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1. INTRODUCTION

The aim of this paper is to quantify the difference
between two different ways to use Analysis of
Variance (ANOVA) as a tool for nonlinear system
identification.

In general, system identification is data centred.
Simple things are tried first; Is a linear model suf-
ficient to describe the data? To invalidate a linear
model, the residuals are examined with whiteness
tests and the fit of the model on validation data is
used to form an opinion of how good the model is.
Thus, a linear model is often available, or easily
computed.

ANOVA (Miller, 1997; Montgomery, 1991) can
be used for finding proper regressors and model
structure for a nonlinear model by fitting a locally
constant model to the response surface of the
data (Lind, 2000; Lind and Ljung, 2005, 2003).
A clever parameterisation of a locally constant
model makes it possible to perform hypothesis
tests in a balanced and computationally very

effective way. Let

y(t) = g(u(t), u(t − T ), . . . , u(t − kT )) + e(t)

= θT
1 ϕ1(t) + g2(ϕ2(t)) + e(t)

be a general nonlinear finite impulse response
model with input u(t) and output y(t), sampled
with sampling time T . Let ϕ1(t) be a vector
containing the regressors that affect the output
linearly (with parameters θ1) and ϕ2(t) the regres-
sors that affect y(t) nonlinearly through the func-
tion g2(·). Three main questions can be answered
by both running ANOVA directly on identification
data and running ANOVA on the residuals from
a linear model:

• Should the regressor u(t − kiT ) be included
in the model at all, and should it be included
in ϕ1(t) or ϕ2(t)?

• What interaction pattern is present? Can g(·)
be divided into additive parts containing only
subsets of the regressors? What subsets?

• Are there nonlinear effects in the residuals
from a linear model?



There are much to be gained by the division into
a linear and a nonlinear subset of the regres-
sors (Ljung et al., 2004) instead of assuming a full
nonlinear model. The complexity of any black-box
type of model depends heavily on the size of ϕ2(t).

An idealised case is examined to quantify the
difference between running ANOVA directly on
identification data and first estimate an affine
(linear with constant offset) model and then run-
ning ANOVA on its residuals. The input signal is
chosen to keep computations simple, while being
sufficiently exciting to make a nonlinear black-box
identification possible.

The structure of the paper is as follows: First,
the true data model is stated. In section 3, the
linear model is estimated and the residuals are
formed. In section 4, ANOVA is run directly on
the estimation data, and in section 5 ANOVA
is run on the residuals from the linear model.
Section 6 explores the differences between the two
approaches and give examples. The conclusions
are made in section 7.

2. TRUE DATA MODEL

The system is a finite impulse response model:

y(t) = g(u(t), u(t − T )) + e(t), (1)

where e(t) ∼ N(0, σ2) is independent identically
distributed Gaussian noise with mean zero and
variance σ2. The input signal u(t) is a pseudo-
random multi-level signal with mean zero, in
which each level combination of u(t) and u(t −
T ) occur equally many times. The last condition
defines a balanced dataset and will give indepen-
dence between sums of squares. This type of signal
can be given a nearly white spectra, see Godfrey
(1993). The number of levels the signal assumes
is m and the levels are denoted ui, where i =
1, . . . ,m. An integer number, n, of periods from
the input/output data are collected and denoted
by ZN (N = np, where p is the length of the
period). g(·) is a function of two variables.

The results extend to more regressors, but since
the equations do not fit in this short format, only
two regressors are considered below.

3. ESTIMATION OF THE AFFINE MODEL

A linear FIR model with an extra parameter for
the mean level of the signal,

ŷ(t) = âu(t) + b̂u(t − T ) + ĉ

=
[

â b̂ ĉ
]





u(t)
u(t − T )

1



 = θ̂T ϕ(t),

is estimated using linear least squares (Ljung,
1999, page 203). The loss function

VN (θ,ZN ) =
1

N

N
∑

t=1

1

2
(y(t) − ŷ(t))2,

is minimised by the estimate

θ̂LS
N =

[

â b̂ ĉ
]T

= arg min VN (θ,ZN )

= [
1

N

N
∑

t=1

ϕ(t)ϕT (t)]−1 1

N

N
∑

t=1

ϕ(t)y(t).

For the pseudo-random multi-level input signal we
have that:

1

N

N
∑

t=1

u(t) = 0,
1

N

N
∑

t=1

u(t − T ) = 0, (2)

1

N

N
∑

t=1

u(t)u(t − T ) = 0, (3)

and

1

N

N
∑

t=1

u2(t) =
1

m

m
∑

i=1

u2
i = Ru.

If assumption (3) is not valid, change variables
to ũ(t − T ) = u(t − T ) − αu(t), such that

1/N
∑N

t=1 u(t)ũ(t − T ) = 0. Now,

[

1

N

N
∑

t=1

ϕ(t)ϕT (t)

]−1

=
1

Ru





1 0 0
0 1 0
0 0 Ru





and

1

N

N
∑

t=1

ϕ(t)y(t)

=
1

N

N
∑

t=1





u(t)
u(t − T )

1



 (g(u(t), u(t − T )) + e(t))

=
1

m2

m
∑

i=1

m
∑

j=1





uig(ui, uj)
ujg(ui, uj)
g(ui, uj)





+
1

nm2

m
∑

i=1

m
∑

j=1

n
∑

k=1





uieijk

ujeijk

eijk



 ,

where eijk is the value of e(t) when u(t) = ui and
u(t − T ) = uj for the k:th time, that is, the k:th
measurement in cell ij. With vector notation;

u =







u1

...
um






, 1 =







1
...
1






,

f =







f1

...
fm






=

1

m

m
∑

j=1







g(u1, uj)
...

g(um, uj)






=

G1

m
,

h =







h1

...
hm






=

1

m

m
∑

i=1







g(ui, u1)
...

g(ui, um)






=

GT 1

m
,



v =







v1

...
vm






=

1

mn

m
∑

j=1

n
∑

k=1







e1jk

...
emjk






=

E1

m
,

w =







w1

...
wm






=

1

mn

m
∑

i=1

n
∑

k=1







ei1k

...
eimk






=

ET 1

m
,

where Gij = g(ui, uj) and Eij = 1/n
∑n

k=1 eijk

is the noise average in cell ij, the parameter
estimates can be written as:

θ̂LS
N =













1

mRu

uT (f + v)

1

mRu

uT (h + w)

1

m2
1T (G + E)1













. (4)

The residuals from the affine model are denoted

ε(t) = g(u(t), u(t − T )) + e(t) − (θ̂LS
N )T ϕ(t)

4. ANOVA APPLIED TO THE DATA
DIRECTLY

The statistical analysis method ANOVA (Miller
(1997); Montgomery (1991), among many others)
is a widely spread tool for finding out which
factors contribute to given measurements. It has
been used and discussed since the 1930’s and is a
common tool in, e.g., medicine and quality control
applications.

The method is based on hypothesis tests with
F-distributed test variables computed from the
residual quadratic sum. There are several slightly
different variants (Miller, 1997). Here the fixed
effects model with two factors will be used.

Assume that the collected measurement data can
be described by a linear statistical model,

yijk = µ + τi + βj + (τβ)ij + wijk, (5)

where the wijk are independent Gaussian dis-
tributed variables with zero mean and constant
variance σ2. The parameter µ is the overall mean.
For each level i = 1, . . . ,m of the first re-
gressor (u(t)) there is a corresponding effect τi,
and for each level j = 1, . . . ,m of the second
regressor(u(t − T )) the corresponding effect is
βj . The interaction between the regressors is de-
scribed by the parameters (τβ)ij . The sum of a
batch of indexed parameters over any of its index
is zero.

For a linear (y(t) = au(t) + bu(t − T ) + e(t)) or
a non-linear additive system (y(t) = g1(u(t)) +
g2(u(t − T )) + e(t)), the interaction parameters
(τβ)ij are zero. These are needed when the non-
linearities have a non-additive nature, i.e., y(t) =
g(u(t), u(t − T )) + e(t).

Since the regressors are quantised, it is a very
simple procedure to estimate the model param-
eters by the computation of means. For example,
the constant µ would correspond to y..., while the
effects from the first regressor are computed as
τi = yi.. − y.... In each cell ij, for the model (1),

yijk = g(ui, uj) + eijk.

This gives the total mean over all cells (all data)

ȳ... =
1

m2
1T (G + E)1.

The m different row means ȳi.., and column means
ȳ.j., are given by

ȳi.. = fi + vi =
1

m
iT (G + E)1 and

ȳ.j. = hj + wj =
1

m
1T (G + E)j.

respectively. Here i and j are vectors with one
nonzero element in row i and j respectively. ‖i‖ =
‖j‖ = 1. The m2 different cell means are given by

ȳij. = iT (G + E)j,

ANOVA is used for testing which of the parame-
ters that significantly differ from zero and for esti-
mating the values of the parameters with standard
errors, which makes it a tool for exploratory data
analysis. The residual quadratic sum, SST , is used
to design test variables for the different batches
(e.g., the τi:s) of parameters. The total residual
sum of squares is divided into the four parts

SSd
A = nm

m
∑

i=1

τ2
i = nm

m
∑

i=1

(ȳi.. − ȳ...)
2

= nm

m
∑

i=1

(iT (f + v) −
1

m
1T (f + v))2

= (f + v)T A(f + v),

SSd
B = nm

m
∑

j=1

β2
j = nm

m
∑

j=1

(ȳ.j. − ȳ...)
2

= nm

m
∑

j=1

(jT (h + w) −
1

m
1T (h + w))2

= (h + w)T A(h + w),

SSd
AB = n

m
∑

i=1

m
∑

j=1

(τβ)2ij

= n
m

∑

i=1

m
∑

j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2

= n

m
∑

i=1

m
∑

j=1

((i −
1

m
)T Y(j −

1

m
))2

=
1

m
trace(YT AY) −

1

m2
1T YT AY1,

SSd
E =

m
∑

i=1

m
∑

j=1

n
∑

k=1

w2
ijk =

m
∑

i=1

m
∑

j=1

n
∑

k=1

(yijk − ȳij.)
2

=

m
∑

i=1

m
∑

j=1

n
∑

k=1

(eijk − ēij.)
2,



with A = nm(I − 1
m

11T ), Y = G + E and where
d stands for sums of squares computed directly
from the dataset ZN . The index for each part is
related to one batch of parameters in (5). If all the
parameters in the batch are zero, the correspond-
ing quadratic sum is χ2-distributed if divided by
the true variance σ2 (see, e.g., Montgomery (1991,
page 59)). Since the true variance is not available,
the estimate σ̂2 = SSE

m2(n−1) is used to form F -

distributed test variables, e.g., for τi;

vd
A =

SSd
A/(m − 1)

SSd
E/(m2(n − 1))

, H0
A,d : τi = 0 ∀i.

If all the τi:s are zero, vA belongs to an F -
distribution with m − 1 and m2(n − 1) degrees
of freedom. If any τi is nonzero it will give a large
value of vd

A, compared to an F -table. This is, of
course, a test of the null hypothesis that all the
τi:s are zero, which correspond to the case that
the regressor u(t) does not have any main effect
on the measurements y(t).

5. ANOVA APPLIED TO THE RESIDUALS
FROM THE AFFINE MODEL

In each cell ij we have the residuals

εijk = g(ui, uj) + eijk − âui − b̂uj − ĉ,

where the parameters â, b̂ and ĉ are computed
according to (4). The total mean is now given by

ε̄... =
1

nm2

m
∑

i=1

m
∑

j=1

n
∑

k=1

εijk

=
1

m2
1T (G + E)1 −

â

m
uT 1 −

b̂

m
uT 1 − ĉ = 0,

where the last equality is due to (2) and (4). The
row means changes to

ε̄i.. =
1

nm

m
∑

j=1

n
∑

k=1

εijk = iT (f + v − âu) − ĉ,

since the sum over uj is zero. The column means
are given by

ε̄.j. =
1

nm

m
∑

i=1

n
∑

k=1

εijk = jT (h + w − b̂u) − ĉ,

and, finally, the cell means are given by

ε̄ij. =
1

n

n
∑

k=1

εijk = iT (G + E)j − âiT u − b̂uT j − ĉ.

The sums of squares SSA and SSB are changed
to

SSr
A = nm

m
∑

i=1

(ε̄i.. − ε̄...)
2

= nm

m
∑

i=1

((iT −
1

m
1T −

iT u

mRu

uT )(f + v))2

= (f + v)T A1(f + v),

with A1 = nm(I − 1
m

11T − 1
mRu

uuT ), and

SSr
B = nm

m
∑

j=1

(ε̄.j. − ε̄...)
2

= nm
m

∑

j=1

((jT −
1

m
1T −

jT u

mRu

uT )(h + w))2

= (h + w)T A1(h + w).

It is easy to verify that

SSr
AB = n

m
∑

i=1

m
∑

j=1

(ε̄ij. − ε̄i.. − ε̄.j. + ε̄...)
2 = SSd

AB

(6)

and that

SSr
E =

m
∑

i=1

m
∑

j=1

n
∑

k=1

(εijk − ε̄ij.)
2

=
m

∑

i=1

m
∑

j=1

n
∑

k=1

(eijk − ēij.)
2 = SSd

E ,

where r stands for sums of squares computed from
the residuals from the affine model.

6. DIFFERENCES AND DISTRIBUTIONS

The sum of squares corresponding to the regressor
u(t), SSA, changes with the following amount
when an affine model is extracted from the data:

SSd
A − SSr

A = (f + v)T A2(f + v),

with A2 = A−A1 = n
Ru

uuT . The change in sums
of squares corresponding to the regressor u(t−T )
is

SSd
B − SSr

B = (h + w)T A2(h + w).

6.1 Distributions

From, e.g., Miller (1997), the following is known:

SSd
A ∼ σ2χ2(m − 1,

fT Af

σ2
),

SSd
B ∼ σ2χ2(m − 1,

hT Ah

σ2
),

SSd
AB ∼

σ2χ2((m − 1)2,
mtrace(GT AG) − 1T GT AG1

m2σ2
),

and

SS2
E ∼ σ2χ2(m2(n − 1)),

where ∼ χ2(d, ω) means distributed as a non-
central Chi-square distribution with d degrees
of freedom and non-centrality parameter ω. The
sums of squares SSd

A, SSd
B , SSd

AB and SSd
E are in-

dependently distributed if the dataset is balanced,
i.e., if all combinations of u(t) = ui, u(t−T ) = uj

are present equally many times in the input.



To find the distributions of SSr
A, SSr

B , SSd
A −

SSr
A and SSd

B − SSr
B the following theorems,

numbered as in Khatri (1980), can be applied. Let
v ∼ N(µ, σ2

vV) and q = vT Av + 2lT v + c. The
notation in Theorem 2 is changed from matrix
valued to vector valued v.

Theorem 2. q ∼ λσ2
vχ2(d, Ω

λ2σ2
v

) iff (i) λ is the

nonzero eigenvalue of VA (or AV) repeated d
times, (ii) (lT +µT A)V = kT VAV for some vector
k and (iii) Ω = (lT + µT A)V(lT + µT A)T and
µT Aµ+2lT µ+c = (lT + µT A)V(lT + µT A)T /λ.
q ∼ λσ2

vχ2(d) iff (i) VAVAV = λVAV and (ii)
(lT + µT A)V = 0 = µT Aµ + 2lT µ + c.

Theorem 4. Let qi = vT Aiv + 2lTi v + ci, i =
1, 2, where A1 and A2 are symmetric matrices.
Then q1 and q2 are independently distributed
iff (i) VA1VA2V = 0, (ii) VA2V(A1µ + l1) =
VA1V(A2µ+ l2) = 0 and (iii) (l1 +A1µ)T V(l2 +
A2µ) = 0.

Now set

q1 = SSr
A and q2 = SSd

A − SSr
A.

Let l1 = A1f , c1 = fT A1f ,

l2 = A2f , c2 = fT A2f and

v ∼ N(0,
σ2

nm
I).

Then independence is shown by;

(i) VA1VA2V = A1A2

=
n2m

Ru

(I −
1

m
11T −

1

mRu

uuT )uuT = 0,

since uT u = mRu and 1T u = 0.

(ii) VA2V(A1µ + l1) = A2A1f

=
n2m

Ru

uuT (I −
1

m
11T −

1

mRu

uuT ) = 0,

VA1V(A2µ + l2) = A1A2f = 0,

(iii) (l1 + A1µ)T V(l2 + A2µ) = fT A1A2f = 0

for the same reasons as in (i).

Since conditions (i),(ii) and (iii) in Theorem 4
are fulfilled, q1 and q2 (that is, SSr

A and SSd
A −

SSr
A) are independently distributed. The same

argument is valid for the independence of SSr
B and

SSd
B−SSr

B if all occurrences of f are replaced with
h and v with w. If assumption (3) is not valid, the
independence is lost.

To compute the distributions of q1 and q2 the
conditions in Theorem 2 are checked:

(i) λ1 = eig(VA1) = nm with d1 = m − 2.

λ2 = eig(VA2) = nm with d2 = 1.

(ii) (l1 + µA1)V = fT A1 = kT VA1V for k = f .

(l2 + µA2)V = fT A2 = kT VA2V for k = f .

(iii) Ω1 = (l1 + µA1)V(l1 + µA1)
T

= fT A1A1f = λ1f
T A1f and

µT A1µ + 2lT1 µ + c1 = c1 = fT A1f = Ω1/λ1.

Ω2 = (l2 + µA2)V(l2 + µA2)
T

= fT A2A2f = λ2f
T A2f and

µT A2µ + 2lT2 µ + c2 = c2 = fT A2f = Ω2/λ2.

By Theorem 2,

SSr
A = q1 ∼ σ2χ2(m − 2,

fT A1f

σ2
),

and

SSd
A − SSr

A = q2 ∼ σ2χ2(1,
fT A2f

σ2
).

As before, all SSA can be replaced by SSB if f is
replaced by h.

6.2 Interpretation

There are five test variables of interest:

vAB =
SSAB/(m − 1)2

SSE/m2(n − 1)
, H0

AB : (τβ)ij = 0 ∀i,

vd
A =

SSd
A/(m − 1)

SSE/m2(n − 1)
, H0

A,d : τi = 0 ∀i,

vd
B =

SSd
B/(m − 1)

SSE/m2(n − 1)
, H0

B,d : βj = 0 ∀j,

vr
A =

SSr
A/(m − 2)

SSE/m2(n − 1)
, H0

A,r : τi = 0 ∀i,

vr
B =

SSr
B/(m − 2)

SSE/m2(n − 1)
, H0

B,r : βj = 0 ∀j.

All of these belong to F-distributions if the corre-
sponding null hypotheses are true, that is, large
values of the test variables (compared to an
F (d1, d2)-table) are interpreted as that there are
effects from the corresponding regressor. If vAB

is large an interaction effect between u(t) and
u(t − T ) is assumed. This means that the system
can not be decomposed into additive subsystems.
If vAB is small, the null hypothesis can not be
rejected, so it is assumed that the system can be
decomposed into additive subsystems. For both
vd

A and vr
A large, the interpretation is that the

effect from u(t) is nonlinear. If vd
A is large, but

vr
A is small, the effect from u(t) can be described

by the linear model. If both vd
A and vr

A are small,
u(t) can not be shown to affect the output of the
system. The same reasoning built on vd

B and vr
B

is valid for the effects from u(t − T ).

Since SSAB is not changed when the linear model
is extracted from the data, see (6), we can make
the conclusion that all information about the
interactions in the system is left in the residuals.
The interaction information is not destroyed by
subtracting a linear model in a balanced dataset.



6.3 Linear example

Let the true system be given by

y(t) = au(t) + bu(t − T ) + e(t).

Then f = au and h = bu. This gives

SSAB ∼ σ2χ2((m − 1)2, 0),

SSd
A ∼ σ2χ2(m − 1, nm2a2Ru/σ2), (7)

SSd
B ∼ σ2χ2(m − 1, nm2b2Ru/σ2), (8)

and

SSr
A, SSr

B ∼ σ2χ2(m − 2, 0). (9)

The size of the non-centrality parameters in (7)
and (8) depends on how many data are collected,
the size of the true linear effects and the variance
of the input and the noise. This is what effects the
power of the F-tests. In the sums of squares com-
puted from the residuals from the linear model
all dependence on the true model is removed (9).
Thus the conclusion can be made; that if SSr

A or
SSr

B are found to be large by the F-tests, then the
data are probably not collected from a true linear
system.

6.4 Quadratic example

Let y(t) = u2(t) + e(t). Then f = [u2
1, . . . , u2

m]T ,
h = 0, and

SSAB ∼ σ2χ2((m − 1)2, 0),

SSd
A ∼ σ2χ2(m − 1, ncd),

SSd
B ∼ σ2χ2(m − 1, 0),

SSr
A ∼ σ2χ2(m − 2, ncr),

SSr
B ∼ σ2χ2(m − 2, 0)

with

ncd =
n

σ2
(m

m
∑

i=1

u4
i − R2

u), and

ncr =
n

σ2
(m

m
∑

i=1

u4
i − R2

u −
1

Ru

(

m
∑

i=1

u3
i )

2)

Here, it is clear that it matters how the levels
of the input signal are chosen.

∑m
i=1 u3

i can vary
considerably while (2) is valid, since there are
no constraints on the level distribution. Also â
is proportional to

∑m
i=1 u3

i , so a large difference
between ANOVA directly and ANOVA applied to
the residuals means that the nonlinear effect have
been picked up by the affine model, due to irregu-
lar sampling of the function. If u(t) is symmetric
around its mean, it is clear that

∑m
i=1 u3

i = 0, so
ncd = ncr.

7. CONCLUSIONS

Applying ANOVA directly on a dataset was com-
pared to applying ANOVA on the residuals from

a linear model estimated with linear least squares.
The distributions for the sums of squares needed
for the ANOVA analysis in the latter case were
computed. These distributions were used to show
that by combining the two approaches ANOVA
is effective in finding what regressors give linear
effects and what regressors give nonlinear effects.
In section 6.2 it was shown how to divide the
regressors into a linear and a nonlinear subset,
depending on the outcome of the ANOVA tests.

The ability to structure the proposed nonlinear
function into additive parts depending on only
subsets of regressors is an ANOVA feature which
is not affected by subtraction of a linear model.
The results in the paper extend to more regres-
sors, but an important limitation is that the
dataset should be balanced, see section 2.
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