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1. INTRODUCTION

Linear matrix inequality (LMI) approach has been
developed by many researchers (see, for exam-
ple, Gahinet and Apkarian (1994), and Iwasaki
and Skelton (1994)) for synthesizing controllers
satisfying various performance specifications. It
turned out that in framework of this approach the
fixed-order control design is a nonconvex problem.
For computational solution of this problem, some
heuristic algorithms have been proposed by El
Ghaoui et al.(1997), Iwasaki (1999), Apkarian and
Tuan (2000) and others. In particular, this prob-
lem is reduced to finding two reciprocal matrices
satisfying LMI’s.
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In this paper, we suggest a new algorithm for
solving such a problem obtained by modification
of the algorithm proposed in Balandin and Kogan
(2004). The algorithm is implemented in MAT-
LAB as an iterative procedure on each iteration of
which the problem of minimizing a linear function
under LMI constraints is solved. The convergence
of this procedure is proved. Numerical results for
an inverted pendulum are given.

2. PROBLEM STATEMENT

Consider a linear time-invariant controlled system
described by the equations

ẋ = Ax + Bu ,
y = Cx ,

(1)

where x ∈ Rn is the state, u ∈ Rm is the control
input, y ∈ Rl is the measurement output. It is



required to construct a linear dynamic controller
of the k-th order in the form

ẋr = Arxr + Bry ,
u = Crxr + Dry ,

(2)

where xr ∈ Rk is the controller state, to provide
asymptotic stability for the closed-loop system

ẋc = Acxc , Ac =
(

A + BDrC BCr

BrC Ar

)
, (3)

where xc = col (x, xr), with a given degree of
stability β/2. In particular, for k = 0 we get a
static output controller u = Dry.

3. PRELIMINARY

In accordance with the LMI approach the control
objective is reformulated as a Lyapunov inequality

V̇ + βV < 0

for V (xc) = xT
c Xxc with XT = X > 0, which is

equivalent to the matrix inequality

AT
c X + XAc + βX < 0 . (4)

The controller parameters

Θ =
(

Ar Br

Cr Dr

)
(5)

are introduced so as

Ac = A0 + B0ΘC0 , A0 =
(

A 0
0 0

)
,

B0 =
(

0 B
I 0

)
, C0 =

(
0 I
C 0

)
.

(6)

Then (4) is represented in the form of LMI

Ψ + PT ΘT Q + QT ΘP < 0 (7)

with respect to the unknown parameters Θ, where

Ψ = AT
0 X + XA0 + βX ,

P = C0 , Q = BT
0 X .

(8)

According to Lemma (see Gahinet and Apkarian
(1994), and Iwasaki and Skelton (1994)) the in-
equality (7) holds if and only if

WT
P ΨWP < 0 , WT

QΨWQ < 0 , (9)

where WS denotes any matrix whose columns
form bases of the null bases of S. In the present
case,

WP = WC0 , WQ = WBT
0 X = X−1WBT

0
.

Substituting these expressions into (9), one gets
the following statement.

Proposition 1. The problem of stabilization of the
plant (1) with the degree of stability β/2 by
means of the k-th order controller (2) is feasible
if and only if there exists X > 0 satisfying the
inequalities

WT
C0

(AT
0 X + XA0 + βX)WC0 < 0 ,

WT
BT

0
(X−1AT

0 +A0X
−1+βX−1)WBT

0
<0.

(10)

If the conditions (10) hold and such a matrix
X has been found, the controller parameters are
solutions to LMI (7), where Ψ, P , and Q are given
in (8).

Introduce the matrix Y = X−1 and rewrite (10)
in the form of LMIs with respect to X and Y :

Φ1(X) < 0 , Φ2(Y ) < 0 , (11)

where

Φ1(X) = WT
C0

(AT
0 X + XA0 + βX)WC0 ,

Φ2(Y ) = WT
BT

0
(Y AT

0 + A0Y + βY )WBT
0

.

Then the problem under consideration is reduced
to search for reciprocal matrices X and Y (XY =
I) satisfying LMIs (11).

Remark 1. Taking into account the block struc-
ture of A0, B0, C0 and representing X and Y in
the form

X =
(

X11 X12

XT
12 X22

)
, Y =

(
Y11 Y12

Y T
12 Y22

)
, (12)

the inequalities (11) can be represented as

WT
C (AT X11 + X11A + βX11)WC < 0 ,

WT
BT (Y11A

T + AY11 + βY11)WBT < 0 .
(13)

4. A NEW ALGORITHM

Problem 1: find two reciprocal matrices X and
Y (XY = I) satisfying the LMIs Φ1(X) < 0,
Φ2(Y ) < 0.

To solve it consider another problem.

Problem 2: find

λmin = min{λ : X − Y −1 < λI, X > 0, Y > 0,

Φ1(X) < 0 ,Φ2(Y ) < 0 ,Φ3(X, Y ) < 0} ,

where

Φ3(X, Y ) =
(
−X I
I −Y

)
.

In this problem, λmin ≥ 0 due to the inequality
Φ3(X, Y ) < 0. Equality holds if and only if X
and Y are reciprocal matrices, and these are then
solutions to the Problem 1 as well.



To solve the Problem 2 it is required to minimize
a linear function under constraints one of which

X − Y −1 < λI (14)

is non-convex and, consequently, cannot be pre-
sented as LMI. For this problem we suggest an
optimization algorithm that involves an iterative
procedure at each step of which a minimum of
a linear function subject to LMI constraints is
found.

To this end, consider one more problem.

Problem 3: find

λmin = min{λ : Γ(X, Y,G1, G2) < λI, X > 0,

Y > 0 ,Φ1(X) < 0 ,Φ2(Y ) < 0 ,Φ3(X, Y ) < 0},

where

Γ(X, Y,G1, G2) = (I G1)
(

X I
I Y

) (
I

G1

)
+

(G2 I)
(

X I
I Y

) (
G2

I

)
,

and Gi = GT
i , i = 1, 2 are some specified matrices.

Note that in the Problem 3, instead of the inequal-
ity (14) the LMI with respect to X and Y is taken.
Furthermore, because of

Γ(X, Y,G1, G2) =

(G1 + Y −1)Y (G1 + Y −1)+

+(G2 + X−1)X(G2 + X−1)+

(X − Y −1) + (Y −X−1) ≥ 0

(15)

under Φ3(X, Y ) < 0, we have that, for G1 =
−Y −1 and G2 = −X−1, when λmin = 0, the cor-
responding X and Y are solutions to the Problem
1.

The algorithm consists of the following steps:

1. Set j = 0.
2. Fix G1 = G

(j)
1 and G2 = G

(j)
2 .

3. Solve the Problem 3 by means of the com-
mand mincx in MATLAB and find its solu-
tions λj+1, Xj , Yj .

4. Set G
(j+1)
1 = −Y −1

j , G
(j+1)
2 = −X−1

j and go
to step 2 for j = j + 1.

The process is assumed to be terminated when, at
least, one of the following two inequalities λj < ε
or |λj+1 − λj | < ε holds, where ε > 0 is a given
accuracy.

Theorem 1. For any initial matrices G
(0)
1 and

G
(0)
2 , the sequence λj generated by the algorithm

is nondecreasing and

lim
j→∞

λj = λ∗ ≥ 0, lim
j→∞

Xj = X∗, lim
j→∞

Yj = Y∗.

Proof. Evaluate variations of spectral radius ρ
of the matrix function Γ(X, Y,G1, G2) along algo-
rithm trajectories. Let us present

∆ρ = ρ(Γ(Xj+1, Yj+1, G
(j+1)
1 , G

(j+1)
2 ))−

ρ(Γ(Xj , Yj , G
(j)
1 , G

(j)
2 ))

in the form

∆ρ = ∆ρ1 + ∆ρ2 =

[ρ(Γ(Xj+1, Yj+1, G
(j+1)
1 , G

(j+1)
2 ))−

ρ(Γ(Xj , Yj , G
(j+1)
1 , G

(j+1)
2 ))]+

[ρ(Γ(Xj , Yj , G
(j+1)
1 , G

(j+1)
2 ))−

ρ(Γ(Xj , Yj , G
(j)
1 , G

(j)
2 ))] .

Due to the algorithm the expression in the first
square brackets is nonpositive since λ takes its
minimal value for X = Xj+1, Y = Yj+1. From
(15) it follows that

Γ(Xj , Yj , G
(j+1)
1 , G

(j+1)
2 )−

Γ(Xj , Yj , G
(j)
1 , G

(j)
2 ) =

(G(j+1)
1 + Y −1

j )Yj(G
(j+1)
1 + Y −1

j )+

(G(j+1)
2 + X−1

j )Xj(G
(j+1)
2 + X−1

j )−

(G(j)
1 + Y −1

j )Yj(G
(j)
1 + Y −1

j )−

(G(j)
2 + X−1

j )Xj(G
(j)
2 + X−1

j ) .

Now, in view of G
(j+1)
1 = −Y −1

j , G
(j+1)
2 = −X−1

j ,
we get

Γ(Xj , Yj , G
(j+1)
1 , G

(j+1)
2 )−

Γ(Xj , Yj , G
(j)
1 , G

(j)
2 ) =

−(Y −1
j − Y −1

j−1)Yj(Y −1
j − Y −1

j−1)

−(X−1
j −X−1

j−1)Xj(X−1
j −X−1

j−1) ≤ 0 .

Since A − B ≤ 0 implies ρ(A) ≤ ρ(B), we obtain
∆ρ ≤ 0. Therefore the sequence ρj is nonincreas-
ing and bounded from below and, consequently,
the limits mentioned in this theorem exist.

From the theorem it follows that the algorithm
may result in one of two possible situations. If
λ∗ = 0, then X∗Y∗ = I and X∗, Y∗ are solutions
to the Problem 1. In this case, the control problem
is feasible. If λ∗ > 0, one cannot make a decision
regarding feasibility of the above problem since
the convergence of this algorithm to the global
minimum in the Problem 3 is not guaranteed.
In the latter situation, it is recommended, for
example, to repeat the above process for other
initial values of G

(0)
1 and G

(0)
2 as it is usually

done in global optimization. The efficiency of the
proposed algorithm will be demonstrated in the
next section.



5. COMPUTATIONAL RESULTS

As an example we consider synthesizing a first
order output controller for stabilizing (with the
degree of stability β/2 = 0.005) inverted pendu-
lum described by the equation

ϕ̈− ϕ = u

with the measured variable y = ϕ. In this case,
we have

A =
(

0 1
1 0

)
, B =

(
0
1

)
, C = (1 0) .

We randomly generated the symmetric matrix
G

(0)
1 with elements within the interval [−1, 1] and

chosen G
(0)
2 = [G(0)

1 ]−1. The algorithm started
1000 times. The accuracy ε was equal to 10−6. The
algorithm was always successful and, in 990 cases,
less than or equal to 7 iterations were needed. For
example, for

G
(0)
1 =

 0.9 −0.538 0.214
−0.538 −0.028 0.783
0.214 0.783 0.524

 ,

after 3 iterations the algorithm terminated and
the differences between elements of the matrix
XY and those of the unit matrix were 10−8 order.

For comparison, we examined this problem using
the popular algorithm of El Ghaoui et al.(1997)
that minimizes trace of the matrix XY under LMI
constraints. After 100 iterations of this algorithm
we obtained

XY =

 1.01 −0005 0
−0.002 1.01 0

0 0 1

 ,

which is considerably worse than our result after
three iterations.

6. CONCLUSION

In this paper, we suggested a new algorithm of
searching reciprocal matrices satisfying LMI’s and
justified its convergence. The computational ex-
periments confirmed its effectiveness. This algo-
rithm can be utilized for various control design
problems which are formulated in terms of LMI’s
plus nonconvex constraint.
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