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Abstract: This paper presents a flatness-based control for a two-degree-of-freedom
parallel robot driven by two pairs of pneumatic muscle actuators. The robot
consists of a light-weight closed-chain structure with four moving links connected
by revolute joints. The two base joints are active and driven by pairs of pneumatic
muscles by means of a toothed belt and pulley. Exploiting differential flatness with
end-effector position and mean muscle pressures as flat outputs, a cascaded trajec-
tory control is designed. Simulation results demonstrate an excellent control per-
formance and point out the potential of this novel robot.Copyright c©2005 IFAC
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1. INTRODUCTION

Pneumatic muscles are tension actuators, which
consist of a fibre-reinforced vulcanised rubber tub-
ing with connection flanges at both ends. The
working principle is based on the specially de-
signed fibre structure that leads to a muscle con-
traction in longitudinal direction when the pneu-
matic muscle is filled with compressed air by
means of a proportional valve. Pneumatic muscles
offer several advantages in comparison to classi-
cal cylinders: significantly less weight, no stick-
slip effects, insensitivity to dirty working environ-
ment, and a larger maximum force. The achievable
closed-loop performance using such pneumatic
muscle actuators in combination with sophisti-
cated non-linear control has already been investi-
gated thoroughly by experiments at a one-degree-
of-freedom test rig (Aschemann and Hofer, 2004).
This experimental platform consists of a carriage
with pneumatic muscles arranged at opposite
sides, which allow for rectilinear movements on
two guideways. Current research at the University

of Ulm involves the use of pneumatic muscles as
actuators for parallel robots, which are known
for providing high stiffness, and especially for the
capability of performing fast and highly accurate
motions of the end-effector.

The parallel robot, which serves as a platform
for the development and the investigation of non-
linear control approaches, is depicted in fig. 1.
It is characterised by a closed-chain kinematic
structure formed by four moving links and the
robot base offering two degrees of freedom. All
joints are revolute joints, two of which - the cranks
- are actuated by a pair of pneumatic muscles,
respectively. Here, the coordinated contraction of
a pair of pneumatic muscles is transformed into
a rotation of the according crank by means of a
toothed belt and a pulley. The mass flow rate of
compressed air into and out of a pneumatic muscle
is controlled by means of a proportional valve. The
incoming air is available at a maximum pressure
of 7 bar, whereas the outlet air is discharged at
atmospheric pressure, i.e. 1 bar. To avoid pressure
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Fig. 1. Two-degree-of-freedom parallel robot
driven by pneumatic muscles

declines when large mass flow rates are required, a
compensator reservoir for each muscle is utilised.

In this paper, the modelling of the mechatronic
system is addressed first. Second, after proving
the flatness property for the proposed flat output
candidates, a cascade control based on differen-
tial flatness is envisaged for the resulting non-
linear system model. The control design for the
inner control loops involves decentralised pres-
sure controls for each pneumatic muscle with high
bandwidth, whereas the central outer control loop
design deals with decoupling control of the end-
effector position in the xz-plane and the two mean
pressures of both pairs of pneumatic muscles.
Thus, desired trajectories for the end-effector po-
sition in the xz-plane and the two mean pressures
of the according pairs of pneumatic muscles can
be tracked independently with high accuracy. The
trajectory control of the mean pressure repre-
sents an effective means for increasing stiffness
concerning disturbance forces acting on the end-
effector (Bindel et al., 1999). Simulation results
of the closed-loop system show excellent tracking
performance as well as steady-state accuracy.

2. NON-LINEAR SYSTEM MODELLING

As for modelling, the mechatronic system under
consideration is divided in a mechanical system
part and a pneumatic system part, which are
coupled by the torques resulting from the tension
forces of the pair of pneumatic muscles, respec-
tively. Here, as opposed to the model of (Carbonell
et al., 2001), the dynamics of the internal muscle
pressures is also taken into account.

2.1 Modelling of the Parallel Robot

The chosen multi-body model of the parallel robot
part consists of three rigid bodies (fig. 1): the two
cranks as actuated links with identical properties
(mass mA, reduced mass moment of inertia w.r.t.
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Fig. 2. Ambuigity of the inverse kinematics

the actuated axis JA, center of gravity distance
sA to the centre of gravity CA, length of the link
lA, pulley radius r) and the end-effector E (mass
mE), which can be modelled as lumped mass.
The inertia properties of the remaining two links
with length lP , which are designed as light-weight
construction, shall be neglected in comparison to
the other links.

The inertial xz-coordinate system is chosen in
the middle of the straight line that connects
both base joints with distance 2a, as depicted in
(fig. 1). The motion of the parallel robot is com-
pletely described by introducing two generalised
coordinates q1(t) and q2(t) that denote the two
crank angles, which are combined in the vector
q = [q1, q2]

T . Analogously, the vector of the end-
effector coordinates is defined as r = [xE , zE]T .

For a given end-effector position r the correspond-
ing crank angles follow from the inverse kinemat-
ics q = q(r, k1, k2), which can be determined
in symbolic form. The given ambuigity is taken
into account by introducing the configuration pa-
rameters k1 and k2 as shown in fig. 2. The re-
lationship between the corresponding velocities
is obtained by differentiation q̇ = J(r, k1, k2)ṙ,
where J(r, k1, k2) denotes the Jacobian. Analo-
gously, the acceleration relationship is given by
q̈ = J(r, k1, k2) r̈ + J̇(r, k1, k2) ṙ.

The direct kinematics yields the vector of end-
effector coordinates for given crank angles, i.e.
r = r(q, k3). Similar to the inverse kinematics,
the configuration parameter k3 is introduced to
cope with two possible configurations. The re-
lationships between velocities and between ac-
celerations are derived by taking advantage of
the inverse dynamics. This leads directly to ṙ =
J−1(q, k1, k2, k3)q̇ and r̈ = J−1(q, k1, k2, k3)[q̈ −
J̇(q, k1, k2, k3)ṙ]. At this, singularities in the Ja-
cobian can be avoided by model-based trajectory
planning.

The according equations of motion for the ac-
tuated links follow directly from the free-body
diagramm applying Euler’s Law
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JA · q̈1 = τ1 − mA · g · sA · cos q1

+F1E · lA · sinβ1 + η1, (1a)

JA · q̈2 = τ2 − mA · g · sA · cos q2

−F2E · lA · sinβ2 + η2. (1b)

Here, the drive torque τi of drive i depends on the
corresponding muscle forces, i.e. τi = r · [FMil −
FMir ]. The disturbance torque ηi accounts for
friction effects as well as remaining uncertainties
in the muscle force characteristics (5) of drive i,
respectively. The coupling forces F1E and F2E are
obtained from Newton’s Second Law applied to
the end-effector

[

mE · ẍE

m3 · (g + z̈E)

]

=

[

cos γ1 − cosγ2

sin γ1 sin γ2

] [

F1E

F2E

]

(2)

The equations of motion in minimal form for the
crank angles can be obtained in two steps. First,
the last equation has to be solved for the unknown
forces FiE , which then can be eliminated in (1a)
and (1b). Second, the substitution of the variables
γi = γi(q), βi = β(q), and r̈ = r̈(q, q̇, q̈) resulting
from direct kinematics leads to the envisaged
minimal form of the equations of motion

q̈ = q̈(q, q̇, τ1, τ2). (3)

2.2 Modelling of the Pneumatic Actuators

The parallel robot is equipped with four pneu-
matic muscle actuators. At this, the indices of all
variables describing a particular pneumatic mus-
cle are chosen as follows: the first index i = 1, 2
denotes the drive under consideration, described
by the generalised coordinate qi(t), whereas the
second index j = l, r stands for the mounting
position, i.e. for the left or the right pneumatic
muscle. A mass flow ṁMij into the pneumatic
muscle leads to an increase in internal pressure
pMij . In the case of a free movable muscle without
external forces, the increased internal pressure
results in an enlarged tubing diameter associated
with a contraction ∆`Mij,free of the muscle in
longitudinal direction due to specially arranged

fibres. This contraction effect can be exploited
to generate forces. The resulting force FMij of a
pneumatic muscle depends non-linearly on the ac-
cording internal pressure pMij as well as the con-
traction length ∆`Mij . The contraction lengths of
the pneumatic muscles are related to the gener-
alised coordinates, i.e. the crank angles qi0. The
position of the crank angle, where the correspond-
ing right pneumatic muscle is fully contracted, is
denoted by qi0. Consequently, by considering the
transmission consisting of toothed belt and pulley,
the following constraints hold for the contraction
lengths of the muscles

∆`Mil(qi) = r · (qi − qi0), (4a)

∆`Mir(qi) = ∆`M, max − r · (qi − qi0). (4b)

Here, ∆`M, max is the maximum contraction given
by 25% of the uncontracted length. The force
characteristic FMij(pMij , ∆`Mij) of the pneu-
matic muscle yields the resulting static tension
force for given internal pressure pMij as well as
given contraction length ∆`Mij . This non-linear
force characteristic has been identified by static
measurements and, then, approximated by the
following polynomial description

FMij = F̄Mij (∆`Mij) · pMij − fMij (∆`Mij)

=
3

∑

m=0

(

am · ∆`m
Mij

)

· pMi −
4

∑

n=0

(

bn · ∆`n
Mij

)

.

(5)

The dynamics of the internal muscle pressure fol-
lows directly from a mass flow balance in combi-
nation with the pressure-density relationship. As
the maximum internal muscle pressure is limited
by a maximum value of pMij,max = 7 bar, the
ideal gas equation pMij = ρMij · R · TMij can be
utilised as accurate description of the thermody-
namic behaviour of the compressed air. Here, the
density ρMij , the gas constant R, and the ther-
modynamic temperature TMij are introduced. For
the thermodynamic process a polytropic change of
state is employed

pMij

ρn
Mij

= const. or pMij =
p0

ρn
0

· ρn
Mij , (6)

where n denotes the identified polytropic expo-
nent. Thus, the relationship between the time
derivative of the pressure and the time derivative
of the density results in

ṗMij = n · R · TMij · ρ̇Mij . (7)

The mass flow balance for the pneumatic muscle
yields

ρ̇Mij · VMij = ṁMij − ρMij · V̇Mij . (8)

The volume characteristic of the pneumatic mus-
cle can be approximated with high accuracy by



the following non-linear function of both contrac-
tion length and muscle pressure, where the coeffi-
cients in this polynomial approximation have been
identified by measurements

VMij (∆`Mij , pMij) =

3
∑

m=0

am · ∆`m
Mij ·

1
∑

n=0

bn · pn
Mij .

(9)
Finally, by inserting (7) and (9) into (8), the
pressure dynamics for the muscle i becomes

ṗMij =
n

VMij + n ·
∂VMij

∂pMij
· pMij

[ R · TMij · ṁMij

−
∂VMij

∂∆`Mij

·
∂∆`Mij

∂qi

· pMij · q̇i

]

. (10)

3. FLATNESS-BASED FEEDBACK
CONTROL DESIGN

3.1 Differential Flatness

Differential flatness is a prerequisite for flatness-
based control of non-linear systems, which are
usually given in state space representation, i.e.
ẋ = f (x,u). A system is denoted as differentially
flat (Fliess et al., 1995) if appropriate flat outputs
y = y

(

x,u, u̇, . . .,u(`)
)

exist that

(i) allow for expressing all system states x and
all system inputs u as a function of these flat
outputs y as well as their time derivatives, i.e. x =
x

(

y, ẏ, . . .,y(β)
)

and u = u
(

y, ẏ, . . .,y(β+1)
)

,

(ii) are differentially independent, i.e. they are not
connected by differential equations.

If the first condition is fulfilled, the second condi-
tion is equivalent to dim(u) = dim(y).

3.2 Flatness-Based Pressure Control

The non-linear state equation (10) for the internal
muscle pressure pMij represents the basis for
the decentralized pressure control. It can be re-
formulated as

ṗMij = kuij (∆`Mij , pMij) · ṁMij

− kpij

(

∆`Mij , ∆ ˙̀
Mij , pMij

)

· pMij .
(11)

With the internal muscle pressure as flat output
candidate yijp = pMij , (11) can be solved for the
mass flow as control input uijp = ṁMij and leads
to the inverse model for the pressure control

ṁMij =
1

kuij (∆`Mij , pMij)
· [ṗMij

+ kpij

(

∆`Mij , ∆ ˙̀
Mij , pMij

)

· pMij ].

(12)

Since the internal pressure pMij as state variable
is identical to the flat output and dim (yijp) =

dim (uijp) = 1 holds, the differential flatness prop-
erty is proven. The contraction length ∆`Mij as

well as its time derivative ∆ ˙̀
Mij can be consid-

ered as scheduling parameters in a gain-scheduled
adaptation of kuij and kpij .

With the internal pressure as flat output, its first
time derivative ṗMij = vijp is introduced as new
control input. Consequently, the state variable of
the corresponding Brunovský form has to be pro-
vided by means of measurements, i.e. zijp = pMij .
Each pneumatic muscle is equipped with a pres-
sure transducer mounted at the connection flange
that connects the muscle with the toothed belt.
The scheduling parameter ∆`Mij results from the
measured crank angle qi, which is obtained by an
encoder providing high resolution. Furthermore,
the second scheduling parameter ∆ ˙̀

Mij is derived
from the crank angle qi by means of real differ-
entiation using a DT1-System with the transfer
function GDT1(s) = s/(T1 · s + 1). The error
dynamics of each muscle pressure pMij can be
asymptotically stabilised by the following control
law

vijp = ṗMijd + αijp · (pMijd − pMij), (13)

where the constant αijp is determined by pole
placement. Here, the desired value ṗMijd can
be obtained either by real differentiation of the
corresponding control input uij in (20) or by
model-based calculation using only desired val-
ues, i.e. ṗMijd = ṗMijd(rd, ṙd, r̈d, pMid, ṗMid). The
corresponding desired trajectories are obtained
from a trajectory planning module that provides
synchronous time optimal trajectories according
to given kinematic constraints. Defining epij =
pMijd − pMij as control error w.r.t. the internal
muscle pressure, the corresponding error dynam-
ics is governed by the first order differential equa-
tion

ėpij + αijp · epij = 0. (14)

In each input channel, the non-linear valve char-
acteristic (VC) is compensated by pre-multiplying
with its approximated inverse valve characteristic
(IVC). This inverse valve characteristic is imple-
mented as look-up-table and depends both on
the commanded mass flow and on the measured
internal pressure.

3.3 Flatness-Based Decoupling Control

For the outer control loop, the following flat out-
put candidates are chosen: the end-effector po-
sition in the xz-plane, i.e. xE and zE , and the
mean pressure for each pair of muscle, i.e. the
mean value pMi = (pMil + pMir)/2 of the left
and the right muscle pressure. The trajectory
control of the mean pressure allows for increasing



stiffness concerning disturbance forces acting on
the carriage (Bindel et al., 1999). As the decen-
tralised pressure controls have been assigned a
high bandwidth, these four subsidiary controlled
muscle pressures pMij can be considered as ideal
control inputs of the outer control loop. Subse-
quent differentiation of the first two flat output
candidates until one of the control inputs appears
leads to

y1 = xE , ẏ1 = ẋE ,

ÿ1 = ẍE (xE , zE, ẋE , żE, pM1j , pM2j) , (15a)

y2 = zE, ẏ2 = żE ,

ÿ2 = z̈E (xE , zE , ẋE , żE , pM1j , pM2j) , (15b)

whereas the third and fourth flat output candi-
dates directly depend on the control inputs

y3 = pM1 = 0.5 · (pM1l + pM1r) , (16a)

y4 = pM2 = 0.5 · (pM2l + pM2r) , (16b)

The differential flatness can be proven as follows:
all system states can be directly expressed by the
flat outputs and their time derivatives

xE = y1, ẋE = ẏ1, zE = y2, żE = ẏ2. (17)

Analogously, the internal muscle pressures as in-
puts are given by the following function of the
flat outputs and a finite number of their time
derivatives

u =









pM1l (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2, y3, y4)
pM1r (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2, y3, y4)
pM2l (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2, y3, y4)
pM2r (y1, ẏ1, ÿ1, y2, ẏ2, ÿ2, y3, y4)









. (18)

The non-linear state transformation that yields
the measured state variables of the corresponding
Brunovský form, i.e. the end-effector position and
the end-effector velocity in x− and z-direction, is
given by the direct kinematics of the parallel robot

zx =

[

xE(q)
ẋE(q, q̇)

]

, zz =

[

zE(q)
żE(q, q̇)

]

, (19)

Here, in contrast to the approach presented
in (Aschemann and Hofer, 2004), the end-effector
acceleration has not to be determined neither by
evaluation of the equation of motion (3) nor by
a double real differentiation of the measured po-
sition signal. By inserting the new defined inputs
v1 = ẍE , v2 = z̈E, v3 = pM1, and v4 = pM2

as well as the transformed states into (18), the
inverse dynamics becomes

u = u (zx, zz , v1, v2, v3, v4) . (20)

The error dynamics of the end-effector positions
xE and zE can be asymptotically stabilized with
the control laws
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Fig. 4. Control implementation

v1 = ẍEd + α2x · (ẋEd − ẋE) + α1x · (xEd − xE)

+α0x ·

∫ t

0

(xEd − xE)dτ, (21a)

v2 = z̈Ed + α2z · (żEd − żE) + α1z · (zEd − zE)

+α0z ·

∫ t

0

(zEd − zE)dτ. (21b)

Here, the desired trajectories for the end-effector
position in x-direction xEd and in z-direction zEd

as well as their first two time derivatives have to
be provided, whereas the desired trajectories for
the mean pressure of drive 1, i.e. pM1d, and the
mean pressure of drive 2, i.e. pM2d, are directly
employed in a feedforward manner

v3 = pM1d, v4 = pM2d. (22)

Due to the integral control parts, which are meant
to counteract the disturbance torque ηi acting on
drive i, respectively, and guarantee a vanishing
steady-state control error w.r.t. the end-effector
position, the dynamics of the corresponding posi-
tion errors in x-direction ex = xEd−xE as well as
in z-direction ez = zEd−zE are of third order. The
coefficients α2x, α1x, and α0x as well as α2z , α1z ,
and α0z are specified by pole placement according
to a desired pole configuration. The implemen-
tation of the flatness-based control structure is
depicted in fig. 4.

4. SIMULATION RESULTS

Tracking performance as well as steady-state ac-
curacy w.r.t. end-effector position and mean pres-
sure have been investigated by simulation studies
of a parallel robot with the following dimensions:
a = 0.5 m, lA = 0.4 m, sA = 0.2 m, lP = 0.8 m.
For this purpose, the tracking of a triangle-like
desired trajectory for the controlled variables as
shown in fig. 5 has been considered. At this, the
desired value for the mean pressure is held con-
stant at 4.0 bar.

The first part consists of a motion from the
starting point (x = 0 m, z = 1 m) to the
point (x = −0.2 m, z = 0.6 m). The second
part comprises a movement in x-direction by
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0.4 m to the point (x = 0.2 m, z = 0.6 m).
The third part involves the return motion to the
starting point. These fast trajectories have been
generated considering and, consequently, avoiding
saturation effects due to the mass flow limitations.

The corresponding tracking errors are depicted in
fig. 6. As for the end-effector position, the maxi-
mum tracking errors during the acceleration and
deceleration intervals are approx. 3 mm, whereas
the steady-state error becomes zero due to the in-
tegral control part. Concerning the mean pressure,
tracking errors of approx. 0.1 bar occur during the
acceleration and deceleration intervals, whereas
the steady-state error is less than 0.01 bar.

The corresponding desired values as well as ac-
tual values of the decentralised pressure controls
are depicted in figure 7. As can be seen, these
decentralised control loops achieve an excellent
tracking of the desired values provided by the
outer decoupling control.

5. CONCLUSIONS

In this paper, a cascaded trajectory control based
on differential flatness is presented for a parallel
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Fig. 7. Desired values and actual values of the four
muscle pressures

robot with two degrees of freedom driven by pneu-
matic muscles. The modelling of this mechatronic
system leads to a system of non-linear differential
equations of eigth order. For the characteristics of
the pneumatic muscles polynomials serve as good
approximations. The non-linearity of the valve is
linearised by means of a pre-multiplication with
its approximated inverse characteristic. The inner
control loops of the cascade involve a flatness-
based control of the internal muscle pressure with
high bandwidth. The outer control loop achieves
a decoupling of the end-effector position and the
mean pressures as controlled variables. Simulation
results emphasise the excellent closed-loop perfor-
mance with maximum position errors of approx.
3 mm during the movements, vanishing steady-
state position error and steady-state pressure er-
ror of less than 0.01 bar. Future research will
address experiments at a prototype system.
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