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Abstract: To describe the dynamic behavior of a fire rescue turntable ladder the flexibility
of the ladder set has to be analyzed. It turned out, that it can be modelled as a flexible
manipulator consisting of an arbitrary number of links governed by the Euler-Bernoulli
beam equation. The first link is fixed at one end and is driven by a control torque. The last
link carries a payload. A peculiarity of the model is that the density and flexural rigidity
parameters are allowed to be discontinuous but piecewise constant functions of the spatial
coordinate. For the Galerkin approximation of the control system considered, we derive
a result on stabilization of the equilibrium. The controller design scheme is based on
explicit construction of a Lyapunov function and application of the invariance principle.
A simulation of the closed-loop dynamics is carried out in order to show the efficiency of
the controller proposed.Copyrightc©2005 IFAC
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1. INTRODUCTION

Fire turntable ladders are manipulators with a fairly
large workspace. As these manipulators are mobile
vehicles and the area for strutting the vehicle is lim-
ited, the aim is to achieve the maximum of outreach.
Therefore, this can be only achieved by reducing the
weight of the ladder set itself. The result is a light
weight construction of the ladder set, which is then
characterized by a significant flexibility. In order to
develop an oscillation damping control for these sys-
tems, the modelling of the ladder set as a flexible beam
plays a crucial role.

Figure 1 shows a typical fire rescue turntable ladder.
The manipulator is equipped with four active axes:
the turning axisϕT ; the raising of the ladder setϕR;

1 This work is supported by the Alexander von Humboldt Founda-
tion.

another rotating jointϕJ for the upper ladder part 6;
and the telescoping of the ladder parts 1 to 5, described
by the variablel .

Figure 1: Fire turntable ladder.

The bearings of the ladder parts can be assumed to be
passive joints of the system.

The dynamical behavior of the distributed parame-
ter vibration systems, such as beams and flexible-



link manipulators, is generally described by partial
differential equations; see (Chenet al., 1987; Bloch
and Titi, 1991; Xu and Baillieul, 1993; Coron and
d’Andrea Novel, 1998; Luoet al., 1999) and refer-
ences therein. However, finite dimensional approxi-
mate models obtained by the assumed modes and fi-
nite elements methods are used more frequently for
solving the motion planning and stabilization prob-
lems (Talebiet al., 2001; Sawodnyet al., 2002). The
goal of this paper is to derive both complete and ap-
proximate dynamical models for the multi-link flex-
ible manipulator representing a fire-rescue turntable
ladder. In our case, mathematical modelling of the
ladder dynamics as a homogeneous beam is not ade-
quate since the real object consists of several segments
having different mechanical parameters.

2. MOTION EQUATIONS

Consider a flexible manipulator performing planar
motion under the action of a control torqueM (see
Figure 2). The manipulator is fixed at one end (hub
at the pointO), while the other end carries a payload
of massm.

Figure 2: A multi-link flexible manipulator.

We assume that the manipulator consists ofn flex-
ible links connected via elastic joints atO1, ...,
On−1. It is assumed also that the manipulator length,
l , is much greater than the width of each link,
thus we shall use the Euler-Bernoulli beam equa-
tion for modelling the links oscillations. For each
time t ≥ 0, the links configuration is described by
the graph ofu(x, t), x ∈ [0, l ] in the Cartesian frame
Oxy. Given a partition0 = l0 < l1 < ... < ln = l of
[0, l ], the deflectionu(·, t) is assumed to be of class
C0[0, l ]∩C4 ((0, l)\{l1, ..., ln−1}) for all t ≥ 0. For a
function f (x, t), we denote byfa+0, fa−0, and fa the
valueslimx→a+0 f (x, t), limx→a−0 f (x, t), and f (a, t),
respectively. Thus,u(x, t) satisfies the following geo-
metric boundary condition:

(u)0 =
(

∂u
∂x

)

0
= 0.

Neglecting the effects of shear deformation and rotary
inertia of the beams, the kinetic energyT is given by
the following expression:

2T =
∫ l

0

(
(uϕ̇)2 +

(
xϕ̇ +

∂u
∂ t

)2
)

ρ(x)dx+

+m

(
(ul ϕ̇)2 +

(
l ϕ̇ +

∂u
∂ t

)2

l

)
+J

(
ϕ̇ +

(
∂ 2u
∂ t∂x

)

l

)2

,

whereϕ(t) is the angle betweenOx and the fixed axis
Oξ , ρ(x) is the mass per unit length of the beam,J is
the payload moment of inertia.

The potential energyU of the mechanical system
considered takes the form:

2U =
∫ l

0

(
∂ 2u
∂x2

)2

c2(x)ρ(x)dx+

+
n−1

∑
j=1
κ2

j

((
∂u
∂x

)

l j+0
−

(
∂u
∂x

)

l j−0

)2

,

wherec2(x) = E(x)I(x)/ρ(x) (E(x)I(x) is the flexural
rigidity per unit length of the beam),κ2

j is the stiffness
coefficient of the torsion spring atO j . In this paper,
ρ(x) and c(x) are assumed to be piecewise-constant
functions, i.e.ρ(x) = ρ j andc(x) = c j for x∈ [l j−1, l j),
j = 1,2, ...,n.

Suppose thatϕ(t) and u(x, t) define motion of the
system for givent ∈ [t1, t2] and control torqueM(t).
Then Hamilton’s principle (Goldstein, 1980) yields

δ
(∫ t2

t1
Ldt

)
+

∫ t2

t1
M(t)δϕ(t)dt = 0, (1)

for each variationδϕ(t), δwi(x, t) such that

δϕ ∈C2[t1, t2], δϕ(t1) = δϕ(t2) = 0,

δu∈C2 (((0, l)\{l1, ..., ln−1})× [t1, t2]) ,
δu(x, t1) = δu(x, t2) = 0, ∀x∈ [0, l ],

(δu)0 =
(

∂δu
∂x

)

0
= 0, δu(·, t) ∈C0[0, l ], ∀t ∈ [t1, t2],

(2)
whereL = T−U is the Lagrangian of the system.

The variation of
∫ t2
t1

Ldt in (1) is obtained by perform-
ing several integrations by parts2 :

−δ
(∫ t2

t1
Ldt

)
−

∫ t2

t1
Mδϕ dt =

=
∫ t2

t1

[
d
dt

(
m(u2 + l2)ϕ̇ +ml

∂u
∂ t

+Jϕ̇ +J
∂ 2u
∂ t∂x

)

l
+

+
d
dt

∫ l

0

(
(u2 +x2)ϕ̇ +x

∂u
∂ t

)
ρ dx−M

]
δϕ dt+

+
∫ t2

t1
µ

(
∂ 2u
∂ t2 ,u,δu, ϕ̈, ϕ̇

)
dt = 0, (3)

2 We omit cumbersome computations here.



where

µ =
∫ l

0

(
∂ 2u
∂ t2 +c2 ∂ 4u

∂x4 +xϕ̈− ϕ̇2u

)
δuρ dx+

+m

[(
∂ 2u
∂ t2 −

c2ρ
m

∂ 3u
∂x3 + l ϕ̈− ϕ̇2u

)
δu

]

l
+

+J

[(
∂ 3u

∂ t2∂x
+

c2ρ
J

∂ 2u
∂x2 + ϕ̈

)
∂δu
∂x

]

l
+

+
n−1

∑
j=1

{[(
c2ρ

∂ 3u
∂x3

)

l j+0
−

(
c2ρ

∂ 3u
∂x3

)

l j−0

]
(δu)l j +

+



(

c2ρ
κ2

j

∂ 2u
∂x2 +

∂u
∂x

)

l j−0

− ∂u
∂x l j+0


κ2

j

(
∂δu
∂x

)

l j−0
+

+



(

∂u
∂x
− c2ρ
κ2

j

∂ 2u
∂x2

)

l j+0

− ∂u
∂x l j−0


κ2

j

(
∂δu
∂x

)

l j+0

}
.

To simplify (3), we introduce new controlv by means
of the following feedback transformation:

v =
(

mul
2 +

∫ l

0
(2x2 +u2)ρ dx

)−1

×

×
(

M +
(

c2ρ
∂ 2u
∂x2

)

0
−mϕ̇

(
2u

∂u
∂ t

+ l ϕ̇u

)

l
+

+ ϕ̇
∫ l

0

(
ϕ̇x−2

∂u
∂ t

)
uρ dx

)
. (4)

As (3) should vanish for each variation(δϕ,δu) sat-
isfying (2), we have

ϕ̈ = v, v∈ R,

∂ 2u
∂ t2 +c2 ∂ 4u

∂x4 = ϕ̇2u−xv, x∈ (0, l)\{l1, ..., ln−1},
(5)(

∂ 2u
∂ t2 − ϕ̇2u+ lv− cn

2ρn

m
∂ 3u
∂x3

)∣∣∣∣
x=l

= 0,

(
∂ 3u

∂ t2∂x
+v+

cn
2ρn

J
∂ 2u
∂x2

)∣∣∣∣
x=l

= 0,

u|x=0 =
∂u
∂x

∣∣∣∣
x=0

= 0, u|x=l j−0 = u|x=l j+0 ,

c2
j ρ j

∂ ku
∂xk

∣∣∣∣
x=l j−0

= c2
j+1ρ j+1

∂ ku
∂xk

∣∣∣∣
x=l j+0

, k = 2,3,

∂u
∂x

∣∣∣∣
x=l j+0

=

(
∂u
∂x

+
c2

j ρ j

κ2
j

∂ 2u
∂x2

)∣∣∣∣∣
x=l j−0

, j = 1,n−1.

For the case without a payload, a similar system de-
scribing the dynamics of serially connected beams
was considered in (Chenet al., 1987).

Our goal is to stabilize the equilibriumϕ = ϕ̇ = 0,
u = ∂u

∂ t = 0 by means of a state feedback law

v = γ
(

ϕ, ϕ̇,u, ∂u
∂ t

)
. This problem will be solved in

Section 5 for a finite dimensional approximation of the
boundary value problem (5).

3. EIGENFUNCTIONS OF THE HOMOGENEOUS
PROBLEM

To derive an approximate dynamical model, we first
apply separation of variables by substituting

u(x, t) = ψ(x)θ(t), ϕ(t) = const, v(t) = 0 (6)

into (5). This yields

θ(t) = Acos(ωt)+Bsin(ωt)

and

ψ(x) = Cj1sin(η jx)+Cj2cos(η jx)+Cj3sinh(η jx)+

+Cj4cosh(η jx) for x∈ [l j−1, l j), η2
j c j = ω, j = 1,n,

(7)
provided thatCji satisfy the following system of linear
algebraic equations

M(ω,P) · (C11, ...,C14, ....,Cn1, ...,Cn4)T = 0. (8)

HereM(ω,P) is a 4n×4n-matrix whose coefficients
depend on parametersω andP=(m,J,n, l j ,ρ j ,c j ,κ j).

For fixed P, the system (8) admits a non-trivial in-
variant subspace if and only ifω is a solution of the
transcendent equationdetM(ω,P) = 0 3 . If ω is such
a solution, we will refer toψ(x) asa form correspond-
ing to ω if its coefficients(Cji ) 6= 0 satisfy (8).

Proposition 1.Let ψ1 andψ2 be forms corresponding
to frequenciesω1 6= ω2. Thenψ1 andψ2 are orthogo-
nal with respect to the following bilinear form

〈ψ1,ψ2〉X =
∫ l

0
ψ1ψ2ρ dx+mψ1(l)ψ2(l)+Jψ ′

1(l)ψ ′
2(l).

Theproof exploits integration by parts with regard to
the boundary conditions atx = l j .

In order to illustrate particular solutions (6) of the
boundary value problem (5), we compute some num-
ber of first frequenciesωk for the following (dimen-
sionless) values of parameters:

n= 2, l1 =
l2
2

= c1 = c2 = ρ1 = ρ2 =
κ2

1

2
= m= J = 1.

(9)
We have:ω1 = 0.3875771806; ω2 = 1.455554174;
ω3 = 5.629214811; ω4 = 16.22789077. The corre-
sponding formsψ are shown in Figure 3. The forms
are normalized there so that〈ψi ,ψk〉X = δik for each
1≤ i ≤ j ≤ 4.

Remark. We see that the derivativesψ ′
k(x) are dis-

continuous atx = l1. Thus, ψk(·) do not belong to
the Sobolev spaceH2(0, l) in contrast to the case of
a beam having continuous density function.

3 The expression fordetM(ω,P) has been obtained via the Maple
software. Computational details are omitted in this paper.
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Figure 3: The graphs ofψk(x) for k≤ 4.

4. APPROXIMATE MODEL

Let (ψ1(·), ...,ψN(·)) be forms corresponding to fre-
quenciesω1 < ω2 < ... < ωN. To derive a Galerkin
approximation of the boundary value problem (5), we
restrict u(·, t) and δu(·, t) to the finite dimensional
space

SN = span{ψ1(·), ...,ψN(·)}
in the variational form (3). Our goal is to findϕ(t)
and uN(·, t) ∈ SN satisfying (3) for each admissible
variation δϕ(t) and δuN(·, t) ∈ SN; cf. (Donea and

Huerta, 2003). Let(q1(t), ...,qN(t)) be the coordinates
of uN(·, t) with respect to(ψ1(·), ...,ψN(·)) 4 :

uN(x, t) =
N

∑
k=1

ψk(x)qk(t). (10)

By substitutinguN into (3) and exploiting Proposi-
tion 1, we get the Galerkin approximation of (5) as
follows:

ϕ̈ = v, v∈ R,

q̈k =−ωk
2qk +

(
qk−

N

∑
p=1

akpqp

)
ϕ̇2−bkv, (11)

k = 1,2, ...,N,

wherev is the control,(ϕ, ϕ̇,q1, q̇1, ...,qN, q̇N) is the
state,

akp=
Jψ ′

k(l)ψ
′
p(l)

‖ψk‖2
X

, bk =
〈x,ψk〉X
‖ψk‖2

X

, ‖ψk‖2
X = 〈ψk,ψk〉X .

The control torqueM is related tov in (11) by means
of the feedback transformation (4) withu = uN(x, t).

5. STABILIZATION OF THE EQUILIBRIUM

The main result we shall prove is the following

Proposition 2. Let (ψ1, ...,ψN) be forms correspond-
ing to frequenciesω1 < ω2 < ... < ωN, and let, more-
over, ω1 > 0. Then there exists a smooth feedback
control v = γ(ϕ, ϕ̇,q1, q̇1, ...,qN, q̇N) ensuring global
asymptotic stability of the origin for (11).

Proof. Consider the following energy-based Lya-
punov function candidate for (11):

2VN(ϕ, ϕ̇, ...,qN, q̇N) = k1ϕ2 +k2ϕ̇2+

+
N

∑
j=1

ω2
j ‖ψ j‖2

Xq2
j +

N

∑
j=1
‖ψ j‖2

Xq̇2
j +2ϕ̇

N

∑
j=1

〈
x,ψ j

〉
X q̇ j+

+


‖x‖2

X +
N

∑
j=1
‖ψ j‖2

Xq2
j −J

(
N

∑
j=1

ψ ′
j(l)q j

)2

 ϕ̇2,

(k1 > 0, k2 > 0).
To show thatVN is positive definite, let us first write
its quadratic partQN as follows:

2QN = k1ϕ2+k2ϕ̇2+‖∂uN

∂ t
+ϕ̇x‖2

X +
N

∑
j=1

ω2
j ‖ψ j‖2

Xq2
j ,

whereuN is given by (10). We have

VN = QN +
ϕ̇2

2
[
∫ l

0
(

N

∑
j=1

ψ j(x)q j)2ρdx+m(
N

∑
j=1

ψ j(l)q j)2].

(12)
It is easy to see thatQN ≥ 0, QN vanishes only if
ϕ = ϕ̇ = q1 = ... = qN = 0 and

‖
N

∑
j=1

ψ j q̇ j‖X = 0.

4 Functions (ψ1(·), ...,ψN(·)) form a basis inSN because of
Proposition 1 and the assumptionωi 6= ωk if i 6= k.



But the above expression implieṡq1 = ... = q̇N = 0
since the forms(ψ1, ...,ψN) are linearly independent
on [0, l ]. Therefore, the quadratic formQN is positive
definite. This fact together with (12) implies positive
definiteness ofVN and compactness of the level sets

Lc = {(ϕ, ϕ̇ ,q1, q̇1, ...,qN, q̇N) ∈ R2N+2 |VN ≤ c}
for each constantc> 0. The time-derivative ofVN with
respect to the open-loop system (11) takes the form

V̇N = (αN +βNv)ϕ̇,

where

αN = k1ϕ +
N

∑
j=1

(
2‖ψ j‖2

Xϕ̇q̇ j +
〈
x,ψ j

〉
X (ϕ̇2−ω2

j )
)

q j−

−Jϕ̇

(
N

∑
j=1

ψ ′
j(l)q j

)(
N

∑
j=1

ψ ′
j(l)

(
2q̇ j +

〈
x,ψ j

〉
X

‖ψ j‖2
X

ϕ̇

))

and

βN = k2 +‖x‖2
X−J

(
N

∑
j=1

ψ ′
j(l)q j

)2

+

+
N

∑
j=1

(
‖ψ j‖2

Xq2
j −

〈
x,ψ j

〉2
X

‖ψ j‖2
X

)
> 0.

We define a feedback controlv = γ(ϕ , ϕ̇, ...,qN, q̇N)
by the following expression

γ(ϕ, ϕ̇,q1, q̇1, ...,qN, q̇N) =−αN +hϕ̇
βN

, (13)

whereh > 0 is a constant. This yieldṡVN =−hϕ̇2≤ 0
with respect to the closed-loop system (11), (13). It is
easy to show that each positive semi-trajectory of the
closed-loop system, restricted to the set

Z0 = {(ϕ , ϕ̇,q1, q̇1, ...,qN, q̇N) ∈ R2N+2 |V̇N = 0},
satisfies the following relations:

ϕ(t) = ϕ0 = const,

qk(t) = Ak cos(ωkt)+Bk sin(ωkt), k = 1,2, ...,N,

k1ϕ0 =
N

∑
j=1

〈
x,ψ j

〉
ω2

j q j(t), for all t ≥ 0.

The above relations implyϕ0 = A1 = B1 = ...= BN = 0
since the functions(cos(ω1t), ...,sin(ωNt)) are lin-
early independent onR+, and

〈
x,ψ j

〉
X ω j 6= 0 under

our assumptions. Therefore, the only solution of the
closed-loop system, restricted toZ0 for all t ≥ 0, is
the trivial one. Now global asymptotic stability of the
closed-loop system (11), (13) follows from the Bar-
bashin - Krasovskii and LaSalle invariance principle.

6. OBSERVABILITY PROBLEM

In order to implement the feedback law (13) in prac-
tice, one has to reconstruct the complete state vector
of (11) from the outputs which can be measured.

An observability problem for a rigid body endowed
with two elastic beams has been studied in (Kovalev

et al., 2002). It has been proved that the finite dimen-
sional body-beams system (without a payload) is ob-
servable, provided that one measures the relative dis-
placements of certain points at the beams. However,
the values of displacementsu(x, t) cannot be directly
measured in a real flexible ladder. Instead, there is a
sensor5 located at a certain pointx = ∆, 0≤ ∆ ≤ l1
that allows measurement of∂ 2u

∂x2

∣∣∣
x=∆

.

In the case of a single flexible beam without a payload,
an output feedback controller was considered in (Luo
and Guo, 1997) with∆ = 0. That approach is not
applicable in our case, as one should take into account
the motion of a payload and assume∆ > 0 for a
turntable ladder.

By replacing u(x, t) with uN(x, t), we assume that
the following output signal is available for the finite
dimensional approximation (11):

y1(t)=
∂ 2uN(x, t)

∂x2

∣∣∣∣
x=∆

=
N

∑
k=1

ψ ′′
k (∆)qk(t), y2(t)= ϕ(t).

(14)

Proposition 3.Assume thatψ ′′
k (∆) 6= 0 for all k= 1,N,

andω1 < ω2 < ... < ωN. Then the linear approxima-
tion of (11) around zero is observable with respect to
the output (14).

The assertion of Proposition 3 follows from the rank
observability condition (Wonham, 1985).

The above result justifies a possibility of applying the
feedback control (13) at least for the linearized sys-
tem. Indeed, if the assumptions of Propositions 2 and
3 are satisfied, there is a dynamic state observer for
the linear approximation of (11). Then, by substituting
the state estimate from the above observer into the
linearized formulae (13) and (4), we can compute the
control torqueM and conclude about stability of the
observer-based linear dynamics; see (Wonham, 1985).
Certainly, this does not give a rigorous answer to the
question of output stabilizability in the nonlinear case.

7. SIMULATION RESULTS

A simulation is carried out for the closed-loop approx-
imation (11), (13) withN = 2 and the following initial
conditions:

ϕ(0)=
π
2

, ϕ̇(0)= q1(0)= q2(0)= q̇1(0)= q̇2(0)= 0.

The mechanical parameters are chosen here as in (9),
and the control parameters are:h = 10, k1 = k2 = 1.
Figure 4 shows that the feedback proposed is able to
steer the approximate system to the origin.

5 Such a sensor is implemented by a piezoelectric film patch
attached to the beam aroundx = ∆. Neglecting the small thickness
of the piezoelectric film, the strain on the film can be considered
the same as the train on the surface of the beam. Thus, the charge

generated in the film is (approximately) proportional to∂ 2u
∂x2

∣∣∣
x=∆

.
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Figure 4: The closed-loop response of (11), (13).

8. CONCLUSION

In this paper, dynamical equations describing planar
motion of a manipulator with an arbitrary number of
flexible links, interconnected via elastic joints, have
been derived. This model is motivated by the aim to
improve dynamical properties of a controlled fire res-
cue turntable ladder. For an arbitrary order of elastic

coordinates, we have proposed a feedback controller
that stabilizes the origin of the Galerkin approxima-
tion (Proposition 2). We do not study the stabilization
problem in infinite dimensions, partial asymptotic sta-
bility in the resonance case (Zuyev, 2005), and con-
vergency issues in this paper as they require subtle
estimates of the spectrum and nonlinear terms for the
evolution equation. For the same reason we do not
analyze the control spillover (Balas, 1978), leaving it
for future work.
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