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Abstract: The paper focuses on the stochastic modelling of the quasi-periodic inter-
mittent demand patterns, which arise in the inventory management of the “slow
moving items” such as service parts or high-priced capital goods. It is proposed a
new stochastic model, which describes the demand patterns with essentially non-
exponential distribution of the inter-arrival times. The model is based on generalized
beta-binomial distribution and the Bayesian inference using the historical data array
describing the demand repeatability within the time periods. For this model, there
were derived explicit expressions for the forecast distributions, its moments and
relevant Bayesian risk. The efficiency of the proposed approach is confirmed by
computer simulation and an application example. Copyright © 2005 IFAC
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1. INTRODUCTION

Accurate demand forecasting is a principal compo-
nent of supply chain management allowing compa-
nies to balance service levels against investment over
large assortment of stock-keeping units (SKU) (Har-
ris,  1997; Silver et al., 1998). As follows from pre-
vious research (Snyder, 2002), large portion of SKUs
is usually made up by “slow moving items” with
irregular (intermittent) demand patterns, i.e. random
sequences with a large proportion of zeros and great
variability among the remaining nonzero integer val-

ues (Willemain et al., 2004). This paper addresses a
special case of the intermittent demand possessing
quasi-periodic regularity typical for many supply
planning systems, from retail sales to manufacturing
of high-priced capital goods.

The first heuristic technique for the intermittent de-
mand forecasting was developed by Croston (1972)
who applied separate exponential smoothing to both
the non-zero demand sizes and inter-arrival times
between successive demands. Later, the problem has
been addressed by a number of authors (Johnston and



Boylan, 1996, Syntetos and Boylan, 2001) who con-
centrated on improving the forecast accuracy and
proposed several modifications of the Croston’s
method, including EWMA-smoothing and log-
transformation of the data (both the demand values
and inter-arrival times) in order to avoid the positive-
space constraint. However, the corresponding model
variables were still deterministic and defined on a
continuous space. Consequently, all of these methods
do not produce forecast distributions and associated
prediction intervals (Shenstone and Hyndman, 2003).

The first stochastic demand models were based on
the Poison or NBD (negative-binomial) distribution,
they originated from research on stochastic inter-
purchase times and proved to be very accurate in
fitting of the aggregated data describing frequently
purchased goods (Dunn et al., 1983; Wagner and
Taudes, 1987; Gupta, 1991; Agrawal and Smith,
1996, Grange 1998). However, their basic assump-
tion on exponential (or gamma-exponential) distri-
bution of the inter-arrival times does not allow to
take into account quasi-periodicity in pur-
chases/visits, which becomes a vital issue for person-
alization of marketing decisions. To overcome this
problem, Telang et al. (2004) proposed recently a
hierarchical probabilistic model of user’s repeat vis-
its that incorporates Weibull, Laplace and double-
exponential distribution mixture to account for users’
schedule. This model was successfully applied to
forecasting of visits to massively popular Internet
web sites, but it seems to be hardly applied to inter-
mittent demand modelling, which possesses the
above mentioned specificities.

In this paper, the problem of quasi-periodicity is
solved within Bayesian framework, using the gener-
alized beta-binomial demand distribution (GBBD)
developed in our previous paper (Dolgui et al.,
2004). The demand repeatability is described by a
historical data array corresponding to a typical time
period, which also allows generating personalised
forecasts using non-aggregated demand data.

1. QUASI- PERIODIC DEMAND MODEL

Let us assume that the intermittent demand patterns
posses natural regularity over the time period T (24
hours, a week, etc.), the examined time interval
[0, kT] includes k periods, and the period T is uni-
formly divided in m time segments (1 hour, a day,
etc.). Following our previous paper (Dolgui et al.,
2004), let us also assume that, within these segments,
the demand data are arranged in an integer matrix
{sij, i=1…k, i=1…m}, where each observed value sij
is presented as a sum of n binary random variables
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where ),( βαB  is the complete beta function; α, β
and π0, π1 are the shape and range distribution pa-
rameters respectively. It should be noted that the
above formulation  accounts the quasi-periodicity via
the parameter arrays {αj, βj, j=1:m } defined and
varying on the time period [0, T], however below we
also apply the Bayesian framework based on the
historical data averaged for the similar time periods.

Under such assumptions, the columns of the demand
matrix {sij} obey the generalized beta-binomial de-
mand distribution, which is computed using the
above proposition, where )(j

rP  is the probability that
the demand for the j-th segment is equal to r.

Proposition 1. For the general-beta prior, the prob-
ability distribution of the intermittent demand can be
represented as the weighted sum of the shifted beta-
binomial pdfs
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P  is the probability that the de-

mand value for the j-th segment of the period is equal
to r, and the weights are computed as
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Proof of Proposition 1 is based on application of the
hypergeometric expansion and properties of the
complete beta function. First, using the linear trans-
formation θ⋅∆+π= 0p  with the standard-beta ran-
dom variable ]1,0[∈θ  and the width parameter

01 π−π=∆ , the expression for the marginal distribu-
tion of r is rewritten as
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Finally, to derive Eq.(2), the obtained sum of the
integrals is expressed via the beta-functions. For
computing convenience, the ratios of the beta-
functions ),(),(

jjjj
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simplified and Eq.(2) can be rewritten as
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Using the same approach, the demand mean E(r) can
be expressed via the conditional expectation as

( )[ ] ( )θ⋅∆+π=θ
θ

nEnrEE
0

, that after substitution of

( )θE , yields the following average demand value
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where ( )β+ααn  and ( )β+αβn  can be interpreted
as the average success/failure number for the stan-
dard BBD-model. Similarly, the demand variance
V(r) be expressed via the conditional mean and vari-
ance as ( ) ( ) ( )( )θ−+θ=

θθ
pnpEnpVrV 1  that after

computing of the conditional components and sub-
stitution of ( )θE  and ( )θV  yields
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where the first term
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can be treated as the weighted variance of the stan-
dard beta-binomial distribution with the scale factor
equal to the square range of p, and the remainder
ones are the weighted variances of the binomial dis-
tribution with parameters π0, π1.

3. ESTIMATION OF MODEL PARAMETERS

The proposed demand model includes two types of
parameters, the shape parameters αj, βj varying over
the period T and the range parameters π0, π1, which
are assumed to be similar for all the time segments.
To estimate them, let us apply the MM technique
combined with the minimisation of the Pirson’s 2χ -
statistics, sequentially considering cases of known
and unknown π0, π1 (such approach simplifies the
general identification procedure, which adjusts the
range parameters in the outer loop while the inner
loop tunes the shape parameters).

If the probability range ][ 10 ππ ,  is assumed to be
known, the remaining model parameters α, β should
ensure equality of the mean π* and variance δ* for
the model and normalised demand data {sij/n}, i.e.

nrE )(=π∗ ; nrV )(=δ∗ , where the explicit expres-
sions for E(r) and V(r) are given in Section 2 and the
subscript “j” is omitted. Then, from the equation for
the first moment, the fractions ( )β+αα  and

)( β+αβ  may be expressed respectively as

∆π−π∗ )( 0  and ∆π−π ∗ )( 1 . Then, after substitu-

tion, the equation for the second moment may be
solved for ( )β+α . So, the parameters of interest are
computed as
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Then, let us release the assumption concerning the
known probability range and estimate the parameters

10 ,ππ  minimizing the Pirson’s 2χ -statistics that
describes goodness-of-fit for the empirical distribu-
tion }{ ∗

rp . The corresponding optimisation problem
may be written as
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where },1,{ nkpk =∗  are the empirical frequencies
and ( ) ( ).,. dm  denote respectively the mean and dis-
persion of the considered probability distribution
model. It should be noted that the objective function

)(.F  is directly related to the standard 2χ -statistics.
Since the desired parameters 10 ,ππ  must belong to

the intervals ),0[ ∗π  and ]1,( ∗π , this optimisation
problem has been solved numerically, by sequen-
tially applying a one-dimensional search for 0π , 1π
and re-computing α, β from the expressions (6).

As follows from our research, the algorithms is rather
sensitive to initial estimates. Thus, to ensure good
convergence, the developed numerical routines in-
cludes the extremum localization step (using grid-
based search) and exponential smoothing of the up-
dates for the range parameters.

4. FORECASTING DEMAND DISTRIBUTION

Let assume now that, in addition to the parameter
arrays {αj, βj, j=1:m }, the quasi-periodicity is also
described by the historical array {vj, j=1:m } obtained
by the demand averaging on the similar time seg-
ments. Then it can be proved that the Bayesian ap-
proach leads to the following posterior distribution
for the probabilities of the non-zero demand binary
components bjl
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that is computed using the following proposition.



Proposition 2. For the adopted demand model, the
Bayesian forecasting distribution can be represented
as the weighted sum of the shifted beta pdfs

),(
)1()|(

11

0 lnlB
ppvpf
jj

lnln

l
vl

jj

−+β+α
−⋅⋅ω=

−−+β−+α

=
∑ (10)

and the mean square optimal predictor function is
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Proof of Proposition 2 uses the same technique as
Proposition 1 (variable expression via θ, hyper-
geometric expansion, and relevant transformation). It
has been also proved that the developed predictor
ensures the following mean square forecast error
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where [ ]+α l  denotes the ascending factorial defined
as the product ( ) ( )11 −+α⋅⋅+αα l� .

5. SIMULATION STUDY

To demonstrate the applicability of the developed
model to describing the demand quasi-periodicity, a
simulation study was performed. Following research
of Telang et al. (2004), it was considered a demand
model with the time period 24 hours and hourly data
aggregation, with the smallest time unit within the
segment of 3 minutes that corresponds to a single
binary demand fraction, i.e. m=24 and n=20. It was
assumed that the prior probability of the non-zero
demand within each time unit follows the beta distri-
bution with “flat” parameters 02.0=α , 98.4=β ,
while the repeatability is described by the historical
array v = {0 0 0 0 0 1 2 3 1 1 0 0 0 0 0 0 1 2 5 2 1 0 0
0} with two evident peaks during the 24-hour period.
It should be stressed that both the prior model and
the historical data yield the same average demand
value, 0.08 units/hour, which is low enough to de-
scribe orders of the “slow-moving” items considered
in this paper.

Simulation results are presented in Figs. 1, 2 and
Table 1. As expected, the demand patterns (Fig. 1)
exhibit the quasi-periodicity having strong concen-
tration of the non-zero values close to the historical
data peaks; at the same time, they posses typical in-
termittent properties (large proportion of zeros and

great variability of the non-zeros, see Table 1). Also,
the corresponding inter-arrival-time distribution
(Fig. 2) possesses a bi-modal shape, which can not be
properly described by the exponential function
adopted in the classical negative-binomial model
(Agrawal and Smith, 1996; Telang et al. 2004).

Hence, the simulation study confirms appropriateness
of the proposed approach in modelling of the quasi-
periodic demand patterns. Besides, the proposed
model incorporates less statistical hierarchy levels in
comparison with the known one (Telang et al., 2004)
and relies on robust identification routines, which can
compensate the reporting errors (Dolgui et al., 2004).
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Fig. 1. Example patterns of quasi-periodic demand

Table 1. Distribution of the demand values

r P0 P1 P2 P3 P4 P5 P6+

Pr 0.967 0.016 0.007 0.004 0.002 0.001 0.004

0 5 10 15 20 25
0

0.2

0.4

0.6 Frequency 

Inter-arrival time 

Fig. 2. Distribution of the time intervals



Table 2. Demand data for three time periods
Segment 1 2 3 4 5 6 7 8 9 10 11 12
Period #1 3 0 2 0 0 0 0 1 0 0 1 2
Period #2 0 1 0 0 1 1 2 1 0 2 0 0
Period #3 0 1 1 2 2 2 1 0 0 2 0 0

Table 3. Fitting of the demand data
Data Model distributions

r pr* n = 3 n = 4 n = 5 n = 6
0 0.541 0.533 0.523 0.518 0.516
1 0.250 0.272 0.301 0.310 0.315
2 0.167 0.142 0.130 0.126 0.124
3 0.042 0.050 0.040 0.037 0.036

α 0.729 1.263 1.701 2.068
β 2.050 5.157 9.108 13.70
χ 2 0.154 0.510 0.663 0.741

Table 4. Forecast based on the previous period
ForecastSegment

n = 3 n = 4 n = 5 n = 6
1 0.408 0.510 0.559 0.589
2 0.957 0.906 0.883 0.870
3 0.408 0.510 0.559 0.589
4 0.408 0.510 0.559 0.589
5 0.957 0.906 0.883 0.870
6 0.957 0.906 0.883 0.870
7 1.478 1.293 1.202 1.148
8 0.958 0.906 0.883 0.870
9 0.408 0.510 0.559 0.589

10 1.478 1.292 1.202 1.148
11 0.408 0.510 0.559 0.589
12 0.408 0.510 0.559 0.589
ε 0.791 0.801 0.812 0.819

Table 5. Forecast based on the weighted sum
of the previous period and previous segment

ForecastSegment
n = 3 n = 4 n = 5 n = 6

1 0.408 0.509 0.559 0.5887
2 1.340 1.268 1.236 1.2177
3 1.531 1.449 1.412 1.3916
4 1.531 1.449 1.412 1.3916
5 2.364 2.068 1.923 1.8370
6 2.364 2.068 1.923 1.8370
7 1.478 1.292 1.202 1.1481
8 0.957 0.906 0.883 0.8698
9 0.408 0.509 0.559 0.5887

10 2.660 2.326 2.1634 2.0666
11 1.149 1.087 1.059 1.0437
12 0.408 0.509 0.559 0.5887
ε 0.390 0.509 0.450 0.474
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4

0

2

1 2 3 4 5 6 7 8 9 10 11 12 

Forecasted demand #2 
( µ = 0.6 ;   ε = 0.39…0.51) 

Fig. 3. Actual demand versus forecasts for different
values of n and µ  (  - n=3 ; �  - n=4 ;  - n=5)

6. APPLICATION EXAMPLE

To validate the efficiency of the proposed technique,
there were explored a data set for a car spare part
sold in Australia (Snyder, 2002), which demonstrates
typical intermittent properties and possesses an obvi-
ous quasi-periodicity within the 12-months periods
(Table 2). The aggregation time-segment was as-
sumed to be equal to one month, and the demand
values for 36 months were available. For comparison
purposes, there were generated two forecasts, which
differ in methods of constructing the historical arrays
employed in the Bayesian expressions.

The demand model parameters {α, β, π0, π1, n} in-
corporated in the prior distribution (1) were esti-
mated using the numerical routines described in Sec-
tion 3, using the statistical data for the months 1-24.
There were investigated several cases that differ by
parameter n (number of binary items in the demand
representation). The minimum value of n was set as
the upper demand level for these segments. The es-
timated results are presented in Table 3, which con-
firms that such selection of n ensures the best fitting
of the experimental data, but for the practical reasons
this value should be slightly  increased to allow some
larger demands, that were not observed in a particu-
lar experimental data set.

Using  the demand statistical model extracted from
the months 1-24, there were generated two Bayesian
forecasts for  the months 25-36. For the first forecast
(Table 4), the historical array was created by straight-
forward coping the demands for the months 13-24,
which is the most natural way of accounting the sea-



sonal repeatability (since the demand of the month
25 should be in certain degree similar to the demand
of the month 13, etc.). Such approach yielded the
forecast error about 0.8 items/months, which slightly
increases while increasing n.

The second forecast (Table 5) relies on another his-
torical array, which is created from both the previ-
ous-year and the previous-month demand values
(with certain weights µ and 1-µ). The reason behind
this is that, in addition to the seasonality, it should be
also strong correlation between the demands of the
successive months. As follows from our research, for
this particular example, the best forecast is obtained
for µ≈0.6, which corresponds to the forecast error
0.39…0.47 items/month. It is almost twice lower,
than in the previous case.

Hence, this application example confirms the appli-
cability of the developed method to the modelling of
real-life intermittent demand patterns and efficiency
of the relevant Bayesian forecast.

7. CONCLUSION

Forecasting the intermittent demand for service parts
and high-priced capital goods is a challenging prob-
lem of the inventory management. Current practice
in such demand modelling favours the exponential
smoothing of the demand values or applying expo-
nential smoothing separately to the intervals between
nonzero demands and their sizes (Croston’s method).
An alternative recommended in inventory control
literature is based on the stochastic demand model-
ling using the negative binominal distribution that
assumes exponentially  distributed inter-arrival
times.

In this paper, it is proposed a new stochastic model,
which describes quasi-periodic intermittent demand
patterns with essentially non-exponential (poly-
modal) distribution of the inter-arrival times. It is
based on generalized beta-binomial distribution and
the Bayesian inference using the historical data array
describing the demand repeatability within the time
periods.  For this model, there were derived explicit
expressions for the forecast distributions, its mo-
ments and relevant Bayesian risk. The efficiency of
the proposed approach is confirmed by computer
simulation and is illustrated by an application exam-
ple for modelling of the demand patterns for car
spare parts.
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