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1. INTRODUCTIONFuzzy logi-based ontrol systems have been sub-jeted to a big growth of industrial appliationsduring the reent years as well as to big e�ort tostudy their properties and inrease their reliabil-ity, mainly beause of their satisfatory results indealing with highly nonlinear systems with a goodompromise between simpliity and auray.Among fuzzy systems, those de�ned in (Takagiand Sugeno 1985) have been onsidered as themost onvenient for analysis and design, beauseof their simpliity and eÆieny in modelling non-linear systems. First attempts on investigation ofstability of Takagi-Sugeno fuzzy systems (TSFS)were made employing ommon Lyapunov fun-tions as in (Tanaka and Sugeno 1990), (Tanaka1 This work has been supported by the projet INGO1P2004LA231 from the Ministry of Eduation of the CzehRepubli, by the Mexian Counil of Siene and Tehnol-ogy (CONACYT) via sholarship 121109 and the projetGACR 102/04/P050, sponsored by the Grant Ageny ofthe Czeh Republi.

and Sugeno 1992), (Chen and Ying 1993) and(Farinwata and Vahtsevanos 1993). Controllersynthesis under this sheme was ahieved, inlud-ing a lot of performane requirements as deayrate, input or output onstraints, robustness andoptimality (Tanaka and Sano 1994), (Wang etal. 1996), (Tanaka et al. 1998) and (Tanaka andWang 2001).Nevertheless, analysis and design based on om-mon Lyapunov funtions lak exibility beauseof their onservativeness. In order to relax thisrestritions, a number of reent stability analy-sis proedures based on pieewise quadrati Lya-punov funtions have been developed (Johans-son et al. 1999), (Rantzer and Johansson 2000),(Feng 2004). In a very reent work (Feng 2003),ontroller synthesis under this sheme was madepossible by onstruting ontrollers in suh a waythat a pieewise ontinuous Lyapunov funtionan be used to establish the global stability withH1 performane. Moreover, this synthesis an beahieved by means of linear matrix inequalities



(LMIs), whih an be solved with ommeriallyavailable software.In the present paper, two performane harateris-tis are added to the ontroller designed in (Feng2003): onstraints on the input and onstraintson the output. Both of them an be implementedindependently via LMIs and follow naturally fromthe elementary ases in (Tanaka et al. 1998).This paper is organized as follows: setion 2 intro-dues the dynamial fuzzy systems and pieewisequadrati design this work is based on; setion3 shows new results on input and output on-straints; setion 4 illustrates the previous resultswith some examples and, �nally, setion 5 drawssome onlusions.2. FUZZY SYSTEMS AND PIECEWISEQUADRATIC DESIGNConsider the following Takagi-Sugeno fuzzy sys-tem as in (Feng 2003):Rl : IF x1 is F l1 AND � � � xn is F ln THEN_x(t) =Alx(t) +Blu(t) +Dlv(t)zl(t) =Hlx(t); (1)l = 1; 2; � � � ;mwhere Rl denotes the lth fuzzy rule, m is thenumber of rules, F lj the fuzzy sets, x(t) 2 Rnthe state vetor, u(t) 2 Rp the ontrol input,z(t) 2 Rr the ontrolled output and Al; Bl; Dl; Hlthe lth loal model of the fuzzy system (1).The previous sheme an be ompatly rewrittenonsidering membership funtions �l(x) � 0, asfollows:_x(t) = A(�)x(t) +B(�)u(t) +D(�)v(t)z(t) = H(�)x(t) (2)where A(�) = mXl=1 �lAl B(�) = mXl=1 �lBlD(�) = mXl=1 �lDl H(�) = mXl=1 �lHlPieewise quadrati stability is based on statespae partitioning. In (Feng 2003) a partition'smethod is proposed in order to ahieve globallystable ontroller with disturbane attenuation.Following similar lines, let us divide the state-spae as follows:Sl = Sl [ �Sl; l = 1; 2; � � � ;m (3)

whereSl = fx j �l(x) > �i(x); i = 1; 2; � � � ;m; i 6= lgand its boundary�Sl = fx j �l(x) = �i(x); i = 1; 2; � � � ;m; i 6= lg:In addition, let us de�ne L as the set of subspaeindexes, so we an desribe (2) as follows:_x(t) = (Al +�Al)x(t) + (Bl +�Bl)u(t)+(Dl +�Dl)v(t)z(t) = (Hl +�Hl)x(t)for x(t) 2 Sl, where�Al = Xi2Ml �i�Ali �Bl = Xi2Ml �i�Bli�Dl = Xi2Ml �i�Dli �Hl = Xi2Ml �i�Hli�Ali = Ai �Al �Bli = Bi �Bl�Dli = Di �Dl �Hli = Hi �HlMl = fi j �i 6= 0; �l � �ig:Pieewise Lyapunov funtion is onstruted as in(Johansson et al. 1999):V (t) = xTRlx; x 2 Sl; l 2 L (4)with Rl = F Tl TFl; l 2 LFlx = Fjx; x 2 Sl \ Sj ; l; j 2 L:Employing parallel distributed ompensation (PDC)u(t) = Kx(t) = mXl=1 �lKlx(t) x 2 Sl; l 2 L(5)the system (1) beomes:_x(t) = A(�)x(t) +D(�)v(t)z(t) = H(�)x(t) (6)whereA(�) = A(�) +B(�)K(x) D(�) = D(�)H(t) = H(�)Then, ontroller synthesis an be ahieved aord-ing to the following theorem (Feng 2003):



Theorem 1 : Given a onstant  > 0, (6) isglobally stable with disturbane attenuation , ifthere exist onstants �l > 0, l = 1; 2; � � � ;m, asymmetri matrix T and a set of matries Ql; l 2L suh that withPl = (F Tl Fl)�1F Tl TFl(F Tl Fl)�1Pl = R�1l ; l 2 L (7)the following LMIs are satis�ed:0 < Pl; l 2 L24 
l Pl QTlPl �M�1Pl 0Ql 0 �M�1Ql 35 < 0; l 2 L (8)where 
l=PlATl +AlPl+QTl BTl +BlQl+�l(ElAETlA+ElBETlB)+�2�1+ 1�l�DlDTl +�2(1+�l)ElDETlDMPl = 1�l I+�1+ 3�l�HTl Hl+�1+2�l+ 1�l�ETlHElHMQl = 1�l I[�Al(�)℄[�Al(�)℄T � ElAETlA[�Bl(�)℄[�Bl(�)℄T � ElBETlB[�Dl(�)℄[�Dl(�)℄T � ElDETlD[�Hl(�)℄[�Hl(�)℄T � ElHETlHwith matries ElA, ElB , ElC , ElD and ElH beingupper bounds for the unertainty terms that anbe easily alulated (see (Feng 2003)).The ontroller gain for eah loal subsystem isgiven by Kl = QlP�1l ; l 2 L: (9)The pieewise Lyapunov funtion an be thenexpressed as in (4).3. CONSTRAINTS ON INPUT AND OUTPUTResults in (Feng 2003), briey desribed in theprevious setion, an be extended by onsideringonstraints on input and output.Theorem 2 Assume that the initial ondition x(0)in system (6) is known. The onstraint ku(t)k2 <� is enfored at all times t � 0 if the LMIs

� 1 x(0)Tx(0) Pl � � 0; l 2 L (10)� Pl QTlQl �2I � � 0; l 2 L (11)hold, where Pl and Ql are de�ned as in Theorem1. Then Kl = QlP�1l ; l 2 L.Proof: Without loss of generality, suppose thatV (0) = xT (0)Rlx(0) � 1; l 2 L; x(0) 2 Sl: (12)From (7) and (12), we have 1�xT (0)P�1l x(0) � 0,so by Shur omplement we arrive to the LMI (10).Condition ku(t)k2 < � ombined with (5) an berewritten as follows:uT (t)u(t) = mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t)� �2from whih1�2 mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t) � 1: (13)Notie that sine xT (t)P�1l x(t) � xT (0)P�1l x(0) �1 for t > 0, if1�2 mXl=1 mXj=1 �l(x)�j(x)xT (t)KTl Kjx(t)� xT (t)P�1l x(t)then (13) holds. Therefore, ondition (11) an beobtained from the previous inequality, whih anbe transformed as follows:mXl=1 mXj=1 �l(x)�j(x)xT (t)� 1�2KTl Kj � P�1l �x(t)� 0and by Shur omplementmXl=1 �l(x) � P�1l KTlKl �2I � � 0:Congruene with the full rank matrix� Pl 00 I �leads to (11), where Kl = QlP�1l ; l 2 L, whihompletes the proof.Theorem 3 Assume that the initial ondition x(0)in system (6) is known. The onstraint kz(t)k2 <� is enfored at all times t � 0 if the LMIs



� 1 x(0)Tx(0) Pl � � 0; l 2 L (14)� Pl PlHTlHlPl �2I � � 0; l 2 L (15)hold, where Pl and Ql are de�ned as in Theorem1. Then Kl = QlP�1l ; l 2 L.Proof: Proof follows the same lines as that forTheorem 2. 4. EXAMPLEIn order to illustrate the inuene of the input andoutput onstraints, onsider the following exampletaken from (Feng 2003), orresponding to a balland beam system:R1 : IF x1 > 0 THEN_x(t) = A1x(t) +B1u(t) +D1v(t)z1(t) = H1x(t)R2 : IF x1 < 0 THEN_x(t) = A2x(t) +B2u(t) +D2v(t)z2(t) = H2x(t) (16)whereA1 = 2664 0 1 0 00 0 �bg �2b�0 0 0 10 0 0 0 3775 ; B1 = 2664 0001 3775D1 = [0 0 0 1℄T ; H1 = [1 0 0 0℄A2 = 2664 0 1 0 00 0 �bg 2b�0 0 0 10 0 0 0 3775 ; B2 = 2664 0001 3775D2 = [0 0 0 1℄T ; H2 = [1 0 0 0℄� = 0:01; b = 0:7143; g = 9:81and x(t) = [x1 x2 x3 x4℄T is the state vetor,where x1 represents the ball position, x2 the ballveloity, x3 the beam angle and x4 the beam'sangular veloity. Notie also that z1 = z2 = x1.Fig. 1 shows the membership funtions employedin the example. Aording to the state-spae par-tition (3), we will have two subspaes for whih thefollowing haraterizing and bounding matriesan be taken:F1 = � �1 0 0 0I4�4 � ; F2 = � �1 0 0 0I4�4 �E1A = E2A = 0:5(A2 �A1)E1B = E2B = 0:5(B2 �B1)
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Fig. 1. Membership funtions and state-spae par-tition
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Fig. 2. Comparison of output signal x1 with andwithout onstraint
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Fig. 3. Comparison of input signal with and with-out onstraintE1D = E2D = 0:5(D2 �D1)E1H = E2H = 0:5(H2 �H1)Employing the synthesis proedure desribed inTheorem 1 with  = 100; �1 = �2 = 10, we havea feasible solution for LMIs (8) giving ontrollergainsK1 = [ 8.0334 10.4772 �40.0059 �11.2510℄and K2 = [ 7:9824 10:4272 �39:8936 �11:2299 ℄whih stabilize the system output x1 as is shown
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Fig. 4. Constrained output signal x1
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Fig. 5. Constrained input signalwith a solid line in Fig. 2. Corresponding ontrolsignal is also shown with a solid line in Fig. 3.In order to redue the magnitude of the on-trol input signal, LMIs (10-11) should be addedto those of (8). Choosing � = 3 under initialonditions x(0) = [0 0:1 0:1 0:1℄T , these LMIsproved to be feasible with ontroller gains K1 =[1.3398 1.9901 �9.4936 �3.6913℄ and K2 =[1.3248 1.9847 �9.5022 �3.6899℄. In Fig. 3,ontrol signal is shown with a dashed line to makelear the di�erene between non-onstrained andonstrained ase. Constraint ku(t)k2 � � has beensatisfatory aomplished.Constraints on the output an be satis�ed byadding LMIs (14-15) to the original design in (8).With � = 0:009 under initial onditions x(0) =[0 0:1 0:1 0:1℄T , these LMIs proved to be feasiblewith ontroller gains K1 = [ 5020.3 710.9 �690.1�47.3℄ and K2 = [ 6439.1 878.3 �847.8 �55.2℄.In Fig. 2 output signal z(t) = x1 is shown with adashed line so an be ompared with the originalone. Constraint kz(t)k2 � � holds.Finally, ombining all the previous shemes underthe initial onditions x(0) = [0 0:1 0:1 0:1℄Tto ahieve kz(t)k2 � 0:009 and ku(t)k2 � 4:2,LMIs (10-11), (14-15) and (8) proved to be fea-sible giving ontroller gains K1 = [ 284.5527
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