Fig. 1, can be defined,
resulting into a useful geometrical interpretation.
Assume that every relay is in the “down” state
(the negative saturation state). If now the input is
increased up to a value xM1, all the relays having
“up” switching state below such extremum, will
switch in the “up” state (γ̂αβ = 1). Assuming
now that the input decreases down to the value
xm2, a portion of the relays switched just before
(those having lower switching threshold fulfilling
the condition β ≥ xm2), attains the value at
γ̂αβ = −1. If now the input is again increased up
to a value xM3 ≤ xM1 a new step of a “staircase”
shaped line, ψ(t), in the Preisach plane is formed.
Such function “separates” the relays switched in
the “up” state (γ̂αβ = 1) from those in the “down”
state (γ̂αβ = −1) and takes into account the
input past history experienced by the operator.
Such function can be referred to as the state, or
memory, of the Preisach operator and is shown in
Fig. 1.

γ̂αβ = 1

γ̂αβ = −1
xM1

xm2

xM3

α

β

ψ(x, t)

Fig. 1. Memory of the Preisach operator

In the following, only the properties of the
Preisach operator explicitly exploited in the paper
are recalled; for a comprehensive treatment of the
argument see (?).

Rate-independence. A Preisach model is a rate-
independent hysteresis operator, namely opera-
tor’s output is not affected by the rate of variation
of input. Formally:

Γx(t) = Γx(τ), τ = αt, t ∈ [0, T ] (2)

Lipschitz continuity. The Preisach operator de-
fined in (1), is Lipschitz continuous if the Preisach
distribution function µ(α, β) is such that

L = 2

∫ +∞

0

sup
s∈ℜ

|ω(r, s)|dr < +∞ (3)

where ω(r, s) = µ(α, β)|α=s+r,β=s−r, and L is the
Lipschitz constant, i.e.

‖Γx− Γy‖∞ ≤ L‖x− y‖∞ (4)

where x, y ∈ C([0, T ]) and the adopted norm is

‖x‖∞ = sup
t∈[0,T ]

|x(t)| (5)

Moreover, the Preisach operator maps the Banach
space (C([0, T ]), ‖ · ‖∞) into itself.

Saturation. If the Preisach distribution function
is integrable in the region α ≥ β , defined the
following constant

M =
1

2

∫∫

α≥β

|µ(α, β)|dαdβ (6)

the operator output saturates, i.e. is such that

‖Γx‖∞ ≤M , ∀x ∈ C([0, T ]) (7)

3. LIMIT CYCLES IN FEEDBACK SYSTEMS
INCLUDING A PREISACH OPERATOR

The block scheme in Fig. 2 represents a typi-
cal feedback control system, where an actuator
based on a smart material affected by hysteresis
is adopted and its behaviour is modelled by a
Preisach operator Γ(·). The controlled system and
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Fig. 2. Scheme of the feedback control system.

the control law are assumed linear and represented
by a linear operator g(·), with a band-pass fre-
quency response G(jω) such that |G(jω)| < +∞,
for all ω ∈ R

+, i.e. no pure resonances are allowed.

A typical problem in such a control system is
the rising of self-sustained oscillations, the so-
called limit cycles. To prevent the occurrence of
this phenomenon, it is necessary to find condi-
tions under which these oscillations can exist. This
problem can be formulated as the search of peri-
odic solutions x(t′), with fundamental frequency
ω and amplitude a1. Following the basic ideas
in (?), the time variable t′ can be normalized as
t = ωt′, so that the solution x(t) is 2π−periodic.
The normalization also affects the definition of the
linear operator g, that in the normalized time will
be denoted by gω, but does not affect Γ owing
to its rate-independence. Therefore, the solution
belongs to the space C([0, 2π]), which, equipped
with the norm (5), is a Banach space, call it Π∞.

In the following it will be useful the adoption of
the norm

‖f‖2 =

(

1

2π

∫ 2π

0

f(t)2dt

)1/2

(8)

related to the norm in (5) through the following
inequality

‖f‖2 ≤ ‖f‖∞ . (9)

It is well-known that each 2π−periodic signal can
be described as the Fourier expansion

f(t) =
f0
2

+
∞
∑

k=1

fk cos(kt+ φk) (10)

where the Fourier coefficients are such that

fke
jφk =

1

π

∫ 2π

0

f(t)e−jktdt, k = 0, 1, 2, . . .

(11)
moreover, the Parseval equality holds

‖f‖2
2 =

1

2

∞
∑

k=1

f2
k +

f2
0

4
(12)

The space Π∞ can be decomposed into the direct
sum of two subspaces, namely Π∞ = Π1

∞ ⊕ Π̂∞,
where Π1

∞ is the set of all the signals of the form
x1(t) = a1 cos t, while Π̂∞ is its complement with
respect to Π∞. Let, moreover, P1 : Π∞ → Π1

∞

be the continuous linear operator that projects
signals in Π∞ to the first harmonic, and P̂ :
Π∞ → Π̂∞ the projector to the remaining har-
monics of the Fourier decomposition (including
the dc component), then P̂ = I − P1, being I
the identity operator. To carry out the analysis,
the solution is written as (?)

x(t) = P1x(t) + P̂ x(t) = x1(t) + x̂(t) (13)

and, since the linear operator gω is a band-pass
filter, x̂(t) can contain only higher harmonics, i.e.
there is no dc component.

In order to be a solution of the nonlinear dynamic
system in Fig. 2, x(t) must satisfy the equation in
the Banach space Π∞

x = −gωΓx
△
= Sx . (14)

First of all, notice how the definition of the oper-
ator S depends on ω and a1, next we show that
the mapping S is contractive for all the frequencies
belonging to the set

Ω1 =

{

ω : ρ′(ω) <
1√
2L

}

(15)

being

ρ′(ω) =

(

∞
∑

k=1

|G(jkω)|2
)1/2

(16)

which is well defined owing to the band-pass
nature of G(jω), as shown in (?). In order to
demonstrate that S is contractive, it must be
shown that

‖Sz1−Sz2‖∞≤λ‖z1−z2‖∞ ∀z1, z2 ∈ Π∞, λ∈ [0, 1)
(17)

To this aim, let

∆(t) = Γ(z1)(t)−Γ(z2)(t) =
γ0

2
+

∞
∑

k=1

γk cos(kt+θk)

(18)
and consider the inequalities

‖gω∆(t)‖∞=

∥

∥

∥

∥

∥

∞
∑

k=1

|G(jkω)|γk cos
(

kt+θk+∠G(jkω)
)

∥

∥

∥

∥

∥

∞

≤
√

2ρ′(ω)‖∆(t)‖∞ ≤
√

2Lρ′(ω)‖z1 − z2‖∞ (19)

where the Schwartz’s inequality and the Parseval’s
equality (12) have been exploited, together with
inequality (9) and Lipschitz continuity of the
Preisach operator (4).

If ρ′(ω) is small enough, Eq. (14) is a contraction
mapping and thus, since it admits x(t) = 0 as
solution, the following proposition holds

Proposition 1. Equation (14) has the unique so-
lution x(t) = 0 ∀ ω ∈ Ω1.

Once a set of frequencies for the limit cycle being
sought has been excluded, then a set of admissible



frequencies is searched for, by projecting Eq. (14)
with the two operators P1 and P̂ defined above.

x̂=−P̂ gωΓ(x1 + x̂)
△
= T x̂ (20)

x1 =−P1gωΓ(x1 + x̂)
△
= Wx1 (21)

Again, note that the definition of the operators T
and W depends on a1 and ω, then Eq. (20) can
be shown to be a contraction mapping in Π̂∞. In
fact, with the same steps followed form Eq. (18)
to Eq. (19), the following inequality holds

‖P̂ gω (Γ(x1 + z1) − Γ(x1 + z2)) ‖∞
≤

√
2Lρ(ω)‖z1 − z2‖∞ (22)

where the function

ρ(ω) =

(

∞
∑

k=2

|G(jkω)|2
)1/2

(23)

is well defined as already discussed for the function
ρ′(ω) in Eq. (16). Once the following set has been
defined

Ω2 =

{

ω : ρ(ω) <
1√
2L

}

(24)

the mapping in (20) is contractive ∀ω ∈ Ω2 and
a unique fixed point x̂ exists, for given ω and a1.
This means that a limit cycle can exist only with
a fundamental frequency belonging to the set

Ω = Ω2 − Ω1 (25)

In order to establish the existence of the limit
cycle, also a set containing the fundamental am-
plitude a1 must be sought. Bounds on the possible
amplitude a1 as solutions of Eq. (21), can be ob-
tained by searching for conditions that guarantee
that Eq. (21) admits a fixed point in Π1

∞. The
problem of the existence of the solution is solved
by the following

Theorem 2. At least a solution of Eq. (14) of the
type (13) exists if ω ∈ Ω and a1 < amax, with

amax =
√

2M sup
ω∈Ω

|G(jω)| (26)

PROOF. Define the closed convex subset of Π1
∞

K =
{

x1 ∈ Π1
∞ : ‖x1‖∞ ≤ amax

}

(27)

and consider the inequalities

‖Wx1‖∞ = ‖P1gωΓ(x1 + x̂)‖∞
≤
√

2M sup
ω∈Ω

|G(jω)| = amax (28)

which mean that W maps K into K. The idea is
to apply Schauder’s fixed point theorem to prove
the existence of a sinusoidal signal x1 solution
of Eq. (21), hence compactness of the operator
W has to be firstly shown. To this aim, its

continuity must be proven. Fixed ǫ > 0 and
considering two signals x′ and x′′ belonging to
K and such that ‖x′ − x′′‖∞ < δǫ with δǫ =
ǫ/(

√
2L supω∈Ω |G(jω)|), it results

‖Wx′ −Wx′′‖∞= ‖P1gω

(

Γ(x′ + x̂) − Γ(x′′ + x̂)
)

‖∞
≤
√

2L sup
ω∈Ω

|G(jω)|δǫ = ǫ (29)

so W is continuous. Now, fix ǫ > 0 and consider
two time instants ta and tb in [0, 2π], then

|Wx1(ta) −Wx1(tb)| =

η|G(jω)|| cos(tb+ϕ+∠G(jω))−cos(ta+ϕ+∠G(jω))|
≤

√
2M sup

ω∈Ω
|G(jω)|ǫ′ = ǫ (30)

where η and ϕ are amplitude and phase of the
first harmonic of the signal Γ(x1 + x̂), and the
continuity of the cosinusoidal function has been
usefully exploited, i.e.

∀ǫ′ > 0 ∃δ > 0 : |tb − ta| < δ ⇒
| cos(tb+ ϕ+∠G(jω))−cos(ta+ ϕ+∠G(jω))|<ǫ′

with ǫ′ = ǫ/(
√

2M supω∈Ω |G(jω)|). By observ-
ing that Eq. (30) is valid for every x1 ∈ K,
equicontinuity of W (K) is proved, and thus the
Ascoli-Arzelà theorem (?) ensures compactness
of W : K → K. In conclusion, according to
Schauder’s theorem (?), Eq. (21) has at least one
fixed point in K.

4. COMPUTING THE PERIODIC SOLUTION

In order to compute the periodic solution x(t), the
parameters a1 and ω of the first harmonic have to
be computed as well as the higher harmonics term
x̂(t). In the previous section it has been shown
that Eq. (20) admits a unique solution for each
fixed couple (a1, ω). Also, a solution of Eq. (21)
can exist only for couples (a1, ω) ∈ K × Ω. As
both members of Eq. (21) involve only sinusoidal
signals, it is easy to see that it is equivalent to the
phasor equation

1

G(jω)
= N(a1, ω, x̂) (31)

where

N(a1, ω, x̂) =
η1(a1, ω, x̂)e

jϕ1(a1,ω,x̂)

a1
(32)

being η1, ϕ1 amplitude and phase of the first
harmonic of the signal −Γ(x1 + x̂). Therefore, the
algorithm to compute the solution, could proceed
as follows

1. fix a starting guess couple (a1, ω) ∈ K × Ω
2. compute x̂ by solving Eq. (20) (e.g. by Picard’s

iteration method)



−15 −10 −5 0 5

x 10
−7

0

2

4

6

8
x 10

−7

ℜ(·)

ℑ(
·)

1/G(jω)

−F (a1)
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3. solve Eq. (31) by standard nonlinear optimiza-
tion algorithm

Note that at each iteration of the optimization
problem of the third step, for the new “guess-
couple” (a1, ω) the solution of Eq. (20) must be
computed again. It is worth underlining that no
computation of the describing function of the
Preisach operator is necessary, as required, in-
stead, by the algorithm proposed in (?). Further-
more, the proposed procedure works also in cases
where the describing function method cannot be
applied, as shown next.

5. CASE STUDIES

Two case studies will be presented. In the first one,
a feedback system, of the type in Fig. 2, containing
a magnetic transducer modelled as a Preisach
operator is considered. The parameters of the
Preisach model have been identified according
to the procedure proposed in (?) based on the
measurement of the first order reversals branches
of the ferromagnetic material. The linear part
of the feedback loop is modelled as the transfer
function

G(s) = −4.8 · 106 s2 − 2s

s3 + 7s2 + 6.5s+ 3
(33)

Before presenting the analysis with the proposed
procedure, application of one of the methods
based on the describing function is attempted.
The describing function F (a1) of the Preisach
operator is computed as described in (?), but
the results of (?; ?), based on the degree theory,
cannot be applied because the diagrams of −F (a1)
and of the frequency response function 1/G(jω)
do not intersect (Fig. 3).

To apply the method presented here, the set Ω is
firstly computed. To this aim, the functions ρ(ω)
and ρ′(ω) defined in Eq. (23) and Eq. (16) re-
spectively, together with the Lipschitz constant in
Eq. (3) are computed (L ≃ 5 · 10−7). From Fig. 4,
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Fig. 4. First case study: functions ρ(ω) (dotted)
and ρ′(ω) (dashed) for determination of the
set Ω

it is easy to see that Ω = [ω1, ω2], where ω1 =
2.17 rad/s and ω2 = 2.98 rad/s. To compute the
fundamental frequency and amplitude of the peri-
odic solution a starting guess is chosen for the op-
timization algorithm. The setK has to be selected
by computing amax =

√
2M supω∈Ω |G(jω)| ≃

1542. With the starting guess a1 = 1090, ω =
2.34, the algorithm computes a solution with a1 =
1097.8, ω = 2.355. A time period of the computed
signals is reported in Fig. 5, where the computed
solution is compared to the solution obtained by
numerically simulating the feedback system. It is
evident that the result obtained by applying the
proposed algorithm is quite accurate.

The second case study concerns a micro-position-
ing system adopting a magnetostrictive actuator
produced by Energen, Inc. and equipped with
displacement and current sensors, and a current
amplifier. The experimental setup comprises a
dSPACE rapid prototyping system. For the im-
plementation of the linear part of the control
system, we have used a modular dSPACE system
with a DS 1005 board, equipped with a Motorola
PowerPC750 processor at 480 MHz, a DS 2001
ADC board with 16 bit channels and 5µs sample
time and a DS 2102 DAC board, with 16 bit chan-
nels and 2µs settling time. The considered linear
subsystem has transfer function

G(s) =
1470s

(s+ 8)(s+ 9)(s+ 10)(s2 + 7s+ 49)

while the hysteretic behaviour of the actuator is
modelled through a Preisach operator whose Ev-
erett integral has been experimentally identified
on the measured first order reversal curves and
analytically expressed by means of a fuzzy uni-
versal approximator (?). The Lipschitz constant
of this model is L ≃ 54µm, while M = 29µm.
In Fig. 6 the typical butterfly-shaped hysteresis
cycle of the actuator can be recognized, plotted as
a dashed line. It is well-known that this particular
shape causes the effect of frequency doubling typ-
ical of magnetostrictive actuators, and to avoid
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this, a dc component of 0.75A has been added
to the actuator input current. Note that this dc
component does not play any special role owing
to the band-pass nature of the linear filter and to
the vertical congruency of the Preisach operator
(see (?)). The same figure also reports the limit
cycle exhibited by the closed-loop system, which
is a minor hysteresis loop of the actuator. This
periodic solution can be foreseen and computed by
the method described so far by repeating the same
steps followed in the first case study. The deter-
mination of the sets Ω1 and Ω2 leads to the limit
frequencies ω1 = 8.67 rad/s and ω2 = 17.11 rad/s;
therefore, Ω = [ω1, ω2]. By applying the algorithm
of Section 4, the computed periodic solution has
fundamental frequency 9.219 rad/s and amplitude
1.289A, in very good accordance with the exper-
imentally measured limit cycle.

6. CONCLUSIONS

The paper presents a study of feedback control
systems employing a component affected by hys-
teresis with non-local memory. The problem of the
existence of limit cycles is tackled by resorting
to Preisach hysteresis operators and to classical
functional analysis tools. An algorithm to foresee
and compute the parameters of the limit cycle is

presented and tested in two case studies, both in
simulation and experimentally.


