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Abstract: Application of a recursive subspace identification method to derive a state space 
model for a synchronous machine is described in this paper. Simulation studies show the 
effectiveness of such an algorithm to identify on-line a synchronous machine model over 
a wide range of operating conditions and disturbances. The model provides a foundation 
for further study on a MIMO adaptive power system stabilizer. Copyright © 2005 IFAC 
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1. MOTIVATION 

 
One aspect of power system stability is dynamic 
stability. The unstable situation in this case results in 
long-term low frequency oscillations. Power system 
stabilizer (PSS) is used to dampen such oscillations 
and it efficiently improves the stability of the power 
system. 
  
In recent years adaptive PSS (APSS) has been 
developed to overcome inherent shortcomings of 
conventional PSSs. Most of them utilize the 
excitation control based on the single input single 
output model of a synchronous machine. As is well 
known, governor can also improve the power system 
stability by maintaining the generator output and 
frequency at predetermined values. 
  
It is worth trying to coordinate excitation and 
governor controls together, that is, a multi-input 
multi-output (MIMO) APSS. To obtain such a 
controller, an accurate model of the plant is required. 
State space model is a better choice than transfer 
function model that is cumbersome with polynomial 
representations in the multivariable case. Thus, 
identification of a MIMO state space model is a key 
step in designing a model based APSS.  
 
The paper is organized as follows. An ordinary 
MOESP (MIMO Output Error State Space) 
algorithm is introduced in Sec. 2. Recursive subspace 
identification based on PAST (Projection 
Approximation Subspace Tracking) approach is 
proposed in Sec. 3. Section 4 provides some 
discussion concerning identification of a simple 
power system consisting of a single machine 

connected to an infinite bus. In Sec. 5, simulation 
results of MIMO identification are presented. Finally, 
the conclusions are given in Sec. 6. 
 
 
2. INTRODUCTION OF THE ORDINARY MOESP 

(OM) SCHEME 
 
Mathematically, a state space model can be 
expressed by the following equations (Verhaegen and 
Dewilde, 1992): 
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processes are the process noise kw and the output 

measurement noise kv . They are assumed to be 
discrete time, zero mean, white noise with 
appropriate dimensions. 
 
For subspace-based algorithms, the following matrix 
definitions are frequently used.  
• Hankel matrix 
The Hankel matrices are constructed from the input 
and output data. The following is an input Hankel 
matrix: 
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where k is the starting time index, i is the number of 



     

the rows and N is the number of columns. 
• Extended observability matrix iΓ  
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• Toeplitz matrix  
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• Matrix Nk ,X  of state vectors 

[ ]11, ... −++= NkkkNk xxxX        (5)                        

For the special case of the absence of kw , kv , the 
data equation can be written in a condensed form: 

NikiNkiNik ,,,,, UHXY += Γ             (6)                           

It is obvious from (6) that the output from the system 
contains two parts. One is the zero input response 

Nki ,XΓ , the other is the zero state response 

Niki ,,UH . Using the LQ factorization to get rid of 

the zero state response from the output, 
( )icolspan Γ  can be estimated and hence the 

matrices A and C . 
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where Q is an orthogonal matrix. 
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From (6) 
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Comparing (8) and (9)  
T
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Doing a SVD factorization of 22L , a consistent 

estimate of ( )icolspan Γ  can be obtained. 
T
222 USVL =                                 (11) 
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It is easy to find the estimate of A and C from 
∧

iΓ .  
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A  can be estimated by solving the least squares 
problem. ψ is the Moore-Penrose pseudo-inverse. 
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Estimation of B and D becomes a least squares 

regression problem with known 
∧

A and 
∧

C . 
Mathematically 
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This equation can be rewritten in the following form 
by using the Kronecker product ⊗ and stacking the 
columns of B and D by vec( B ) and vec( C ). 
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Construct a vector with all output signals 
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iΓ is the extended observability matrix as defined in 
(3). Solving (17) 
[ ] [ ] 1,,00 )()( Nuyi
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(18) 
 

For the more general model with noise kw  and kv , 
(6) becomes: 

NjkNikiNikiNkiNik ,,,,,,,,, VWGUHXY +++= Γ  

(19) 
where Nik ,,W  and Nik ,,V are Hankel matrices 

containing the process noise and the output 
measurement noise, respectively. Matrix iG  shows 

the impact from kw  on the output. 
Introduction of IV (Instrumental Variable) can help 
to get rid of the influence of noise without disturbing 
the column space of iΓ due to the following 
properties.  

1) [ ] 0e =Htt )()( ΞΕ  

2) [ ] nttRankRank H
x == })()({)( ΞΕ xM ξ  

where )(te represents signal that needs to be 

eliminated while )(tx  is the useful signal. 

npRt p ≥∈ × ,)( 1Ξ  is an IV vector. 
The rest of the algorithm to estimate system matrices 
is the same as that used in the noise-free environment. 
Different source and construction of IV can be used 
to handle different noise model (Lovera et al., 2000). 
 



     

3. RECURSIVE SUBSPACE IDENTIFICATION 
 
As mentioned before, it is not only necessary to 
derive a state space model, but also need to update 
the model on line to adapt to the system variations. A 
bottleneck to the recursive implementation is the 
update of the SVD factorization. The idea of 
applying subspace-tracking algorithms to the 
recursive subspace identification was introduced in 
(Gustafson, 1998) to overcome the difficulty. A 
successful subspace-tracking algorithm is the PAST 
approach (Yang, 1995). The basic idea is to treat the 
signal subspace-tracking problem as the solution of 
an unconstrained minimization task. Furthermore a 
projection approximation reduces the minimization 
to the well-known exponentially weighted least 
squares problem.  
 
 
3.1 The PAST scheme 
 

Consider a random vector 1×∈ mRx , and study the 
unconstrained criterion 

2
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with a full 

rank )( n= matrix nmnmRt >×∈ ,)(W . 
 
Applying the theorem  
“The global minimum of ))(( tJ W is attained if and 

only if TUW s= , where nm
s R ×∈U contains the 

n dominant eigenvectors of [ ]Ttt )()( xxΕ  and T is 
an arbitrary unitary matrix.” 
 

From (Yang, 1995), the columns of )(tW  which 

minimize ))(( tJ W form an orthonormal basis of 
the signal subspace. 
 
For a practical algorithm, considering forgetting 
factor λ , replace (19) with 
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The key issue of the PAST is to replace 

)()( kt H xW with )()1()( kkk H xWh −= . 

Hence the original fourth-order function of )(tW  is 

reduced to a quadratic problem. ))(( tJ W  is 
minimized by  
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3.2 The IV- PAST scheme 
 
Using IV, similar results can be obtained as from the 
standard PAST. 
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))(( tJ W is minimized by  
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More details about the algorithmic steps of a 
recursive formulation of (23) are given in (Gustafson, 
1998). 
 
 

3.3 Recursive updating ( )icolspan Γ  in the OM 
scheme 

 

Recursive estimation of A  is equal to recursive 
updating ( )icolspan Γ . In the OM scheme a partial 
update of LQ factorization is required with the help 
of the method of Givens Rotations (Lovera et al., 
2000). 
 
When a new data point arrives, the LQ must be 
updated as 
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where the new set of I-O data vectors is 
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Using Givens Rotations matrix )1( +kP to 

annihilate )1( +kufΦ . 
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Nik ,,E  denotes a Hankel matrix that consists of noise 

in the past. efΦ represents current noise item at time 

instant )1( +k . 
 
The new information contained in 

[ ]TT
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T
uf kk )1()1( ++ ΦΦ  is condensed into a 



     

rank one modification of )(22 kL . Feeding 

)1( +
−

kyfΦ  directly to the PAST algorithm to 

update ( ))(22 kspancol R  would result in a biased 
estimation due to the noise it contains. IV-PAST is 
used to rescue this problem. Previous I-O data are 
usually chosen as IV npRt p ≥∈ × ,)( 1Ξ .  
 
 

4. SYNCHRONOUS MACHINE 
IDENTIFICATION 

 
The power system model consists of a synchronous 
machine connected to an infinite bus through a 
double circuit transmission line. The cylindrical rotor 
machine is simulated by seven first order differential 
equations in the d-q frame of reference (Anderson et 
al., 1977). The AVR used is IEEE standard type 
ST1A. Electro hydraulic governor and steam turbine 
are also included in the model. System parameters 
are given in the Appendix. 
 
The system configuration for identification is shown 
in Fig.1. For identification, the input signals are 
V_pss and V_gov that are connected to the AVR and 
governor summing junctions. Deviation of rotor 
speed and active power, dω and dPe, are chosen as 
the plant output signals.   
 
Variance Accounted for (VAF) is used as a standard 
to measure the accuracy of identification. 
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Fig. 1.  System configuration. 
 
 
5.1 Selection of the model order n  
 
Actually power system is a high order non-linear 
system. However, for control purposes, it is not 
necessary to identify a detailed model representing 
the whole system. For on-line identification the 
model is required to just stress the desirable features 
of the system, damping the low frequency 
oscillations of the mechanical mode of the 
interconnected system in the present case. A model 
that can represent this kind of oscillation accurately 
is required. A third order model can usually provide 
a pair of complex poles that represent the dominant 

oscillation frequency of the system and a single real 
pole that represents the free damping part of the 
system response. Therefore the model order n  is 
selected as 3. 
 
 
5.2 Scaling output data 

 
Better identification results are obtained from a well- 
conditioned problem than an ill conditioned one. The 
results will be more sensitive to noise and 
perturbations for an ill-conditioned estimation 
problem.  
 
dPe is nearly 100 times larger than dω. After scaling, 
the two output signals are brought to the same order 
of magnitude. Simulation studies show using scaled 
data leads to more accurate result than just using 
original data especially in the case of disturbance. 
 
 
5.3 Observer for state estimation 
 
Although state estimate is not a part of identification, 
it plays an important role for output prediction as 
well as the model parameters. The state space model 
is identified directly from the I-O data. Therefore, the 
states in the model have no physical meanings. An 
observer can be established to estimate all the states 
based on the following equations (Franklin et al., 
1998). 
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Subtracting (32) from (33) yields the error vector 
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The solution to this homogeneous first-order vector 
difference equation is given by 
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If the matrix ( KCA − ) has eigenvalues inside the 

unit circle, then k)( KCA − approaches the zero 

matrix as the time index k gets large. 
 
Based on the pole placement algorithm, the 
eigenvalues of ( KCA − ) are placed close to the 
origin. Therefore, k)( KCA − approaches zero in 
about n steps, where n  is the system order. 
 
 

5. SIMULATION RESULTS 
 
In the simulation studies, the synchronous machine is 
operating in steady state at Pe = 0.7 p.u. , 0.85 power 
factor lag. The infinite bus voltage is 1.0 p.u. Using a 
sampling frequency of 20Hz and a variable forgetting 
factor (Park,1991) to improve fast tracking ability of 
the algorithm, identification results were obtained 
under steady state as well as under various 
disturbances.  
 
A model from off line identification was used as the 



     

initial parameters for recursive subspace 
identification. Consider the following situations, 
where all disturbances occur at 70s: 
Case 1: Steady state, Fig.2. 
Case 2: Reference terminal voltage increased by 5%, 
Fig.3. 
Case 3: Reference torque increased by 10%, Fig.4. 
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Fig. 2.  Identifier response to a steady state. 
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Fig. 3.  Identifier response to a 5% increase in 

reference terminal voltage. 
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Fig. 4.  Identifier response to a 10% increase in 

reference torque. 
 

Case 4: Disconnection of one transmission line, Fig.5. 
Case 5: A three phase to ground fault is applied at the 
middle of one transmission line and cleared 50ms 
later by opening the breakers at both ends, Fig.6. 
Case 6: The same three phase to ground fault, using 
original output data without scaling, Fig.7. 
Case 7: The same three phase to ground fault, using 

fixed forgetting factor instead, Fig.8. 

69 69.5 70 70.5 71 71.5 72
-4

-2

0

2

4
x 10-3

D
ev

ia
tio

n 
of

 ro
to

r s
pe

ed
  (

p.
u.

)

Time  (s)

 dwestimate
 dwtrue

69 69.5 70 70.5 71 71.5 72
-0.2

-0.1

0

0.1

0.2

D
ev

ia
tio

n 
of

 a
ct

iv
e 

po
w

er
 (p

.u
.)

Time  (s)

dPeestimate
dPetrue

Fig. 5.  Identifier response to disconnecting one 
transmission line. 
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Fig. 6.  Identifier response to a three phase to ground 
fault. 
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Fig. 7.  Identifier response to a three phase to ground 
fault without scaling output data. 
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Fig. 8.  Identifier response to a three phase to ground 

fault with a fixed forgetting factor 
 

Table 1 Summary of identification results under 
different cases 

 
Case Vaf1 (%)  Vaf2 (%)    Scaled     VFF 

  dω     dPe   dω    dPe  output  
1    99.8   99.1    99.8   99.5       √          √ 
2     99.8    99.1   95.8   91.9        √          √ 
3          99.8    99.1   99.6    97.2        √          √ 
4          99.8    99.1    93.2   84.4        √          √ 
5          99.8    99.1    97.4   89.5        √          √  
6          99.3    98.2    85.4   51.3        ×          √  
7          99.8    99.1    96.8   88.3         √          × 
  
 
∗: Vaf1 is the value of VAF before disturbance 

Vaf2 is the value of VAF after 0.5s of disturbance 
VFF means Variable Forgetting factor 

 
It is obvious from Table 1 that a lower order linear 
state space model can be used to accurately represent 
the synchronous machine behaviors under steady 
state. The recursive subspace algorithm also 
performed well under small and large disturbances. 
Using variable forgetting factor can improve the 
identification results to some extent. Proper scaling 
of the output data makes the results more attractive. 
 
 

6. CONCLUSIONS 
 
Use of recursive subspace identification for a state 
space model of a synchronous machine is presented 
in this paper. The approach is based on IV ideas and 
on the use of subspace tracking for the update of the 
SVD. It has been tested with synchronous machine 
operating in steady state and under various 
disturbances. Accuracy of identification can be 
increased by incorporating properly scaled I-O data 
and by using a variable forgetting factor. The 
proposed approach provides a reasonable model for 
designing a MIMO APSS. 
 
 
 

7. APPENDIX 
 

Generator (Cylindrical rotor machine) Parameters In 
p.u. 

64.170.131.1 ==−= qda xxer  

61.123.1 =−= DD xer  

59.124.5 =−= QQ xer  

65.144.7 =−= ff xer  

)(37.249.155.1 sHxx mqmd ===  

Transmission Line Parameters In p.u. 
2.001.0 == ee xr  

AVR Parameters  
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001.0190
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Electro Hydraulic Governor parameters 

0.00.1
5.05.0

1.00.25
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Steam Turbine parameters 

3.04.03.0
4.00.42.0
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CORHCH

FFF
TTT

 

 
 

REFERENCES 
 
Anderson, P. M. and Fouad, A.A. (1977). Power 

System Control and Stability, (1st Ed.), The 
IOWA State University Press, AMES, IOWA, 
U.S.A.  

Franklin, G. F., Powell, J. D. and Workman, M. 
(1998). Digital control of dynamic systems, (3rd 
Ed.), Addison-Wesley, Don Mills, Ontario.  

Gustafsson, T, (1998). Instrumental variable 
subspace tracking using projection 
approximation. IEEE Trans. on Signal 
Processing, Vol. 46(3), 669-681. 

Lovera, M., Gustafsson, T., and Verhaegen, M. 
(2000). Recursive subspace identification of 
linear and non-linear Wiener state-space. 
Automatica, 36(11), 1639-1650.  

Park, D. J., Jun, B. E. and Kim, J. H. (1991) Fast 
tracking RLS algorithm using novel variable 
forgetting factor with unity zone, Electronics 
Letters, Vol. 27(23), 2150-2151. 

Verhaegen, M., and Dewilde, P. (1992). Subspace 
model identification part 1. The output error 
state space model identification class of 
algorithm.  International Journal of Control, Vol. 
56(5), 1187-1210. 

Yang, B. (1995). Projection approximation subspace 
tracking. IEEE Trans. on Signal Processing, Vol. 
43(1), 95-107. 


