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Abstract: A controller design method using a frequency criterion is proposed in
this paper. The frequency criterion is defined as the weighted sum of squared errors
between the specified and computed values of the design parameters. These are the
infinity-norm of the sensitivity and complementary sensitivity functions and the
crossover frequency. The criterion is then minimized iteratively using the Gauss-
Newton method. Robustness against the model uncertainties are also investigated
by including uncertainty profiles in the criterion. Simulation examples show the
effectiveness and simplicity of the proposed method. Copyright c© 2005 IFAC
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1. INTRODUCTION

PID controllers are undeniably the most com-
monly used control algorithm for industrial pro-
cesses. In spite of their very simple structure, they
often perform well and can meet the specifications
provided that their parameters are properly cho-
sen.

The classical loop frequency specifications are
habitually expressed in terms of phase margin,
gain margin and crossover frequency (Ho et al.,
1995). An iterative model-free method proposed
in Karimi et al. (2003) is based on a frequency
criterion, which is defined as the weighted sum
of squared errors between the measured and de-
sired values of these design parameters. But gain
and phase margins only measure the distance in
certain specific directions. If one of them is small,
the closed-loop system is close to instability. How-
ever, for some systems like resonant mechanical
processes, this can be the case if both margins are
relatively large.

On the other hand, classical robust techniques
such as H∞-minimization solve successfully ro-
bust design issues. Their drawback consists mainly

in the fact that the obtained results are state-
space controllers having the same order as the
plant model, rather than low-order controllers
with fixed structure. Furthermore, low order plant
models containing time-delay, which are practi-
cally preferred for the tuning of controllers with
simple structures, cannot be handled by such tech-
niques.

Conversely, the proposed approach can handle
as well plant models with time-delay as systems
given only by a non-parametric model in the
freqency domain. It considers specifications on
the infinity-norm of the sensitivity and comple-
mentary sensitivity functions as well as on the
crossover frequency. These specifications represent
the stability and performances of the closed-loop
system. The controller parameters are then ob-
tained by minimizing a frequency criterion. A fur-
ther contribution of this paper is to give the possi-
bility of considering an unstructured uncertainty
profile in the design procedure. Since many on-line
identification methods for PID controller tuning
produce low-order models that are not always very
representative of real processes, the consideration



of uncertainties can be strongly desired, in order
to guarantee the stability of the real system.

The paper is organized as follows: The problem
is formulated is Section 2, the choice of the de-
sign parameters is motivated and the frequency
criterion is presented. In Section 3 the iterative
solution of the problem is presented, and simu-
lation examples are provided in Section 4. The
robustness against model uncertainties are treated
in Section 5. Finally some concluding remarks are
offered in Section 6.

2. PROBLEM FORMULATION

In this paper, we aim to propose a controller
design method that should be applicable to a
wide range of industrial plants. The plant model
is assumed to be linear and specified either by a
transfer function G(s) that can be of infinite order
(i.e. containing a time-delay) or a non-parametric
model G(jω).

The procedure is in particular adapted to tune the
parameters of PID controllers, which are the most
commonly used control algorithms in industrial
processes. However, it should be noted that the
proposed design procedure does not make any
assumption on the controller structure and is,
therefore, not restricted to PID controllers. The
only requirement is that an initial stabilizing
controller exists prior to the design.

2.1 Choice of Design Parameters

The choice of design parameters plays a crucial
role on the achieved performances and stability of
the closed-loop system. Design parameters must
ideally satisfy three principal requirements:

• They should have a universal character. In
other words, the choice of specified values
for the design parameters should be a pri-
ori known and should preferably not depend
on the system structure and parameters. In
particular, different processes with the same
controller structure, designed with the same
specifications, should exhibit similar behav-
iors, in a normalized time scale.

• The effect of specifications must be trans-
parent to the user. In other words, it should
be very intuitive which design parameter has
an direct influence on a specified closed-loop
system property.

• The design parameters should capture the
essence of the control problem. They should
reflect the stability, the robustness as well as
the time-domain performances of the closed-
loop system. Moreover, their number have to
be limited.

In the sequel, the chosen design parameters are
introduced.

Modulus Margin: Let the loop transfer function
be L(s) = K(s)G(s), where K(s) is the controller
transfer function and let the sensitivity function
be S(s) = (1 + L(s))−1. The sensitivity function
expresses the amplification of disturbances at the
output of the plant by the closed-loop system.
It also quantifies how sensitive is the closed-
loop system to variations of the considered plant.
The modulus margin Mm, which is defined as
the inverse of the infinity-norm of the sensitivity
function: Mm = ||S(s)||−1

∞ is chosen as a design
parameter for the proposed method. This value
is simply the shortest distance from the Nyquist
curve of the loop transfer function to the critical
point −1. It follows that the frequency response of
the open-loop system, satisfying this specification,
is tangent to the circle centered in (−1; 0) with
a radius of Mm. This ensures a lower bound
for the gain margin of 1

1−Mm

. Furthermore it is
related to the upper bound for the disturbances
amplification by the closed-loop system. Typical
values of Mm are in the range of 0.5-0.75.

Complementary Modulus Margin: Let the comple-

mentary sensitivity function be T (s) = L(s)
1+L(s) ,

which represents the transfer function from set-
point to process output. The second design pa-
rameter that we define as the complementary
modulus margin Mc, is equal to the inverse of
the infinity-norm of the complementary sensitivity
function: Mc = ||T (s)||−1

∞ . Its value is related to
the resonance peak of the transfer function from
setpoint to process output and thus constitutes an
important performance indicator of the response
to setpoint changes. It can be shown that the fre-
quency response of the open-loop system satisfy-
ing a given specification on Mc will be tangent to a
circle in the complex plane centered in (− 1

1−M2
c

, 0)

with a radius of Mc

1−M2
c

. The corresponding disk

defines a prohibited zone for the open-loop fre-
quency response in the complex plane. Note that
a specified value for Mc of 1 corresponds to a pro-
hibited disk of a radius infinitely large, and is in
the proposed procedure numerically not desired.
A specification on Mc ensures a lower bound for
the phase margin Φm of:

Φm ≥ − arccos(
M2

c − 2

2
) + π ≈ 63Mc − 3 (1)

Recommended value for the largest magnitude of
the complementary sensitivity function is typi-
cally between 1.0 and 1.5, which gives a comple-
mentary modulus margin Mc between 0.65 and
1.0. These values corresponds approximatively to
overshoots of 30% and respectively 0%.

Crossover Frequency: If desired by the control
designer, the proposed method allows also the



crossover frequency ωc to be considered as a
design parameter. ωc is defined as the frequency at
which the loop amplitude is one (|L(jωc)| = 1). A
specified value for ωc is however not a priori known
and depends especially on the plant dynamics.
Since the crossover frequency is closely related to
the rise time τ and thus to the bandwidth of the
closed-loop system, it constitutes a performance
indicator. Guiding rules on the choice of this
specification based on the desired rise time τ can
be formulated. The rule ωc = 2.3/τ gives often
satisfactory results in practice. It comes from the
consideration that the closed-loop system behaves
roughly like a second-order system. It applies
approximately and only to stable minimum-phase
systems.

2.2 Frequency Criterion

The problem, with design parameters discussed in
the previous sections, can now be formulated as
an optimization problem: Find a controller that
minimizes a frequency criterion, which is defined
as the weighted sum of squared errors between the
specified and computed values of the frequency
characteristics. The criterion is defined as:

J(ρ) =
1

2

(

λ1(Mm(ρ) − M∗
m)2

+λ2(Mc(ρ) − M∗
c )2 + λ3(ωc(ρ) − ω∗

c )2
)

(2)

where ρ is the vector of the controller parameters
of dimension nρ, λ1, λ2 and λ3 are weighting
factors, Mm and M∗

m are respectively the actual
and specified value of the modulus margin. Mc

and M∗
c are the actual and desired complementary

modulus margin and ωc and ω∗
c the actual and de-

sired crossover frequency. The weightings factors
are usually chosen as : λ1 = 1/M∗2

m , λ2 = 1/M∗2
c

and λ3 = 1/ω∗2
c , in order to normalize the terms

in the criterion. In the sequel it is assumed that
the value of Mm, Mc and ωc can be computed
numerically using the plant model and the in-hand
controller transfer function.

3. ITERATIVE SOLUTION

The controller parameters minimizing the crite-
rion can be obtained iteratively by the Gauss-
Newton method:

ρi+1 = ρi − γiR
−1J ′(ρi) (3)

where i is the iteration number, γi the step size,
R a positive definite matrix of dimension nρ × nρ

that can be chosen equal to the Hessian H for
a fast convergence and J ′(ρ) is the gradient of
the criterion with respect to ρ. Note that this
iterative algorithm gives only a local minimum
of the criterion, so the initial choice of controller
plays an important role.

The gradient of the criterion is given by:

J ′(ρ) = λ1(Mm − M∗
m)

dMm

dρ
+

λ2(Mc − M∗
c )

dMc

dρ
+ λ3(ωc − ω∗

c )
dωc

dρ
(4)

and the Hessian of the criterion is given by:

H(ρ) = λ1
dMm

dρ

(

dMm

dρ

)T

+ λ2
dMc

dρ

(

dMc

dρ

)T

+ λ3
dωc

dρ

(

dωc

dρ

)T

+ λ1(Mm − M∗
m)

d2Mm

dρ2

+ λ2(Mc − M∗
c )

d2Mc

dρ2
+ λ3(ωc − ω∗

c )
d2ωc

dρ2
(5)

The last three terms containing the second deriva-
tives can be neglected because they are small
especially in the neighborhood of the optimum. In
addition, this simplifies largely the computation of
the Hessian, which can be computed without any
additional information, since the remaining terms
are also present in the gradient. Hence:

H ≈ λ1
dMm

dρ

(

dMm

dρ

)T

+ λ2
dMc

dρ

(

dMc

dρ

)T

+ λ3
dωc

dρ

(

dωc

dρ

)T

(6)

Note that the rank of the Hessian is less or equal to
the number of design parameters effectively con-
sidered (number of non-zero λk, k = 1 . . . 3). Then
if the number of controller parameters is larger
than that of the design parameters, the obtained
Hessian is singular. To avoid this problem, one can
either reduce the number of controller parameters
(for a PID controller by fixing a constant ratio
between the integral and derivative term for ex-
ample), or consider a modified Hessian H̃ = H +
εI, where ε is a small positive number.

It now remains to determine the derivatives of
Mm, Mc and ωc with respect to the controller
parameters ρ.

3.1 Derivative of the Modulus Margin

Consider ωMm
as the frequency where the sensitiv-

ity function reaches its maximum value. ωMm
, is

obviously a function of the controller parameters
ρ. The term M ′

m(= dMm

dρ
) can then be computed

through the chain rule as follows:

M ′
m =

∂Mm

∂ρ
+

∂Mm

∂ω

∣

∣

∣

∣

ωMm

∂ωMm

∂ρ
(7)

The first term in the above equation can be
written as:

∂Mm

∂ρ
=

∂ |1 + L(jωMm
)|

∂ρ
(8)

Its numerical value can easily be computed, since
it does not contain any derivatives of the plant
model.



The second term:

∂Mm

∂ω

∣

∣

∣

∣

ωMm

=
∂|1 + L(jω)|

∂ω

∣

∣

∣

∣

ωMm

(9)

is the derivative of |1 + L(jω)| with respect to
the frequency at the minimum value of this func-
tion. Since the function |1 + L(jω)| and its first
derivative with respect to the frequency are con-
tinuous functions, the latter is obviously zero at
the minimum value of the function. Thus one has:
∂Mm

∂ω

∣

∣

ωM

= 0, and consequently:

M ′
m =

∂ |1 + L(jωMm
)|

∂ρ
(10)

Thus, the derivative of the modulus margin with
respect to the controller parameters can be com-
puted analytically without any derivatives of the
plant model, since these derivatives with respect
to the controller parameters are zero. The only
measurement of G(jωMm

) is sufficient for deter-
mining M ′

m.

3.2 Derivatives of the Complementary Modulus

Margin

The derivative M ′
c can be computed as:

M ′
c =

dMc

dρ
=

∂Mc

∂ρ
=

∂
∣

∣

∣

1+L(jωMc
)

L(jωMc
)

∣

∣

∣

∂ρ
(11)

where ωMc
is the frequency where the magnitude

of complementary sensitivity is maximal. The de-
velopments are identical to those made to com-
pute the derivative of the modulus margin and are
consequently omitted. But again, this derivative
does not contain any derivatives of the plant,
since its derivative with respect to the controller
parameters are zero.

3.3 Derivative of the Crossover Frequency

To compute the derivative of the crossover fre-
quency, we use the fact that the loop gain at ωc is
by definition always equal to 1. Its derivative with
respect to ρ is therefore zero (Karimi et al., 2003):

d|L(jωc)|

dρ
=

∂|L(jωc)|

∂ρ
+

∂|L(jω)|

∂ω

∣

∣

∣

∣

ωc

∂ωc

∂ρ
= 0 (12)

Thus dωc/dρ can be written as follows:

∂ωc

∂ρ
= −

∂|L(jωc)|

∂ρ

[

∂|L(jω)|

∂ω

∣

∣

∣

∣

ωc

]−1

(13)

The last term of Eq. 13 can be written as:

∂|L(jω)|

∂ω

∣

∣

∣

∣

ωc

= |G(jωc)|
∂|K(jω)|

∂ω

∣

∣

∣

∣

ωc

+

|K(jωc)|
∂|G(jω)|

∂ω

∣

∣

∣

∣

ωc

(14)

and thus contains a derivative of the plant with
respect to the frequency. If no parametric model
of the plant is available, this term can be approx-
imated with appropriate accuracy thanks to the
Bode’s integrals (Karimi et al., 2003) or using
numerical computations (Garcia et al., 2003).

4. SIMULATION EXAMPLES

Now, two different parametric plant models are
considered to illustrate the proposed method:

Gp1(s) =
−0.2s + 1

(s + 1)2
e−0.1s (15)

Gp2(s) =
1

s2 + 1.7s + 1
e−0.05s (16)

Since it is usual to include a noise filter for the
derivative term, the following controller structure
is used :

K(s) = Kp

(

1 +
1

Tis
+

Tds
Td

20 s + 1

)

(17)

For each plant model an initial PID controller is
first designed using the Kappa-Tau tuning rules
(K. J. Aström and T. Hägglund, 1995). This one
is an empirical method that also uses the infinity-
norm of the sensitivity function as a design param-
eter. The proposed method is then used to adjust
the robustness, stability and performances of the
closed-loop system. The specifications are set for
each closed-loop system to 1.40 for the infinity-
norm of the sensitivity function (M∗

m = 0.714)
and 1.03 for the infinity-norm of the complemen-
tary sensitivity function (M∗

c = 0.97). No value
is however specified for the crossover frequency
(λ3 = 0). A controller having only two parameters
can then be sufficient to minimize the criterion
and makes the Hessian strictly positive definit.
The number of controller parameters are set to
two by choosing the constant ratio Ti = 4Td

between the integral and derivative time. It is
pointed out in K. J. Aström and T. Hägglund
(1995) that this ratio is appropriate for many
industrial processes.

The resulting controllers are then compared with
those obtained with the Kappa-Tau method and
the Ziegler-Nichols tuning rules. It should be
noted that the Kappa-Tau method uses the same
specified value (1.40) for the infinity-norm of the
sensitivity function.
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Fig. 1. Step responses (dashed-dotted: Ziegler-
Nichols, dashed: Kappa-Tau, solid: proposed)
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Fig. 2. Nyquist plots (dashed-dotted: Ziegler-
Nichols, dashed: Kappa-Tau, solid: proposed)

To facilitate the comparison between the con-
trollers, the results are given in tables and graphs.
Step responses obtained in closed-loop with the
different controllers are compared in Fig. 1.

The details of design, the related performances
and robustness achievements are shown in Table 1,
where o stands for the overshoot (in %), and ts for
the settling time to 1% ([s]). These results show
that the proposed controller improve considerably
the time-domain performances of the closed-loop
system. In each case, both settling time and over-
shoot have been clearly reduced. Furthermore,
there is a large similarity between the responses
obtained with the same specifications on the de-
sign parameters. This shows that the modulus
margin and the complementary modulus margin
constitute suitable design parameters.

Figure 2 shows the Nyquist plots of the loop trans-
fer functions for each model. A circle correspond-
ing to the specified modulus margin and a part of
the circle corresponding to the specification on the
complementary modulus margin are also shown
in the figure. The Nyquist curves of the open-loop
systems designed with the proposed method fulfill
the requirement contrary to the others.

5. STABILITY ROBUSTNESS AGAINST
MODEL UNCERTAINTIES

Since a nominal plant model represents only an
approximation of the real process, modeling errors
might adversely affect the robustness and stability
of the control system. Therefore, it can be desired
to ensure a given modulus margin to a set of

models containing the real system and not only to
the nominal plant model. For this purpose, plant
model uncertainty profiles can be determined. The
proposed controller design method can then be
adapted by taking these profiles into account and
guarantee a specified lower bound for the modulus
margin of the real control process.

Unstructured uncertainties are practically pre-
ferred because of their generality: They can in-
clude parametric uncertainties as well as unmod-
eled dynamics. In particular, unstructured disk
uncertainties are chosen for detailed study, be-
cause these uncertainty profiles are easy to create
and their analysis is general and simple. On the
other hand, the obtained solution on the real
system will be conservative relative to the spec-
ifications.

Suppose first that the frequency response of a
nominal stable plant transfer function is Gn(jω)
and that the true physical process Gt(jω) belongs
to a set G of stable perturbed frequency responses
defined as:

Gt(jω) ∈ G = {Gn(jω)(1 + W (jω)∆(jω))} (18)

The uncertainty profile W (jω) is the frequency
response of a fixed stable transfer function that
gives upper bounds for the uncertainty ampli-
tude. ∆(s) is a variable stable function satisfying
‖∆(s)‖∞ 6 1. In this case the perturbation model
is said to be multiplicative. Now it is desired to
measure the minimal modulus margin M̃m for a
given controller, defined as the shortest distance
from the critical point −1 to all possible open-loop
frequency responses obtained from the model set
G, by varying ∆. M̃m can then be written as:

M̃m = inf
ω

(

inf
∆

∣

∣

∣
1 + K(jω)Gn(jω)

(

1 + W (jω)∆(jω)
)

∣

∣

∣

)

(19)

Eq. (19) expresses, that at every frequency, the
minimal distance from the critical point to the
uncertainty disk should be determined. Then the
minimum of these distances with respect to the
frequency gives M̃m. Fig. 3 depicts the Nyquist
plot of a nominal open-loop system with uncer-
tainty disks represented for two different frequen-
cies. It can easily be seen that, for a given fre-
quency, the minimal distance from the critical
point −1 to the corresponding disk is equal to the
distance from the critical point to the frequency
response of the nominal system, minus the radius
of the disk. Hence:

inf
∆

|1 + K(jω)Gn(jω)(1 + W (jω)∆(jω))|

= |1 + K(jω)Gn(jω)|−

|K(jω)Gn(jω)W (jω)| (20)

M̃m is then given by:



Table 1. Simulation results

Process Method Kp Ti Td Mm Mc ωc o ts

Ziegler-Nichols 4.11 1.22 0.303 0.47 0.552 1.87 41.4 5.58

Gp1 Kappa-Tau 2.11 1.45 0.369 0.70 0.869 1.11 13.3 6.08

Proposed 2.17 1.68 0.41 0.714 0.961 1.12 5.94 4.66

Ziegler-Nichols 20.7 0.539 0.135 0.344 0.324 4.59 61.5 5.25

Gp2 Kappa-Tau 11.27 0.781 0.180 0.543 0.505 3.36 42.9 4.4

Proposed 10.18 1.89 0.473 0.719 0.97 5.12 3.7 1.12
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Fig. 3. Nyquist diagram of a nominal open-loop
system with uncertainty disks represented at
two frequencies

M̃m = inf
ω

(|1 + K(jω)Gn(jω)|

−|K(jω)Gn(jω)W (jω)|) (21)

and can easily be computed numerically.

In the frequency criterion of Eq. (2), Mm should
now be replaced by M̃m to consider the robust-
ness against plant uncertainty. The derivative of
M̃m with respect to the controller parameters is
required to compute the gradient and Hessian of
the frequency criterion:

dM̃m

dρ
=

∂M̃m

∂ρ
+

∂M̃m

∂ω

∂ω̃Mm

∂ρ
(22)

where ω̃Mm
is the frequency on the open-loop

frequency response, which is determing for M̃m.
Under the assumptions that |Gn(jω)|, |K(jω)|,
|W (jω)| and their derivatives with respect to
the frequency are continuous functions, one has:
∂M̃m

∂ω
= 0, since M̃m is defined as the minimum of

a function of ω. Consequently:

dM̃m

dρ
=

∂|1 + K(jω̃Mm
)Gn(jω̃Mm

)|

∂ρ

−
∂|K(jω̃Mm

)Gn(jω̃Mm
)W (jω̃Mm

)|

∂ρ
(23)

This derivatives can be computed analytically
without any derivatives neither of the nominal
plant model nor of the uncertainty profile, This
information is interesting in a practical way, since
uncertainty profiles are often available in the form
of non-parametric models, and their derivatives

with respect of the frequency are not directly
known and can only be roughly approximated.

Other uncertainty models can be treated in a simi-
lar way. Approaches to get weighting functions in
practice are treated in Doyle et al. (1992) with
some examples.

6. CONCLUSION

An iterative method for designing the controller
parameters with specifications on the modulus
and complementary modulus margins as well as
the crossover frequency has been proposed. A fre-
quency criterion, defined as the weighted sum of
squared errors between the desired and computed
values of the design parameters, is minimized it-
eratively using the Gauss-Newton algorithm. The
approach is flexible relative to the available plant
model and the chosen controller structure.In ad-
dition, unstructured disk-like uncertainty profiles
can be taken into account in the frequency cri-
terion in a very simple way, to guarantee the ro-
bustness against model uncertainties. Simulation
results show that the tuning method produces ef-
fectively adapted controllers for industrial plants.
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