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Abstract: The paper describes an automatic tuning procedure for a wide class of 
continuous-time systems without and with time delays. Every auto-tuning method has 
two basic steps. The first one is experimental and yields an estimated model. The 
second step consists in a design procedure of controllers. The developed auto-tuning 
procedure identifies a first order estimation model obtained by a biased relay feedback 
test. The consecutive design is based on a general solution of Diophantine equations and 
results in a PI-like controller. Moreover, the Diophantine equation approach gives a 
scalar tuning parameter which is adjusted according to the equalization of weighted 
moments. Copyright © 2005 IFAC 
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1. INTRODUCTION 
 

The conventional PID control has been predominant 
in most industrial applications for decades. The 
importance of the PID feedback is supported e.g. by 
IFAC Workshop PID’00 where many stimulating 
contributions were presented (Åström and Hägglund, 
2000; Gorez and Klán, 2000; Ingimundarson and 
Hägglund, 2000). However, inadequate tuning of the 
controller parameters (Åström and Hägglund, 1995) 
may cause their poor performance. Hence, automatic 
tuning became a very desirable feature in industrial 
applications as well as in control producers. 
Nowadays, there are many different auto-tuning 
principles (Åström and Hägglund, 1984; Majhi and 
Atherton, 1998; Pecharromán and Pagola, 2000; de 
Arruda and Barros, 2001; Thyagarajan and Yu 2002).  
 
An auto-tuning procedure consists of a process 
identification experiment plus a controller design 

method. The present day trend is a relay feedback 
test in two basic modifications. The traditional 
method was proposed by Åström and Hägglund 
(1984) is based on a symmetrical relay feedback test 
when a relay of magnitude “h” is inserted in the 
feedback loop. The period of the limit cycle is the 
ultimate period Tu and a limit cycle of amplitude “a” 
is generated by the process output. Then an 
approximate ultimate gain Ku can be calculated by: 
 

 
a
hK u ⋅=

π
4  (1) 

 
and consequently the well-known Ziegler-Nichols 
method can be used for the controller design. 
 
Another asymmetrical limit cycle data test was 
proposed in Kaya and Atherton (2001) and it is also 
documented in Yu (1999). 
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The second step of auto-tuning principles generally 
includes a design method. The traditional approach 
utilizes the Ziegler-Nichols adjustment (Åström and 
Hägglund, 1984). However, these controller 
parameter settings suffer from some drawbacks, e.g. 
oscillatory transients or high overshoots in the 
controller output. Hence, a novel approach to PID 
controller tuning known as “equalization method” 
was proposed by Gorez and Klán (2000). Another 
modifications of the design settings can be found 
(Garcia and Castelo, 2000; Thyagarajan and Yu, 
2002; Ingimundarson and Hägglund, 2000). 
 
This contribution brings another auto-tuning method. 
The identification experiment is based on a biased 
relay test and the process is estimated by a first order 
(linear) model. Then a control design of a PI-like 
controller is performed by a solution of Diophantine 
equation in an appropriate ring. This approach 
enables to introduce a positive scalar parameter m>0 
which is adjusted by the “equalization” principle. 
 
The report is arranged in the following manner. In 
section 2 the identification method is introduced. The 
design principle is introduced in section 3. Section 4 
summarizes the automatic tuning procedure and 
outlines the program implementation. In section 5 
simulation examples are given and finally 
conclusions are drawn in section 6. 
 
 

2. RELAY FEEDBACK IDENTIFICATION 
 

A relay is usually used for on-off control of the 
process. Åström and Hägglund (1984) proposed a 
method for determining the ultimate frequency and 
gain called autotune variation. Fig.1 shows a process 
with a feedback with a symmetrical ideal relay which 
can be used for auto-tuning principles. The scheme in 
Fig.1 has two phases. During the phase 1, only the 
relay feedback is applied and the process is estimated 
through an oscillation test. A typical biased relay test 
is depicted in Fig.2. Then the estimation procedure is 
performed and PI (PID) controller parameters are 
designed. During the phase 2, the PI (PID) control 
loop is connected. 

 
Fig. 1. Block diagram of a relay auto-tuner 
 
For a large class of processes the relay gives an 
oscillation output the frequency of which is close to 
the ultimate frequency and the ultimate gain is 
approximated by relation (1). When a biased relay 
feedback is used the steady state gain of the process 
can be estimated (Ramirez, 1985) by: 
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where Tu is a wave (ultimate) period shown in Fig.2. 
The goal of the identification for a PI or PID like 
controller design is to find a model in the form: 
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Fig. 2. Biased relay oscillation of stable processes 
 
It is well known that many stable industrial processes 
can be adequately approximated by model (3). The 
gain K is given by relation (2) and time constant T is 
given according to Vyhlídal (2000): 
 

 )(tan1
Θ⋅= u

u

T ω
ω

 (4) 

 
where Θ is the difference time between an extreme of 
y(t) to the preceding relay switch (see Fig.2) and ωu 
is the ultimate frequency obtained through the 
ultimate period Tu from experimental data by: 
 

 
u
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π
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For the PI controller design, only parameters K and T 
from (3) are used. 
 
 

3. CONTROLLER DESIGN 
 
3.1 Ziegler-Nichols setting 
 
There are many methods for controller setting in the 
literature which can be found in standard autotuning 
principles (see e.g. Morilla, 2000; Åström and 
Hägglund, 1995; Yu, 1999; Kaya and Atherton, 
2001). Among them, the Ziegler-Nichols method is 
probably utilized most frequently. Explicit relations 
were proposed in the form of a table where controller 
parameters are derived from the critical values Ku 
and Tu according to (1), (5). 
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Table 1 presents a revised modification (Åström and 
Hägglund, 1995). The control law is then supposed in 
the form of the ideal PID controller: 
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where KP is the controller gain and TI, TD are the 
integral and derivative time, respectively. 
 
However, this controller setting suffers from several 
drawbacks. Firstly, this method often results into 
oscillatory transients and into high overshoots. 
Secondly, the design approach is based on concepts 
as frequency response or dominant pole principles 
which are not familiarly known in practice. The 
advantage of Ziegler-Nichols consists in simplicity of 
the utilization. In the relay (often symmetric case) is 
the ultimate gain and frequency estimated and then 
Table 1 for PI or PID controller adjusting is used. 
Moreover, the structure of the controller can be easily 
modified by set point weighting (Åström et al., 
1992). In the case of PI controller the modification 
takes the form: 
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where w is the reference and 0<β≤1 is the weighting 
factor. 
 

Table 1 Ziegler-Nichols setting 
 

 KP TI TD 

P 0.5 Ku - - 
PI 0.45 Ku 0.85 Tu - 
PID 0.6 Ku 0.5 Tu 0.12 Tu 

 
 
3.2 Equalization method 
 
A novel approach to PID controller tuning for a wide 
class of processes was proposed in Gorez and Klán 
(2000). This approach is based on the equalization of 
the controlled output via constraints on weighted 
moments of their difference. The equalization 
method dramatically reduces output overshooting and 
improves whole control responses. The controller 
transfer function is according to (6) supposed in the 
form: 
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The methodology then follows the idea that any 
change in the controller set point should be passed 
immediately with appropriate scaling to the 
controller output. This objective can be achieved if 
the process can be described by the transfer function 
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where K is the static gain, T1, T2 are the time 
constants and T0 is a time constant related to a 
nonminimum-phase behavior or a time-delay 
approximation. Then the controller parameters can be 
tuned through the choice TI = T1 and TD = T2 which 
yields the relation: 
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where u, w are the Laplace transforms. Setting the 
controller gain to: 
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gives )(1)( ∞⋅= w
K

tu . For processes with higher 

order dynamics this equality is not satisfied, 
however, the controller output can be tuned by 
“equalizing” of the steady-state value, for details see 
Gorez and Klán (2000). After some manipulations 
and derivations, the PI controller parameters can be 
tuned by simple relations:  
 

 uIP TT
K

K ⋅== 4.0
2
1  (12) 

 
where Tu is the standard ultimate period. 
 
 
3.3 Control design in RPS ring 

 
The growing role of algebraic methods is one of the 
features of modern control theory. Fields, ring and 
Diophantine equations became a powerful and 
effective tool especially for linear control design 
methods. Elegant control synthesis can be derived 
through the ring of proper and stable rational 
functions RPS (see Prokop et al., 2002). The transfer 
function of linear (continuous-time) system is 
expressed as a ratio of two elements of RPS which is 
given by: 
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where a, b are polynomials (traditional in the Laplace 
representation) and m(s) is a stable polynomial with 
deg m = max {deg a, deg b}. A convenient form for 
the choice is: 
 
 0)()( 0
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The parameter m0 > 0 ensures the stability of m(s) 
and it is a suitable “tuning knob” for the control 
behavior. As a consequence, fractions A, B in (13) 
belong to the ring RPS. 
 
A typical control problem can be formulated as 
follows: Find a controller such that the feedback 
control system is stable and some additional 
properties (reference tracking, disturbance rejection) 
are fulfilled. 
 
A 1DOF control structure shown in Fig. 3 is 
described by the relations: 
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where e=w-y is the tracking error, w is the reference, 
n is a load disturbance and v is a output disturbance.  
 

 
 
Fig. 3. One degree-of-freedom control structure 
 
All stabilizing controllers are given as general 
solution of Diophantine equation: 
 
 1=+ BQAP  (16) 
 
which can be expressed by : 
 
 AZQQBZPP −=+= 00  (17) 
 
where P0 and Q0 is any particular solution of (16) and 
Z is an arbitrary element of RPS.  
 
However, the final control aim is not restricted only 
to achieve stability but also asymptotic reference 
tracking, disturbance rejection and other 
specifications. The performance requirements are 
expressed through divisibility conditions in the 
appropriate ring. For asymptotic reference tracking, 
the denominator Fw of the reference must divide P in 
RPS. This denominator for the step function is given 
by relation: 

 0; >
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For the first order system (3), the control design is 
given as follows. The equation (16) takes the form: 
 
 msKqpTs +=++ 00)1(  (19) 

and the general solution of (17) is given by : 
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where Z is an arbitrary element of RPS. The 
asymptotic tracking problem expressed by the 
divisibility of (18) is achieved by the choice 

TK
mZ −= . The final controller is then given in the 

PI form: 
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where m>0 is the tuning parameter, K and T are the 
parameters of system (3) and controller parameters q0 
and q1 are given : 
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The parameter q1 in (22) represents the controller 
gain and is tuned by the “equalization” principle. 
Comparing (12) and (22) gives the choice for the 
tuning parameter m > 0 by: 

 
T
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The final PI parameters are then given by (22). 
 
 

4. PROGRAM IMPLEMENTATION 
 

A program system for design, tuning, simulation and 
comparison of introduced autotuning methods in 
Matlab-Simulink was developed. The Main menu of 
this program is in the Fig. 4. 
 

 
 
Fig. 4. Main menu of the program system 
 
During the simulation routine a standard Simulink 
scheme is displayed (see Fig. 5) and the simulation of 
all three methods are performed. The simulation 



     

horizon can be prescribed in the middle of the main 
window and other simulation parameters can be 
specified in the Simulink environment. The end of 
the routine is chosen by pressing of “Exit” button. 
 

 
 
Fig. 5. Simulink scheme of control loop 
 
In all simulation a change of the step reference is 
performed in the second third of the simulation 
horizon and a step change in the load is injected in 
the last third. 
 
 

5. SIMULATION EXPERIMENTS 
 

5.1 Example 1 
 
The controlled system was a typical stable one (see 
Åström and Hägglund, 1995) with the transfer 
function: 
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After the relay identification experiment (2), (4) the 
approximated transfer function was identified in the 
form: 
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Note, that according to model reduction method the 
approximated transfer function was: 
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Fig. 6. Step responses of systems 

 
Fig. 7. Control responses of described controllers 
 
The step responses of system (24) and approximated 
system (25) are shown in Fig. 6. Then three PI 
controllers were obtained by above mentioned 
methods. The control responses are pictured in Fig. 7. 
 
 
5.1 Example 2 
 
Consider a stable system with time delay governed 
by the transfer function: 
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First order system in (27) represents a wide class of 
frequent industrial processes. The approximated 
system was identified in the form: 
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Fig. 8. Step responses of systems 
 
The comparison of step responses (27) and (28) are 
shown in Fig. 8. Control responses of system (27) by 
all control principles are shown in Fig. 9. The 
influence of the control behavior by the tuning 
parameter m is pictured in Fig. 10. The tuning 
parameter influences reference tracking as well as 
load disturbance responses. 
 



     

 
Fig. 9. Control responses of described controllers 
 

 
Fig. 10. Control responses of polynomial synthesis 
 
 

6. CONCLUSION 
 

The contribution is focused on autotuning methods 
using a relay identification experiments. A new 
method with a biased relay and polynomial control 
design is introduced. A first order system is identified 
and a PI like controller is generated through a simple 
Diophantine equation. The approach enables to 
introduce a single scalar parameter for further 
influencing of derived controllers. This parameter 
m>0 is tuned according to “equalization method” 
which results in the same controller gain (see Fig.9). 
For further purposes this parameter can be adjusted 
to fulfill additional requirements (see Fig.10). The 
developed method is compared with two classical 
principles known as Ziegler-Nichols (Åström and 
Hägglund, 1984) with symmetric relay and the 
Equalization method (Gorez and Klán, 2000). The 
program implementation of all approaches is 
performed in the Matlab and Simulink environment. 
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