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Abstract: This paper considers a class of linear uncertain systems in which the
uncertainty is an additive perturbation of a known (nominal) linear model. It is
supposed that the uncertainty and/or disturbance is known to be bounded, but
its bound is unkown. A novel, easy to implement, adaptive feedback control law
is designed to estimate the bounded disturbance on-line. This information is then
used to cancel the effect of the disturbance in the system. The main advantage
is that, if further design objectives are to be realized (for example, with respect
to a tracking problem), the controls can be designed on the information from the
nominal model only and not on the uncertain model. Copyright c©2005 IFAC
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1. INTRODUCTION

Many robust control problems are studied us-
ing a deterministic approach for robust control,
which often assumes knowledge of an uncer-
tainty/disturbance bound or bounding function.
In practice, such a priori knowledge of the un-
certainty and/or disturbance may be difficult or
almost impossible to obtain for the specific appli-
cation.

Although there have been numerous studies in the
area of robust control, there are very few studies
that consider the problem of estimating and can-
celling uncertainty and/or disturbance without a
priori knowledge of uncertainty and/or distur-
bance. Those studies can be classified into three
classes. One class consists of methods that use
inverse dynamics of the nominal model to esti-
mate the disturbance, see (Nakao et al., 1987) for
example. A second class of methods utilise ob-
severs with Lyapunov min-max type controllers,
for example see (Chen and Su, 2002). The fi-

nal class involves those methods that use high
gain disturbance observers, as studied in (Yim
and Singh, 2003). In the traditional disturbance
observer (see (Nakao et al., 1987; Yamada et
al., 1996) and (Komada et al., 1991), for exam-
ple), it is shown that the disturbance and un-
certainty can be estimated using inverse dynam-
ics of the nominal system (i.e. the known lin-
ear system). In the studies on disturbance ob-
servers with Lyapunov min-max type controllers
(see, for example, (Chen et al., 2000; Lu and
Chen, 1995; Chen and Su, 2002)), it is shown that
the uncertainty/disturbance can be estimated us-
ing an observer-like system with Lyapunov min-
max type controllers and an adaptive law. In the
studies (Chen et al., 2000; Lu and Chen, 1995),
it is shown that, with a priori knowledge of
the bound on the uncertainty/disturbance, it is
possible to estimate the uncertainty/disturbance
using a non-adaptive control law. In (Chen and
Su, 2002), using an adaptive control law, it is
shown that the uncertainty/disturbance can be



estimated without a priori knowledge of the
uncertainty/disturbance. In the studies utilizing
high-gain disturbance observers, as in (Yim and
Singh, 2003), the disturbance is treated as one of
the states of the observer, and it is shown that
the disturbance can be estimated using a constant
high-gain observer.

In the context of adaptive control, there are
some studies which try to stabilize unknown sys-
tems using a control input which is produced by
an observer-like system (see (Mårtensson, 1985;
Miller and Davison, 1989) and (Fu and Barmish,
1986), for example); however, only parametric un-
certainty is considered. Other studies do not re-
quire a priori knowledge of a disturbance. Often,
in these studies, the control gain is determined
from the dynamics of a differential equation, as
in (Ilchmann and Ryan, 2004). However, none
of these methods provide any estimates for the
disturbances.

In this work, an on-line uncertainty/disturbance
estimation and cancellation method is proposed.
The approach is based on the inverse problem
of tracking and it does not require any a priori
knowledge on the bounds of any disturbances. The
basic idea for estimating the disturbances is to
track the state of the real system, to be controlled,
by using the output of an observer-like system.
The real system is assumed to be modelled as
an additive unknown perturbation to a known
linear system, known as the nominal model. The
observer-like system is designed to be a known
linear system with the same system matrices as
the nominal model for the real system. Since
both systems have the same system matrices, if
it were possible to track the real system by the
observer-like system, then the control input, for
tracking, will produce almost exactly the same
signal as the disturbance. In addition to this
basic method, a feedforward filter is introduced
in order to estimate and cancel out the effect of
the disturbance in the closed-loop system. The
resulting robust control scheme and the controller
itself are very simple and, hence, it is easy to
implement in practice.

2. PROBLEM STATEMENT AND
PROPOSED METHOD OF SOLUTION

Consider the following system:

ṙ(t) = (A + ∆A)r(t) + Bu(t) + w(t), t > t0,
(1)

r(t0) = r0, t0 ≥ 0, (2)

where r(t) ∈ Rn (n ∈ N), the constant matrix ∆A
and w(t) ∈ Rn represents parametric uncertainty
and an external disturbance, respectively, u(t) ∈
R is the control input, and A and B are constant

matrices of appropriate dimensions. When the
parametric uncertainty ∆A and the disturbance
w(t) satisfy matched conditions, namely ∆A =
BD and w(t) = Bz(t), where z(t) is now the
external disturbance, (1) can be expressed in the
form:

ṙ(t) = Ar(t) + B(u(t) + p(t)),

where p(t) = Dr(t) + z(t), henceforth known as
the real system. It is well known that, when p(t) is
bounded by some known function, the system can
be controlled robustly. (see (Gutman, 1979; Leit-
mann, 1981; Corless and Leitmann, 1981; Gutman
and Palmor, 1982) and the references therein).
In practice, however, it may be difficult to ob-
tain such a function for the specific class of sys-
tems. Thus, it is required to estimate the uncer-
tainty/disturbance without a priori knowledge.

In this study, it is shown that such uncer-
tainty/disturbance can be estimated by the in-
verse problem of tracking and the use of a feedfor-
ward filter, with an appropriately designed input
to an ‘observer-like’ system. Consider the open-
loop system:

ṙ(t) = Ar(t) + Bp(t), (3)

where p(t) represents the uncertainty/disturbance.
Define an ‘observer-like’ system as follows:

ẋ(t) = Ax(t) + Bu(t), (4)

x(t0) = x0,

where x0 is specified. Suppose u(t) is an estimate
of the unknown disturbance p(t) such that track-
ing is almost perfectly achieved, i.e. u(t) ≈ p(t)
for t sufficiently large. Then, it follows from (3)
and (4) that x(t) ≈ r(t) for t sufficiently large.
In other words, if tracking r(t) by x(t) can be
achieved, then u(t) is an estimate of the unknown
disturbance p(t).

Consider the closed-loop system described by:

ṙ(t) = Ar(t) + B(u(t) + p(t)), (5)
ẋ(t) = Ax(t) + Bu(t), (6)

Suppose it is desired to estimate the disturbance
p(t) without a priori knowledge of the input u(t).
If a tracking problem is considered, in which x(t)
follows r(t) for system (5-6), then only u(t)+ p(t)
can be estimated using u(t), not the disturbance
p(t). Thus, without prior knowledge of u(t), it is
impossible to estimate the disturbance by track-
ing. To overcome this problem, a feedforward filter
and a modified reference signal are introduced.
The feedforward filter is designed as follows:

ẋf (t) = Axf (t) + Bu(t), (7)

xf (t0) = x0
f ,

where x0
f is specified. Define the modified refer-

ence signal as follows:

r(t) := r(t)− xf (t) (8)



so that

ṙ(t) = Ar(t) + Bp(t). (9)

Note that (9) is independent of the control to the
real system, namely u(t). For estimation purposes,
a tracking problem is considered for (9) together
with the observer-like system (4). The structure
of Equations (4) and (9) is exactly the same as
that for the open-loop system (see (3-4)). Thus,
tracking the state of the modified reference signal
by an observer-like system enables one to estimate
the uncertainty/disturbance for the closed-loop
system, independent of the input u(t).

3. DEFINITION OF AN ERROR SYSTEM

For analysis purposes, an error system is intro-
duced and defined as follows:

e(t) := x(t)− r(t)
ė(t) = Ae(t) + B(u(t)− p(t)),

where r(t) is defined in (8). The input u(t), which
is also the input to the observer-like system (4),
is chosen to be a linear error feedback:

u(t) = K(t)e(t), (10)

where the feedback gain is not fixed, but time-
varying. Thus,

ė(t) = (A + BK(t))e(t)−Bp(t) (11)

with

e(t0) = x0 + x0
f − r0.

4. ASSUMPTIONS

Some relevant assumptions are now introduced.

Assumption 1. (A, B) is a controllable pair

Remark 1. In view of Assumption 1, it is as-
sumed, without loss of generality, that A and B
are in controllable canonical form:

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
an1 an2 an3 · · · ann




, B =




0
0
...
0
1




.

Assumption 2. All states of the real system (1-2)
are available for control purposes.

Assumption 3. The norm of the external distur-
bance/uncertainty p(t) is bounded by some un-
known constant, that is

‖p(t)‖ ≤ α, ∀t,
where α is unknown.

It is supposed that the time-varying feedback
gain K(t) is designed to satisfy the following
conditions.

Assumption 4.
(a) K(t) is bounded.
(b) The time-varying eigenvalues of A + BK(t)

are real, distinct, negative, decreasing and
sufficiently smooth, namely C1.

5. DIAGONALISATION OF THE ERROR
SYSTEM

In view of conditions (a) and (b) of Assump-
tion 4, A + BK(t) can be diagonalised by a lin-
ear, nonsingular coordinate transformation (see
(Mirsky, 1955) for details). Consider the following
linear, time-varying transformation:

e(t) = M(t)e(t),

where the column vectors of M(t) are the time-
varying eigenvectors of A + BK(t). Using this
transformation, the error system (11) can be ex-
pressed as:

ė(t) = Λ(t)e(t)−M−1(t)Ṁ(t)e(t)−M−1(t)Bp(t),
(12)

where Λ(t) is the diagonal matrix M−1(t)(A +
BK(t))M(t), whose elements are the eigenvalues
of A + BK(t). Corresponding to this transforma-
tion, the observer-like system and modified refer-
ence signal are represented as follows:

ẋ(t) =
(
M−1(t)AM(t)−M−1(t)Ṁ(t)

)
x(t)

+ M−1(t)Bu(t) (13)

˙̃r(t) =
(
M−1(t)AM(t)−M−1(t)Ṁ(t)

)
r̃(t)

+ M−1(t)Bp(t) (14)

where x(t) = M(t)x(t) and r(t) = M(t)r̃(t).

Remark 2. If pole assignment is to be considered,
this can be incorporated in the design procedure.
For example, if a constant matrix F is designed,
then the real system has the form:

ṙ(t) = Ar(t) + B(p(t) + u(t)),

where A = A + BF . Then, defining an observer-
like system and a feedforward filter with respect
to A, the same relation as above is obtained.
Therefore, the problem of robust pole assignment
can be treated using the same formulation.

6. DESIGN OF THE CONTROLLER AND
ADAPTIVE ALGORITHM

The feedback gains for the input to the observer-
like system (4) are determined as follows:

K(t) = [k1(t) k2(t) . . . kn(t)], (15)



where

kn(t) = −ann −
n∑

i=1

(−λi(t))

kn−1(t) = −ann−1 −
i=j=n∑

i=j=1,i 6=j=1

(−λi(t))(−λj(t))

kn−2(t) = −ann−2

−
i=j=k=n∑

i=j=k=1,i6=j 6=k=1

(−λi(t))(−λj(t))(−λk(t))

...
...

k1(t) = −an1 −
n∏

i=1

(−λi(t)),

where λi(t) are the eigenvalues of A + BK(t) and
are determined using the following algorithm.

Let v(t) := ‖e(t)‖2, δ and εe are specified con-
stants, and, for τ ≥ 0, f(·, τ), g(·, τ) are contin-
uous decreasing functions, defined on [τ,∞), that
satisfy f(τ, τ) = −δ = g(τ + h, τ) and f(τ +
h, τ) = 0 = g(τ, τ) with h > 0.

Algorithm 1. One of the eigenvalues, say λ1(t), is
determined as follows. At t = t0, λ1(t) is chosen
to be −λ0, where λ0 ∈ R+ := (0,∞), and τ = t0.
At T > t, λ̇1(T ) is determined as follows:

λ̇1(T ) =

{
f(T, τ), if v(t) ≤ ε2e and λ̇1(t) = −δ

g(T, τ), if v(t) > ε2e and if λ̇1(t) = 0,

and τ = T , if v(t) ≤ ε2e and λ̇1(t) = 0, or if
v(t) > ε2e and λ̇1(t) = −δ.

The remaining eigenvalues, say λ2(t), . . . , λn(t)
are determined by

λi(t) = κiλ1(t), i = 2, . . . , n,

with κi > 0 and κi 6= 1 for all i, and κi 6= κj for
i 6= j.

Remark 3. If, for T > t, the conditions of the
algorithm do not hold, then the values of λ̇1(t)
and τ are not changed.

Remark 4. Examples of f and g satisfying the
conditions of Algorithm 1 are:

f(t, τ) =

{
− 1

2δ [1 + cos (π(t− τ)/h)] , t ∈ T1,

0, t ∈ T2,

g(t, τ) =

{
− 1

2δ [1− cos (π(t− τ)/h)] , t ∈ T1,

−δ, t ∈ T2,

where T1 := [τ, τ + h], T2 := (τ + h,∞) and h > 0
is a prescribed constant.

The basic idea of this adaptive algorithm is to
decrease the eigenvalues of the error system (11)
so that the norm of the transformed error state is

sufficiently small. In this case the dynamics of the
observer-like system and the real system will be
almost the same for t sufficiently large and, hence,
the disturbance can be estimated using the control
input to the observer-like system. To implement
this idea, the following criteria are used:

(1) if the function v has a value which is smaller
than the prescribed constant εe, then the
eigenvalues are no longer decreased but are
kept at some constant value, i.e λ̇(t) = 0;

(2) if the value of the function v is greater than
εe, then the eigenvalues are decreased, i.e
λ̇(t) = −δ.

Note that the continuous functions f and g are
introduced to ensure that λ̇ is continuous.

7. PROPERTIES OF THE LINEAR
COORDINATE TRANSFORMATION

The transformation M(t), introduced in §5 can be
chosen to be the Vandermonde (modal) matrix

M(t) =




1 · · · 1
λ1(t) · · · λn(t)

...
. . .

...
λn−1

1 (t) · · · λn−1
n (t)


 . (16)

For M(t), defined in (16), the following properties
hold.

Lemma 5. If λi(·) are determined by Algorithm 1,
then t 7→

∥∥M−1(t)B
∥∥ is a non-increasing function.

Sketch proof: Noting that M(t) can be ex-
pressed in the form Γ(t)Φ, where

Γ(t) =




1 0 · · · 0
0 λ1(t) · · · 0
...

... · · · ...
0 0 · · · λn−1

1 (t)




and

Φ =




1 1 · · · 1
1 κ2 · · · κn

...
... · · · ...

1 κn−1
2 · · · κn−1

n


 ,

it can be shown that t 7→
∥∥M−1(t)B

∥∥ =
k1|λ1(t)|−(n−1), where k1 is a positive constant,
which is non-increasing.

2

Let ‖·‖1 denote the 1-norm of a matrix, defined
by ‖A‖1 :=

∑
i,j=1 |aij |, where A = [aij ].

Lemma 6. If λi(·) are determined by Algorithm
1, then t 7→

∥∥∥M−1(t)Ṁ(t)
∥∥∥

1
is a non-increasing

function.



Sketch proof: With Φ and Γ defined in the proof
of Lemma 5, M−1(t)Ṁ(t) can be expressed in the
form:

M−1(t)Ṁ(t) = Φ−1Γ−1(t)Γ̇(t)Ψ,

with

Ψ =




0 0 · · · 0
1 κ2 · · · κn

...
... · · · ...

1 κn−1
2 · · · κn−1

n


 .

Hence, there is a positive constant k2 such that∥∥∥M−1(t)Ṁ(t)
∥∥∥

1
= k2|λ1(t)|−1|λ̇1(t)|. Since λ̇1(·)

is bounded, the result follows.

2

8. MAIN RESULTS

Let Bn(r) denote an open ball in Rn, centered on
the origin with radius r > 0, and let Bn(r) denote
its closure. Using the results of Lemmas 5 and 6
the following lemmas are obtained (unfortunately,
due to restrictions on space, sketch proofs are not
provided).

Lemma 7. Suppose Assumptions 1-3 hold, εe > 0
is given and λi(·) satisfy the conditions given in
Algorithm 1, then, under the dynamics of (11),
there exists t∗ > t0 such that e(t) ∈ Bn(εe) and
λi(t) are finite for all t ≥ t∗.

Lemma 8. Suppose Assumptions 1-3 hold and
λi(·) satisfy the conditions given in Algorithm 1,
then, under the dynamics of (11), e(·) is uniformly
bounded.

It follows from Lemma 7 that, using Algorithm
1, all trajectories of (12) reach Bn(εe). Also, by
Lemmas 7 and 8, all internal signals, consisting
of the transformed error state, the eigenvalues of
the error system, and the feedback gain for the
input to the observer-like system, are uniformly
bounded. Therefore, ‖e(t)‖ ≤ εe, for t sufficiently
large, implies x(t) ≈ r̃(t) for t sufficiently large. In
view of (13) and (14), x(t) ≈ r̃(t) for t sufficiently
large implies u(t) ≈ p(t) for t sufficiently large.
Thus, the unknown disturbance is estimated by
u(t).

Theorem 9. Consider the single-input system (5),
with unknown uncertainty/disturbance. If As-
sumptions 1-3 hold, then, utilizing the observer-
like system (6), the feedforward filter (7), the
modified reference signal (9), and the feedback
control defined by (10), (15) and Algorithm 1,
u(t) ≈ p(t) for t sufficiently large, where p(t) is
the matched disturbance/uncertainty in system
(5) and u(t) is the control input to the observer-
like system (6).

Remark 10. If the ‘estimated’ disturbance signal
with opposite sign, namely −u(t) ≈ −p(t), is
fed back to system (5), then the effect of the
matched disturbance/uncertainty in system (5)
will be cancelled out.

The method, outlined in this paper, can be
extended, with suitable modification, to multi-
input/multi-output linear systems. Also, some ap-
plications, based on this method, are presented in
(Kim, 2004).

9. ILLUSTRATIVE EXAMPLE

Here, the system to be examined is a third order
single-input system given by

ṙ(t) = Ar(t) + B(u(t) + d(t)),

where r(t) = [r1(t) r2(t) r3(t)]T, u(t) is the control
input to the system and d(t) denotes matched
uncertainty/disturbance. The system matrix and
input matrix are given by

A =




0 1 0
0 0 1

−15 −10 −5


 , B =




0
0
1


 ,

and the dynamics are governed by the initial
condition: r(0) =

[
3 −2 0

]T. For the adap-
tive algorithm, the following values are chosen:
λ1(0) = −1.0, λ̇1(0) = 0, εe = 1.0 × 10−3, δ = 2,
κ2 = 0.5, κ3 = 1.5 and h = 0.01. For simulation
purposes, the ‘unknown’ disturbance is chosen to
be

d(t) = (2 + sin(t))s(t) + 10r1(t) + 5r2(t) + r3(t),

where

s(t) =





0, 0 ≤ t < 5,
1
2 (t− 5), 5 ≤ t < 10,

2.5, 10 ≤ t < 20,
1
2 (t− 15), 20 ≤ t < 25,

5, t ≥ 25.

The simulations are performed using MATLAB r©.
History of the disturbance in the closed-loop sys-
tem (10) is shown in Figure (1), whilst the closed-
loop responses for system (5) with u(t) = −u(t)
are shown in Figure 2. The difference between
the true and estimated disturbance is shown in
Figure 3, and the feedback gains of the observer-
like system (4), which are bounded, are illustrated
in Figure 4. Finally, the estimated disturbance is
shown in Figure 5.
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