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Abstract: By systematically altering the in-plane flight path and velocity of an aircraft and the rate at 
which the cable is deployed, the tip of a cable being towed behind an aircraft is shown to rendezvous 
with a ground-based surface location in minimum time, with minimum control effort required.  This 
is achieved through optimal control, formulated as a nonlinear programming problem using the 
Legendre-pseudospectral method.  This method is fast, efficient and accurate.  Results depicting a 
typical payload transportation operation are presented and discussed, along with directions for future 
research.  The robustness of the method to disturbances is also explored.  Copyright © 2005 IFAC 
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1. INTRODUCTION 
 
There are many exciting applications involving the use of a 
cable towed behind an aircraft.  These include the delivery 
of food/medical supplies to remote communities (Russell 
and Anderson 1977), precise aerial bushfire fighting and 
search and rescue  (Trivailo, et al. 2003, 2004), towing 
sonar devices (Etkin 1998) and charged cables (Trivailo, et 
al. 2004, 2003) for mine sweeping and environmental 
management using towed instrumentation (Etkin 1998).  
Hence one would expect research concerning the control of 
aerial tethered systems to be well established, yet this is not 
true and more research is needed for the aforementioned 
applications to fully materialize.  Whilst some research has 
centred on the development of payload-based control laws 
to stabilize an airborne payload (Henderson, et al. 1999; 
Bourmistrov, et al. 1995; Cochran, et al. 1992), the 
development of cable-based control laws for more practical 
purposes (i.e. payload transportation) is limited.  The 
concept of using an aerial tether to rendezvous with a 
surface location was successfully demonstrated by Trivailo, 
et al. (2004).  This paper advances that work by utilizing a 
more representative cable model; studying a more practical 
rendezvous scenario and employing optimal feedback 
control for trajectory following to enhance robustness.  
 
 

2. AERIAL TOWED SYSTEM MODEL 
 
The model developed by the authors to accurately and 
efficiently simulate the in-plane dynamics of the aerial 
tethered system is shown in Figure 1.   

 
 
 
 
 
 
 
 
 
Fig. 1. Towed Aerial Cable-Body System Model. 
 
It is assumed that the aircraft tows a homogeneous sphere of 
constant mass, drag coefficient and diameter via a rigid 
massive tether with a constant circular diameter.  The 
aircraft is permitted to perform in-plane two-dimensional 
manoeuvres and has an infinite mass so it is unaffected by 
the dynamics of the cable/body combination.  Table 1 
shows the physical parameters that govern the model. 
 

Table 1 Parameters governing the towed system model 
 

Parameter Description Value 
g Gravitational Constant 9.81 m/s2 
ρ Air Density 1.23 kg/m3 
ρC Cable Mass Density 4000 kg/m3 
ρP Payload Mass Density 1000 kg/m3 
dC Cable Diameter 2.5 mm  
dP Payload Diameter 0.75 m 
l2 Lower Link Length 500 m 
CDC Cable Drag Coefficient 1.1 
CDP Payload Drag Coefficient 0.5 
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The cable is discretized using two rigid links of equal 
diameter and similar material, however the upper link has 
variable length, whilst the lower link’s length is fixed.  The 
actuators used to control the dynamics of the system are the 
forward and vertical acceleration of the aircraft, along with 
the rate at which the deployment speed of the upper cable 
link changes with time. As for external forces, these were 
limited to aerodynamic and gravitational forces experienced 
by the cable and payload.  Gravity forces acting on the 
cable were taken at the centre of each link and at the cable 
tip for the payload.  Similarly, the aerodynamic force acting 
on the cable is proportional to the squared angular velocity 
seen by each cable link centre; proportional to the squared 
angular velocity at the tip for the payload. The areas 
projected by the cable links and the payload normal to the 
incoming flow were used for the aerodynamics.          
 
By employing Kane’s Equations, with the cable angles {θ1 

,θ2}, the non-dimensional  length of the upper cable link l, 
and the non-dimensional range and altitude of the aircraft 
{x, y} used as generalized coordinates, the non-dimensional 
equations of motion for the system may be written as: 
 

1ux =                                                                                (1) 

2uy =                                                                               (2) 

),,,,,,,,,,,( 212111 tllyxlyxf θθθθθ =                     (3) 

),,,,,,,,,,,( 212122 tllyxlyxf θθθθθ =                    (4) 

3ul =                                                                                (5) 
 
where u1, u2 and u3 are the chosen control variables for the 
system, while f1 and f2 are highly complex nonlinear 
expressions involving the system states and controls. 
 
 

3. CABLE ASSISTED RENDEZVOUS PROBLEM 
 
The rendezvous problem studied in this paper is illustrated 
in Figure 2.  Depicting a payload delivery operation, a 
payload towed behind an aircraft via a cable is delivered to 
a location on the ground without landing the aircraft. 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Graphical Depiction of the Rendezvous Scenario. 
 
The rendezvous manoeuvre begins with the aircraft in 
steady level flight, with the cable initially hanging 

vertically.  The aircraft is then flown and the cable is 
deployed so as to rendezvous the tip of the cable with the 
location on the ground as quickly as possible.  The aircraft 
is initially flying steadily at 65 m/s, at an altitude of 1500 
m, towing a 1000 m long cable.   The target on the ground 
is initially 2000 m from the aircraft (xT) and 500 m below 
the cable tip (yT). Rendezvous is purely instantaneous. 
 
 

4. CONTROL SYSTEM DESIGN 
 
This section presents the control system design for the 
airborne towed system in order to successfully perform the 
in-plane rendezvous manoeuvre.  In this paper, the two-
dimensional dynamics of the airborne tether are to be 
controlled by altering the forward and vertical acceleration 
of the aircraft, along with managing the rate at which the 
tether is being deployed/retrieved.  Trivailo, et al. (2004) 
found that such a task was difficult due to the high drag 
forces the system experiences, along with the nonlinear 
coupling between the tether dynamics and control that 
reduced controllability.  Similarly, the increased 
sophistication of the cable model employed here is expected 
to further complicate the proposed control undertaking.  
 
The objective of the proposed control system is to 
determine an optimal trajectory for the aerial towed-cable-
body system that directs the tip of the tether from a given 
initial state to rendezvous with a desired ground-based 
surface location.  For the rendezvous case considered here, 
the trajectory that satisfies the boundary conditions, 
minimizes the difference between the desired and actual 
terminal states, minimizes the final time and the required 
control work will be considered the optimal solution.    
 
4.1 Optimal Control Theory 
 
Consider the problem of minimizing the performance index 
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where pRxRt ∈∈ , and qRu ∈ are subject to the 
dynamical constraints 
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and boundary conditions 
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where rR∈0ϕ and s
f R∈ϕ with pr ≤ and ps ≤ , 

and the state and control constraints 
 

[ ] vRgtutxtxg ∈≤ ,0)(),(),(                                (9) 
 
Betts (1998) has identified a host of methods to solve 
optimal control problems governed by (6) through to (9).  
These fall broadly within two groups; indirect methods 
(Betts 1998; Ohtsuka and Fujii 1994; Kirk 1970) and direct 
methods (Trivailo, et al. 2004; Williams 2003; Blanksby, et 
al. 2003; Fahroo and Ross 2001, 2002; Hull 1997; Elnagar, 
et al. 1995; Enright and Conway 1992; Hargraves and Paris 
1987). Indirect methods involve using the calculus of 
variations to determine the optimality conditions and 
require solving the highly unstable co-state equations, 
making these methods particularly unattractive.  However 
direct methods circumvent these difficulties by 
transforming the continuous optimal control problem into a 
more manageable discrete parameter optimization problem.  
In this paper, a direct method known as the Legendre 
pseudospectral method was chosen to solve the optimal 
control problem that governs the desired rendezvous 
problem.  This method is relatively easy to implement and 
enjoys spectral accuracy and efficient computation times 
(Fahroo and Ross 2002; Elnagar, et al. 1995).     
 
 
4.2 The Legendre Pseudospectral Method 
 
This section briefly outlines the application of the 
Legendre-pseudospectral method to optimal control 
problems.  Readers are referred to Williams (2003), 
Blanksby, et al. (2003) and Elnagar, et al. (1995) for details 
of the actual discretization process.  The essence of the 
method is to interpolate the state and control trajectories 
using Legendre polynomials.  Legendre polynomials belong 
to a class of globally orthogonal Jacobi polynomials.  The 
grid points associated with the discretization are chosen as 
the roots of the interpolating Legendre polynomials, known 
as Legendre-Gauss-Lobatto points. The state equations are 
enforced as dynamic constraints by differentiating the 
approximating Legendre polynomials at the corresponding 
Gauss-Lobatto points.  Hence, the time consuming task of 
integrating the state equations is avoided. The performance 
index is approximated using an appropriate numerical 
quadrature procedure; Gauss-Lobatto quadrature was 
employed in this paper.  Once the original optimal control 
problem is discretized and formulated as a nonlinear 
programming problem, the structure of the discretized 
problem resembles that of the original continuous problem. 
 
 
4.3 Application to the Cable Assisted Rendezvous Problem 
 
The optimal control problem that characterizes the 
rendezvous problem is formulated as follows:  

Find the control inputs to minimize 
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subject to the dynamical constraints given by (1) to (5) and 
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and the control inequalities 
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DIRECT (Williams 2004), a MATLAB® based application 
for solving optimal control, dynamic optimization and 
parameter estimation problems, was utilized to solve the 
nonlinear programming problem that represents the 
rendezvous problem given by (10) through to (12).  
DIRECT utilizes SNOPT (Gill, et al. 2002) as the nonlinear 
solver, implemented in MATLAB® via mex files.  DIRECT 
has an efficient pattern generator for the Jacobian of the 
constraints; hence analytical Jacobians were not provided.    
 
The initial guess of the optimization variables for large-
scale nonlinear optimal control problems is important.  
Generally it is not known a priori if a solution exists for a 
given problem, so to improve the efficiency and expediency 
of the optimization process, a good quality guess for the 
solution should be provided to the solver.  Not only does 
this reduce solver workload, often a solution may not be 
found if a poor initial guess is provided.  In this paper, the 
initial guess is generated by first numerically integrating the 
state equations with no applied controls, then interpolating 
the appropriate values for the states at the corresponding 
grid points.  The optimization process commences with the 
level of discretization N set at a modest value and a solution 
to the problem is found using the aforementioned initial 
guess.  The level of discretization is subsequently increased, 
with the previous solution used as a new improved guess.  
This iterative process continues until the solution 
converges; the computational cost of further increasing the 
discretization level begins to outweigh any potential 
improvements to the accuracy of the solution.     



     

4.4 Neighbouring Optimal Feedback Control  
 
In order to ascertain how sensitive the proposed non-linear 
optimal control scheme is to external disturbances, an 
optimal feedback controller was designed for the aerial 
towed cable system.  The method chosen to implement this 
was Linear Quadratic Regulator (LQR) control.  This 
method determines the optimal feedback gain matrix K, 
such that the following state feedback control law     
 

( )u t Kx= −                                                                    (13) 
 
minimises the cost function 
 

( )
0

T TJ x Qx u Ru dt
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= +∫                                            (14) 

 
subject to the linearized state equations 
 

( ) ( )x A t x B t u= +                                                        (15) 
 
where A and B are the time varying state and control 
influence matrices, Q and R are symmetric positive semi 
definite and symmetric positive definite design matrices 
respectively.  By carefully choosing values for Q and R, it is 
possible to ensure that the system is able to recover from 
deviations about the nominal optimal trajectory, assuming 
that such deviations are not excessive.  In this paper, R was 
selected as the identity matrix [I], while Q was chosen to be 
10[I].  The influence matrices A and B system are obtained 
by linearizing (1) to (5) about the nominal trajectory.  
 
Time varying wind gusts, modelled as full sine functions, 
were chosen as the external disturbances for the system.  
The system encounters two gusts, the first having horizontal 
and vertical components of -2.5 and 3.75 m/s respectively, 
the second having velocity components of 1.5 and -3 m/s 
respectively. The first gust occurs 2.5 secs into the 
manoeuvre and lasts for 7.5 secs; the final gust occurs after 
15 secs and lasts for 5 secs.          
 
 

5. RESULTS 
 
 
5.1 Optimization Results 
 
The results of the optimization task are the focus of this 
section.  The optimization process began at N = 30, with the 
level of discretization subsequently increased by intervals 
of 20 until the final discretization level of 90 was reached, 
which represented a compromise between execution time 
and accuracy.  The time required for the optimization on a 
Pentium 4 processor was 4314.89 secs, which is excellent 
given the size and complexity of the parameter optimization 
problem at hand.  The final value of the performance index 
Jf returned by DIRECT was 3.0390037.  This corresponds 

to rendezvous occurring after 32.78 secs of manoeuvring.  
Examination of the exit flag and constraint file returned by 
SNOPT indicated the optimization was successful; the 
optimal solution was found with all target states being met.  
 
 
5.2 Numerical Results 
 
The results found by applying both open and closed loop 
optimal control to the aerial towed system are shown in 
Figure 3 through to Figure 9.  Figure 3 and Figure 4 detail 
the horizontal and vertical paths the aircraft follows for 
successful rendezvous, along with the respective velocity 
time histories.  Figure 5 and Figure 6 show the angular 
displacement and velocity of the upper and lower cable 
links respectively, while Figure 7 presents the radial 
displacement and velocity for the upper cable link.  Figure 8 
depicts the aircraft forward and vertical acceleration, along 
with the upper cable link radial acceleration.  Although not 
shown, there is an excellent agreement between the discrete 
Legendre-pseuodspectral approximation and the continuous 
solution generated by applying the discrete controls (found 
from DIRECT) to the continuous state equations; only a 
maximum difference of 1.04 % exists between the two.  
Finally, Figure 9 shows the cable tip trajectory during the 
rendezvous manoeuvres. In all figures, the solid line 
denotes the closed loop trajectories; the solid marker depicts 
the optimal nominal results without gusts, while the broken 
line signifies the open loop responses with gusts applied. 
 

 
 
Fig. 3. Trajectory for Rendezvous, (a) Aircraft Horizontal 

Displacement; (b) Aircraft Forward Velocity. 
 

 
 
Fig. 4. Trajectory for Rendezvous, (a) Aircraft Vertical 

Displacement; (b) Aircraft Vertical Velocity. 



     

 
 
Fig. 5. Trajectory for Rendezvous, (a) Upper Cable Link 

Displacement; (b) Upper Cable Link Velocity. 
 

 
 
Fig. 6. Trajectory for Rendezvous, (a) Lower Cable Link 

Displacement; (b) Lower Cable Link Velocity. 
 

 
 

Fig. 7. Trajectory for Rendezvous, (a) Upper Cable Link 
Length; (b) Upper Cable Link Radial Velocity. 

 

 
 
Fig. 8. Control for Rendezvous, (a) Aircraft Forward 

Acceleration; (b) Aircraft Vertical Acceleration; (c) 
Upper Link Radial Acceleration. 

 
 
Fig. 9. Optimal Cable Tip Trajectory for Rendezvous 
 
 

6. DISCUSSION 
 
Figure 3 and Figure 4 show that to minimize the time for 
rendezvous, the aircraft initially dives as quickly as possible 
towards the target, begins to pull up mid-flight, before 
quickly diving again during the latter stages of the flight.  
Depending on the nature of the gusts, it can be seen from 
Figure 3 and Figure 4 that the feedback controller 
significantly alters the aircraft’s speed so as to compensate 
for an increase/decrease in velocity the aircraft encounters 
due to the gusts.  As evidenced by Figure 5 and Figure 6, 
the cable initially swings about slowly, before damping out 
towards the end of the manoeuvre.  As expected, the cable 
swings more freely and further over the duration of the 
gusts, but once the gusts have terminated the cable returns 
quickly to its optimal state, even without the corrective 
measures provided by the feedback.  The inherently large 
drag forces the cable experiences tend to quickly damp out 
the oscillations the gusts cause, suggesting that the cable 
itself is not particularly sensitive to the gusts.  However, 
feedback control ensures that the oscillations are much 
smaller, lessening their impact on the system.  As the 
aircraft appears to be more sensitive to gust activity than the 
cable, applying feedback control directly to the aircraft and 
not the cable would be more appropriate.  The deployment 
profile given in Figure 7 reveals that initially the cable 
should be deployed quickly and maintained that way for 
most of the manoeuvre, before being retrieved quickly late 
in the rendezvous attempt.  Additional deployment and 
retrieval is needed over the duration of the gusts to help 
nullify their effect on the system’s dynamics.  In Figure 8, 
the amount of control needed to perform the rendezvous 
manoeuvre is modest, focused mainly at the start and end of 
the manoeuvre.  Intuitively, as the gusts are encountered, 
more control effort is required to return the system to its 
nominal trajectory, although such increases are acceptable.  
Even when gusts are encountered, Figure 9 shows the cable 
tip following a smooth trajectory during the rendezvous 
manoeuvres.  Without feedback, the gusts render the cable 
tip 8.63 m in front of the rendezvous point, whilst feedback 
reduces this error to 1.82 m. The use of receding horizon 
control with a final state penalty term in the cost function 
should reduce this error even further. 



     

7. FURTHER WORK 
 
While the results presented in this paper are encouraging, 
more research is required to further develop this field.  The 
areas of robustness, modelling and the concept of payload 
capture/delivery are requisite future research domains.  
 
 

8. CONCLUSIONS 
 
It was successfully demonstrated that a payload at the end 
of a cable being towed by an aircraft could rendezvous with 
a surface location in minimum time, whilst expending 
minimum control effort, by manipulating the aircraft’s 
acceleration and the rate at which the cable is being 
deployed.  This was achieved by formulating an optimal 
control problem, discretized using the Legendre-
pseudospectral method, and solved using the nonlinear 
solver SNOPT implemented in MATLAB.  Such an 
approach was easily implemented, fast and very accurate.  
Preliminary results generated for a typical small-scale 
payload transportation operation are encouraging.  For 
minimum rendezvous time, the aircraft initially dives as 
quickly as possible towards the target, pulls up mid-flight, 
before quickly diving again during the latter stages of the 
flight.  Initially, the cable is deployed quickly, maintained 
that way for most of the manoeuvre, before being swiftly 
retrieved late in the rendezvous attempt.  The cable tip 
trajectories were very smooth during the rendezvous 
manoeuvres even as gusts were encountered, although LQR 
control was successfully applied to improve robustness. 
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