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Abstract: This paper presents an algorithm based on a repetitive-control scheme to
eliminate the low-frequency-harmonic contents of the output voltage in voltage-
source inverters. The proposed controller can be used to minimise unexpected
output-voltage harmonics due to practical implementation aspects of the pulse-
width-modulation algorithm (switch dead time, for example). The controller can
be implemented using the Park’s transformation with a rotating reference frame
for balanced three-phase voltage-source inverters. Simulation results are presented
to illustrate the main contribution of this work. Copyright c©2005 IFAC
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1. INTRODUCTION

Voltage-source inverters (VSIs) with pulse-width
modulation (PWM) are frequently used in in-
dustrial applications. Traditional PWM schemes
are tailored to control the fundamental frequency
of the output voltage (Mohan et al. 1995). But
practical limitations in VSI implementation (such
as switch dead times) produce unexpected output-
voltage distortion. More recently, the application
of VSI in active-power filters requires accurate
control of low-frequency output harmonics.

Open-loop schemes to control (or eliminate) low-
frequency harmonics from the VSI output voltage
have been proposed in the past (Patel and Hoft
1973). Closed-loop schemes have been proposed
for active-power filters using an independent con-
troller for each voltage harmonic to be controlled
(see (Yuan et al. 2002)). This paper shows a

controller based on a repetitive control scheme
which is able to deal with several voltage har-
monics simultaneously in three-phase VSIs. The
control scheme is applicable under balanced and
unbalanced conditions.

A simple model for voltage control in a single-
phase VSI is presented in Section 2 together with
the ideal transfer function of the proposed con-
troller. The stability and robustness of the re-
sulting closed-loop system is studied in Section
3. An alternative controller is proposed to ensure
stability when differences exist between the VSI
model and the actual plant. Section 4 explains
the performance of the proposed controller if a
balanced three-phase VSI can be considered, while
Section 5 details the design procedure of the pro-
posed controller. Finally, the main contributions
are illustrated by simulation in Section 6.



2. VSI MODEL FOR OUTPUT-VOLTAGE
CONTROL AND CONTROLLER PROPOSAL

A continuous-time model for a closed-loop-control-
led single-phase VSI can be depicted as in Figure
1, where C(s) is the controller and the ideal VSI
is modelled by a pure delay P1(s) = e−t0s (thus
taking into account the PWM implementation in
a microprocessor) and P2(s) = 1. V (s) is the
reference voltage for the inverter, U(s) is the con-
trol output and Y (s) is the actual inverter output
voltage. The disturbance D(s) models unexpected
output-voltage distortion due to, for example,
switches dead time which often appears as low fre-
quency unwanted output-voltage harmonics. The
time delay t0 is the sum of one-sample-period
delay to calculate the control signals (see (Bellini
et al. 1983) and (Séguier and Labrique 1993)) and
half of the sampling period to model the discrete-
time implementation ((Åström and Wittenmark
1997)). This model can easily be extended for
three-phase applications.
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Fig. 1. Closed-loop control for a single-phase
model of a voltage-source inverter

Recent publications propose controllers based on
transfer functions such as:

C(s) =
N(s)

s2 + ω2
h

(1)

where ωh is the frequency of the harmonic to
be controlled in rad/s. This effectively introduces
two open-loop poles at s = ±jωh which guarantee
elimination of any error signal (V (s) − Y (s)) of
frequency ωh in steady state, if the system is
closed-loop stable. A controller of the form in (1)
has to be implemented for each output-voltage
harmonic to be controlled.

Let us consider an alternative controller based on
the so called repetitive control, (Weiss and Häfele
1999), written as:

C(s) =
M(s)

1− e−
2π
ω1

s
(2)

where M(s) is a transfer function to be considered
later in the paper and ω1 is the fundamental
frequency of the inverter output voltage.

The system output Y (s) can be written as:

Y (s) = F (s)V (s) + FD(s)D(s) (3)

with,

F (s) =
M(s)e−t0s

1− e−
2π
ω1

s + M(s)e−t0s
(4)

FD(s) =
1− e−

2π
ω1

s

1− e−
2π
ω1

s + M(s)e−t0s
(5)

Clearly, F (jωh) = 1 and FD(jωh) = 0 for
frequencies ωh = hω1 with h = 0, 1, 2 . . .∞.
Therefore, if the closed-loop system is stable, the
error in steady state for a sinusoidal reference
v(t) = A sin(ωht) or a sinusoidal disturbance in-
put d(t) = B sin(ωht) is zero. This controller,
effectively, places open-loop poles at ±jhω1.

3. STABILITY OF THE CLOSED-LOOP
SYSTEM

Since t0 is small compared to the inverter output
voltage period ( 2π

ω1
> t0), M(s) could be chosen

as:

M(s) = e
−
(

2π
ω1
−t0

)
s (6)

Substituting (6) in (4) and in (5), the system
output yields:

Y (s) = e−
2π
ω1

sV (s) +
(
1− e−

2π
ω1

s
)

D(s) (7)

and, obviously, the closed-loop system is always
stable.

Unfortunately, the inverter delay t0 is not exactly
known and the closed-loop system in Figure 1 will
not be stable if a controller is used with (2) and
(6) designed for an estimated t̂0 6= t0.

To tackle this problem, the controller C(s) is
proposed as:

C(s) =
Q(s)e−(L−t̂0)s

1−Q(s)e−Ls
(8)

where Q(s) is the transfer function of a low-pass
filter (Hara et al. 1988) and t̂0 is the estimated
value for the inverter delay. The delay L is L =
2π
ω1
− β and β is a design parameter smaller than

the fundamental inverter output voltage period
( 2π

ω1
> β).

The output system is:

Y (s) =
Q(s)e−Lse−δs

1 + Q(s)e−Ls [e−δs − 1]
V (s)+

+
1−Q(s)e−Ls

1 + Q(s)e−Ls [e−δs − 1]
D(s)

(9)



with δ = t0 − t̂0.

The characteristic equation of the resulting closed-
loop system is:

1 +

G′(s)︷ ︸︸ ︷
Q(s)e−Ls

[
e−δs − 1

]
= 0 (10)

In order to guarantee stability, the term G′(s) in
(10) must comply with the Nyquist criterion: if the
number of unstable poles of the open-loop system
G′(s) is equal to zero (P = 0), then the number of
counterclockwise encirclements of the point (-1,0)
of the term G′(jω) with −∞ < ω < ∞ must be
zero (N = 0).

Since all poles of Q(s) are stable, which implies
P = 0, then N = 0 to guarantee stability, and
a sufficient condition for Q(s) can be obtained
making |G′(jω)| = ∣∣Q(s)(e−δs − 1)

∣∣ < 1 ∀ω. This
is fulfilled if:

2
∣∣∣∣sin

(
δ

2
ω

)∣∣∣∣ |Q(jω)| < 1 ∀ω (11)

Note that the condition (11) is independent of the
delay value L of the controller C(s) in (8).

Furthermore, if a Bessel filter is chosen for Q(s)
(Horowitz and Hill 1989) which can be approx-
imated by a constant time delay (equal to β in
equation (8), Q(jω) ≈ 1e−jβω) within its pass
band, the closed-loop frequency response of the
system will satisfy F (jωh) = 1 and FD(jωh) = 0
while the approximation is valid. Therefore, the
closed-loop system will show perfect reference
tracking (and disturbance rejection) within the
filter pass band.

Obviously, only a limited number of harmonics
will be controlled as described because the mag-
nitude and the phase characteristics of the filter
will deteriorate as frequency increases.

4. CONTROL SYSTEM FOR BALANCED
THREE-PHASE INVERTERS

The system depicted in Figure 1 can be extended
for three-phase inverters, where the output system
for each phase (A, B and C) can be calculated as:

YA(s) = e−t0sUA(s) + DA(s) (12)
YB(s) = e−t0sUB(s) + DB(s) (13)
YC(s) = e−t0sUC(s) + DC(s) (14)

A controller C(s) has to be designed for each
phase of the inverter, splitting the MIMO system
described by (12)-(14) into three independent
SISO systems. Under unbalanced conditions, this

is the most popular alternative to control the
inverter output voltage. However, under balanced
conditions, an alternative solution to design the
control system is proposed in this work.

Given a set of three-phase variables, a linear
transformation can be defined that transforms the
variables to an orthogonal 0− ds− qs coordinate
system as:




x0

xds

xqs


 = P




xA

xB

xC


 (15)

where xA, xB and xC is the set of three-phase
variables and x0, xds and xqs are the variables in
the new coordinate system.

This transformation is the known Park’s transfor-
mation and it is carried out by using a stationary
reference frame with the matrix P :

P =




k1 k1 k1

k2 k2 cos
(− 2π

3

)
k2 cos

(− 4π
3

)
0 −k2 sin

(− 2π
3

) −k2 sin
(− 4π

3

)


 (16)

If the real power must remain invariant, PtP = I.
Hence (Kundur 1994):

k1 =
1√
3
, k2 =

√
2
3

(17)

If xA + xB + xC = 0, the homopolar component
x0 is equal to zero and the three-phase system is
reduced to a two-axis reference frame (ds− qs).

The Park’s transformation can also be done using
a reference frame d − q rotating synchronously
with the fundamental harmonic ω1 (Krause 1986):

[
xd

xq

]
=

[
cos θ sin θ
− sin θ cos θ

] [
xds

xqs

]
(18)

with θ =
∫

ω1dt.

If the three-phase system is balanced, the harmon-
ics of the inverter output voltage are: 1st, 5th,
7th, 11th, 13th, 17th, 19th, etc. Furthermore using
the reference frame rotating at the fundamental
frequency ω1, the fundamental harmonic is trans-
formed into a d.c. signal, and the 5th and 7th
harmonics are transformed into a 6th harmonic,
the 11th and 13th harmonics are transformed into
a 12th harmonic, and the 17th and 19th harmonics
are transformed into a 18th harmonic in that
frame (Mattavelli and Fasolo 2000).

Note that if the inverter system is found to be
balanced, the homopolar component is zero, and
the equivalent system described by (12)-(14) can
be written using a synchronous reference frame as:



[
Yd(s)
Yq(s)

]
=

[
e−t0s 0

0 e−t0s

] [
Ud(s)
Uq(s)

]
+

[
Dd(s)
Dq(s)

]
(19)

Since the inverter-output voltage will contain only
a 6th harmonic and its multiples, using this frame,
it is possible to propose the following controller:

Cd(s) = Cq(s) =
Q(s)e−(L′−t̂0)s

1−Q(s)e−L′s (20)

with L′ = 2π
6ω1

− β.

The condition to guarantee stability of the closed-
loop system is again (11).

The closed-loop system using (20) is six times
faster than that using (8).

5. CONTROLLER DESIGN AND
PERFORMANCE

The following case study has been considered: the
expected time delay of the inverter was chosen
as being t̂0 = 3

2 ts and δ = 0.2t̂0, where ts is
the sampling period for the control system, and
it was made equal to 6300−1 s (see Section 2 for
an explanation). The fundamental frequency ω1

was chosen as being equal to 100π rad/s.

A second order Bessel filter is proposed whose
transfer function is:

Q(s) =
3ω2

B

s2 + 3ωBs + 3ω2
B

(21)

where if ωB < 7711.2π rad/s, to satisfy (10). The
chosen value is ωB = 7500π rad/s and Figure 2
shows that

∣∣Q(s)
(
e−δs − 1

)∣∣ < 1 (0 dB).
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Fig. 2. Amplitude in dB of the term
Q(s)

(
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)
.

The filter Q(s) has a phase lag proportional to
frequency (equivalent to a constant time delay
equal to τ = 4.24 · 10−5 s) up to 10 · 103 rad/s.
The amplitude of the filter Q(s) begins to decrease
at, approximately, 5000 rad/s (about 16 times the
fundamental frequency).
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Fig. 3. Nyquist diagram of the term
Q(s)e−Ls

(
e−δs − 1

)
, with L = 2π

ω1
− β.
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Fig. 4. Nyquist diagram of the term
Q(s)e−L′s

(
e−δs − 1

)
, with L′ = 2π

6ω1
− β.

Figure 3 shows the Nyquist diagram of the
term Q(s)e−Ls

(
e−δs − 1

)
while Figure 4 shows

the Nyquist diagram of Q(s)e−L′s
(
e−δs − 1

)
. In

both cases, the number of counterclockwise encir-
clements of the point (−1, 0) is N = 0, therefore
both closed-loop systems are stable.

In this case study, 16 harmonics of ω1 will be
eliminated if β is chosen to be equal to τ , while
higher-order harmonics will only be attenuated.

6. SIMULATION RESULTS

A control system like the one depicted in Figure 1
has been simulated for a balanced three-phase VSI
with the parameters of the case study presented
in Section 5. The response to disturbances of fre-
quencies 5ω1, 7ω1, 11ω1, 13ω1, 17ω1 and 19ω1 has
been investigated. The amplitude of every distur-
bance input is 10 V. The fundamental frequency
has been set at ω1 = 100π rad/s (the fundamental
period is 20 ms).

The controller has been implemented using Park’s
transformation in two cases: with a stationary
reference frame and a delay L = 2π

ω1
− β for

the repetitive control, and with a reference frame
rotating synchronously with ω1 and a delay L′ =
2π
6ω1

− β for the repetitive control.



Figures 5 and 6 show the results obtained when
the controller is implemented using a stationary
reference frame and the delay L.

Figures 5(a) and 5(b) show the yds and yqs compo-
nents, respectively, of the output voltage for sinu-
soidal disturbances and zero reference inputs. The
closed-loop system cancels all the disturbances.
A clear attenuation is already in 40 ms (2 2π

ω1
s),

approximately.
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Fig. 5. Response of the system for sinusoidal dis-
turbances using a stationary reference frame
and the delay L in the controller: (a) yds

voltage and (b) yqs voltage.

Figure 6(a) shows the reference inputs vds and vqs

(their amplitudes were set at 50 V), while Figure
6(b) shows the yds and yqs components of the
output voltage: after, approximately, 40 ms the
disturbances are eliminated and the outputs are
equal to the reference inputs.
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Fig. 6. Response of the system for sinusoidal ref-
erences and disturbances using a stationary
reference frame and the delay L in the con-
troller: (a) references vds and vqs, and (b)
output voltage yds and yqs.

Figures 7 and 8 show the results obtained when
the controller is implemented using a reference
frame rotating synchronously with ω1 and the
delay L′.

Figures 7(a) and 7(b) show the yd and yq compo-
nents, respectively, in the rotating reference frame
of the output voltage for sinusoidal disturbances
and zero reference inputs. The disturbances are
eliminated six times faster than in the case of
the controller implemented using the stationary
reference frame and the delay L (compare Figures
5 and 7).
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Fig. 7. Response of the system for sinusoidal
disturbances using a rotating reference frame
and the delay L′ in the controller: (a) yd

voltage and (b) yq voltage.

Figure 8(a) shows the time response of the output-
voltage components yd and yq when the reference
inputs are vd = 30 V and vq = −40 V (| vdq |= 50
V), the references are plotted (- -). Note that the
disturbances are cancellated and the outputs are
equal to the inputs in 7 ms, approximately. The
transformation of the yd and yq components in a
stationary reference frame is shown in Figure 8(b).
The amplitude of both the components, yds and
yqs, is 50 V. The time response is six times faster
than the one shown in Figure 6.

Finally, Figure 9(a) and 9(b) show the yds and yqs

components, respectively, of the output voltage
for a sinusoidal disturbance of frequency 29ω1 and
amplitude 25 V. The reference inputs were set
at zero, and the controller has been implemented
using the stationary reference frame and the delay
L. In this case, the closed-loop system does not
eliminate the disturbance completely and this is
only attenuated.

7. CONCLUSIONS

This work has investigated a repetitive controller
to track sinusoidal references or to reject sinu-
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Fig. 8. Response of the system for sinusoidal
references and disturbances using a rotating
reference frame and the delay L′ in the con-
troller: (a) components yd and yq, and (b)
components yds and yqs.
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Fig. 9. Response of the system for sinusoidal dis-
turbance of frequency 29ω1 using a stationary
reference frame and the delay L in the con-
troller: (a) yds voltage and (b) yqs voltage.

soidal disturbances in the output voltage of a
three-phase VSI. This type of controller may be
used to compensate the effects of switches dead
times, which appear as unexpected low-frequency
output voltage harmonics that can be modelled as
disturbances.

The closed-loop stability has been studied. It was
demonstrated that the use of a second order Bessel
filter ensures stability when there are differences
between the VSI model and the actual plant.

The Bessel filter limits the number of harmonics
that can be eliminated with a single controller.
The rest of the harmonics are only attenuated.

The controller can be implemented using Park’s
transformation in a stationary reference frame

and a delay equal to the fundamental period.
This scheme is valid under balanced conditions
and under unbalanced conditions. If the three-
phase VSI works under balanced conditions, faster
closed-loop response can be obtained.

The performance of this type of controllers has
been illustrated using simulation results.
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Åström, K. J. and B. Wittenmark (1997).
Computer-Controlled Systems. Theory and
Design. Prentice-Hall Information and Sys-
tem Science. third ed.. Prentice-Hall Interna-
tional, Inc.

Bellini, A., G. Figalli and G. Ulivi (1983). A three-
phase modulation technique suitable to sup-
ply induction motors. In: Proceedings of the
International Power Electronics Conference.
pp. 396–406.

Hara, S., Y. Yamamoto, T. Omata and M. Nakano
(1988). Repetitive control system: A new
type servo system for periodic exogenous sig-
nals. IEEE Transactions on Automatic Con-
trol 33(7), 659–668.

Horowitz, P. and W. Hill (1989). The Art of
Electronics. second ed.. Cambridge University
Press.

Krause, P. C. (1986). Analysis of Electric Machin-
ery. McGraw-Hill Inc.. New York.

Kundur, P. (1994). Power System Stability and
Control. McGraw-Hill, Inc.

Mattavelli, P. and S. Fasolo (2000). Implementa-
tion of synchronous frame harmonic control
for high-performance ac power supplies. In:
Proceedings of the 2000 IAS Annual Meeting.
IEEE Industry Applications Soc. pp. 1–8.

Mohan, N., T. Undeland and W. Robbins (1995).
Power Electronics: Converters, Applications
and Design. second ed.. John Wiley & Sons,
Inc.. New York.

Patel, H. and R. Hoft (1973). Generalized tech-
niques of harmonic elimination and voltage
control in thyristor inverters, part I: Har-
monic elimination. IEEE Transactions on In-
dustry Applications IA-9, 310–317.
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